ShapeTests.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include "UnitTestFramework.h"
  5. #include "PhysicsTestContext.h"
  6. #include <Jolt/Physics/Collision/Shape/ConvexHullShape.h>
  7. #include <Jolt/Physics/Collision/Shape/BoxShape.h>
  8. #include <Jolt/Physics/Collision/Shape/SphereShape.h>
  9. #include <Jolt/Physics/Collision/Shape/CapsuleShape.h>
  10. #include <Jolt/Physics/Collision/Shape/TaperedCapsuleShape.h>
  11. #include <Jolt/Physics/Collision/Shape/CylinderShape.h>
  12. #include <Jolt/Physics/Collision/Shape/ScaledShape.h>
  13. #include <Jolt/Physics/Collision/Shape/StaticCompoundShape.h>
  14. #include <Jolt/Physics/Collision/Shape/MutableCompoundShape.h>
  15. #include <Jolt/Physics/Collision/Shape/TriangleShape.h>
  16. #include <Jolt/Physics/Collision/Shape/RotatedTranslatedShape.h>
  17. #include <Jolt/Physics/Collision/Shape/HeightFieldShape.h>
  18. #include <Jolt/Physics/Collision/Shape/MeshShape.h>
  19. #include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
  20. #include <Jolt/Physics/Collision/CollidePointResult.h>
  21. #include <Jolt/Physics/Collision/RayCast.h>
  22. #include <Jolt/Physics/Collision/CastResult.h>
  23. #include <Jolt/Core/StreamWrapper.h>
  24. TEST_SUITE("ShapeTests")
  25. {
  26. // Test convex hull shape
  27. TEST_CASE("TestConvexHullShape")
  28. {
  29. const float cDensity = 1.5f;
  30. // Create convex hull shape of a box
  31. Array<Vec3> box;
  32. box.push_back(Vec3(5, 6, 7));
  33. box.push_back(Vec3(5, 6, 14));
  34. box.push_back(Vec3(5, 12, 7));
  35. box.push_back(Vec3(5, 12, 14));
  36. box.push_back(Vec3(10, 6, 7));
  37. box.push_back(Vec3(10, 6, 14));
  38. box.push_back(Vec3(10, 12, 7));
  39. box.push_back(Vec3(10, 12, 14));
  40. ConvexHullShapeSettings settings(box);
  41. settings.SetDensity(cDensity);
  42. RefConst<Shape> shape = settings.Create().Get();
  43. // Validate calculated center of mass
  44. Vec3 com = shape->GetCenterOfMass();
  45. CHECK_APPROX_EQUAL(Vec3(7.5f, 9.0f, 10.5f), com, 1.0e-5f);
  46. // Calculate reference value of mass and inertia of a box
  47. MassProperties reference;
  48. reference.SetMassAndInertiaOfSolidBox(Vec3(5, 6, 7), cDensity);
  49. // Mass is easy to calculate, double check if SetMassAndInertiaOfSolidBox calculated it correctly
  50. CHECK_APPROX_EQUAL(5.0f * 6.0f * 7.0f * cDensity, reference.mMass, 1.0e-6f);
  51. // Get calculated inertia tensor
  52. MassProperties m = shape->GetMassProperties();
  53. CHECK_APPROX_EQUAL(reference.mMass, m.mMass, 1.0e-6f);
  54. CHECK_APPROX_EQUAL(reference.mInertia, m.mInertia, 1.0e-4f);
  55. // Check inner radius
  56. CHECK_APPROX_EQUAL(shape->GetInnerRadius(), 2.5f);
  57. }
  58. // Test inertia calculations for a capsule vs that of a convex hull of a capsule
  59. TEST_CASE("TestCapsuleVsConvexHullInertia")
  60. {
  61. const float half_height = 5.0f;
  62. const float radius = 3.0f;
  63. // Create a capsule
  64. CapsuleShape capsule(half_height, radius);
  65. capsule.SetDensity(7.0f);
  66. capsule.SetEmbedded();
  67. MassProperties mp_capsule = capsule.GetMassProperties();
  68. // Verify mass
  69. float mass_cylinder = 2.0f * half_height * JPH_PI * Square(radius) * capsule.GetDensity();
  70. float mass_sphere = 4.0f / 3.0f * JPH_PI * Cubed(radius) * capsule.GetDensity();
  71. CHECK_APPROX_EQUAL(mp_capsule.mMass, mass_cylinder + mass_sphere);
  72. // Extract support points
  73. ConvexShape::SupportBuffer buffer;
  74. const ConvexShape::Support *support = capsule.GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
  75. Array<Vec3> capsule_points;
  76. capsule_points.reserve(Vec3::sUnitSphere.size());
  77. for (const Vec3 &v : Vec3::sUnitSphere)
  78. capsule_points.push_back(support->GetSupport(v));
  79. // Create a convex hull using the support points
  80. ConvexHullShapeSettings capsule_hull(capsule_points);
  81. capsule_hull.SetDensity(capsule.GetDensity());
  82. RefConst<Shape> capsule_hull_shape = capsule_hull.Create().Get();
  83. MassProperties mp_capsule_hull = capsule_hull_shape->GetMassProperties();
  84. // Check that the mass and inertia of the convex hull match that of the capsule (within certain tolerance since the convex hull is an approximation)
  85. float mass_error = (mp_capsule_hull.mMass - mp_capsule.mMass) / mp_capsule.mMass;
  86. CHECK(mass_error > -0.05f);
  87. CHECK(mass_error < 0.0f); // Mass is smaller since the convex hull is smaller
  88. for (int i = 0; i < 3; ++i)
  89. for (int j = 0; j < 3; ++j)
  90. {
  91. if (i == j)
  92. {
  93. float inertia_error = (mp_capsule_hull.mInertia(i, j) - mp_capsule.mInertia(i, j)) / mp_capsule.mInertia(i, j);
  94. CHECK(inertia_error > -0.05f);
  95. CHECK(inertia_error < 0.0f); // Inertia is smaller since the convex hull is smaller
  96. }
  97. else
  98. {
  99. CHECK(mp_capsule.mInertia(i, j) == 0.0f);
  100. float scaled_inertia = mp_capsule_hull.mInertia(i, j) / mp_capsule_hull.mMass;
  101. CHECK_APPROX_EQUAL(scaled_inertia, 0.0f, 1.0e-3f);
  102. }
  103. }
  104. }
  105. // Test IsValidScale function
  106. TEST_CASE("TestIsValidScale")
  107. {
  108. // Test simple shapes
  109. Ref<Shape> sphere = new SphereShape(2.0f);
  110. CHECK(!sphere->IsValidScale(Vec3::sZero()));
  111. CHECK(sphere->IsValidScale(Vec3(2, 2, 2)));
  112. CHECK(sphere->IsValidScale(Vec3(-1, 1, -1)));
  113. CHECK(!sphere->IsValidScale(Vec3(2, 1, 1)));
  114. CHECK(!sphere->IsValidScale(Vec3(1, 2, 1)));
  115. CHECK(!sphere->IsValidScale(Vec3(1, 1, 2)));
  116. Ref<Shape> capsule = new CapsuleShape(2.0f, 0.5f);
  117. CHECK(!capsule->IsValidScale(Vec3::sZero()));
  118. CHECK(capsule->IsValidScale(Vec3(2, 2, 2)));
  119. CHECK(capsule->IsValidScale(Vec3(-1, 1, -1)));
  120. CHECK(!capsule->IsValidScale(Vec3(2, 1, 1)));
  121. CHECK(!capsule->IsValidScale(Vec3(1, 2, 1)));
  122. CHECK(!capsule->IsValidScale(Vec3(1, 1, 2)));
  123. Ref<Shape> tapered_capsule = TaperedCapsuleShapeSettings(2.0f, 0.5f, 0.7f).Create().Get();
  124. CHECK(!tapered_capsule->IsValidScale(Vec3::sZero()));
  125. CHECK(tapered_capsule->IsValidScale(Vec3(2, 2, 2)));
  126. CHECK(tapered_capsule->IsValidScale(Vec3(-1, 1, -1)));
  127. CHECK(!tapered_capsule->IsValidScale(Vec3(2, 1, 1)));
  128. CHECK(!tapered_capsule->IsValidScale(Vec3(1, 2, 1)));
  129. CHECK(!tapered_capsule->IsValidScale(Vec3(1, 1, 2)));
  130. Ref<Shape> cylinder = new CylinderShape(0.5f, 2.0f);
  131. CHECK(!cylinder->IsValidScale(Vec3::sZero()));
  132. CHECK(cylinder->IsValidScale(Vec3(2, 2, 2)));
  133. CHECK(cylinder->IsValidScale(Vec3(-1, 1, -1)));
  134. CHECK(!cylinder->IsValidScale(Vec3(2, 1, 1)));
  135. CHECK(cylinder->IsValidScale(Vec3(1, 2, 1)));
  136. CHECK(!cylinder->IsValidScale(Vec3(1, 1, 2)));
  137. Ref<Shape> triangle = new TriangleShape(Vec3(1, 2, 3), Vec3(4, 5, 6), Vec3(7, 8, 9));
  138. CHECK(!triangle->IsValidScale(Vec3::sZero()));
  139. CHECK(triangle->IsValidScale(Vec3(2, 2, 2)));
  140. CHECK(triangle->IsValidScale(Vec3(-1, 1, -1)));
  141. CHECK(triangle->IsValidScale(Vec3(2, 1, 1)));
  142. CHECK(triangle->IsValidScale(Vec3(1, 2, 1)));
  143. CHECK(triangle->IsValidScale(Vec3(1, 1, 2)));
  144. Ref<Shape> triangle2 = new TriangleShape(Vec3(1, 2, 3), Vec3(4, 5, 6), Vec3(7, 8, 9), 0.01f); // With convex radius
  145. CHECK(!triangle2->IsValidScale(Vec3::sZero()));
  146. CHECK(triangle2->IsValidScale(Vec3(2, 2, 2)));
  147. CHECK(triangle2->IsValidScale(Vec3(-1, 1, -1)));
  148. CHECK(!triangle2->IsValidScale(Vec3(2, 1, 1)));
  149. CHECK(!triangle2->IsValidScale(Vec3(1, 2, 1)));
  150. CHECK(!triangle2->IsValidScale(Vec3(1, 1, 2)));
  151. Ref<Shape> scaled = new ScaledShape(sphere, Vec3(1, 2, 1));
  152. CHECK(!scaled->IsValidScale(Vec3::sZero()));
  153. CHECK(!scaled->IsValidScale(Vec3(1, 1, 1)));
  154. CHECK(scaled->IsValidScale(Vec3(1, 0.5f, 1)));
  155. CHECK(scaled->IsValidScale(Vec3(-1, 0.5f, 1)));
  156. CHECK(!scaled->IsValidScale(Vec3(2, 1, 1)));
  157. CHECK(!scaled->IsValidScale(Vec3(1, 2, 1)));
  158. CHECK(!scaled->IsValidScale(Vec3(1, 1, 2)));
  159. Ref<Shape> scaled2 = new ScaledShape(scaled, Vec3(1, 0.5f, 1));
  160. CHECK(!scaled2->IsValidScale(Vec3::sZero()));
  161. CHECK(scaled2->IsValidScale(Vec3(2, 2, 2)));
  162. CHECK(scaled2->IsValidScale(Vec3(-1, 1, -1)));
  163. CHECK(!scaled2->IsValidScale(Vec3(2, 1, 1)));
  164. CHECK(!scaled2->IsValidScale(Vec3(1, 2, 1)));
  165. CHECK(!scaled2->IsValidScale(Vec3(1, 1, 2)));
  166. // Test a compound with shapes that can only be scaled uniformly
  167. StaticCompoundShapeSettings compound_settings;
  168. compound_settings.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisX(), 0.1f * JPH_PI), sphere);
  169. compound_settings.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisY(), 0.1f * JPH_PI), capsule);
  170. Ref<Shape> compound = compound_settings.Create().Get();
  171. CHECK(!compound->IsValidScale(Vec3::sZero()));
  172. CHECK(compound->IsValidScale(Vec3(1, 1, 1)));
  173. CHECK(compound->IsValidScale(Vec3(2, 2, 2)));
  174. CHECK(!compound->IsValidScale(Vec3(2, 1, 1)));
  175. CHECK(!compound->IsValidScale(Vec3(1, 2, 1)));
  176. CHECK(!compound->IsValidScale(Vec3(1, 1, 2)));
  177. // Test compound containing a triangle shape that can be scaled in any way
  178. StaticCompoundShapeSettings compound_settings2;
  179. compound_settings2.AddShape(Vec3(1, 2, 3), Quat::sIdentity(), triangle);
  180. compound_settings2.AddShape(Vec3(4, 5, 6), Quat::sIdentity(), new ScaledShape(triangle, Vec3(10, 11, 12)));
  181. Ref<Shape> compound2 = compound_settings2.Create().Get();
  182. CHECK(!compound2->IsValidScale(Vec3::sZero()));
  183. CHECK(compound2->IsValidScale(Vec3(1, 1, 1)));
  184. CHECK(compound2->IsValidScale(Vec3(2, 2, 2)));
  185. CHECK(compound2->IsValidScale(Vec3(2, 1, 1)));
  186. CHECK(compound2->IsValidScale(Vec3(1, 2, 1)));
  187. CHECK(compound2->IsValidScale(Vec3(1, 1, 2)));
  188. // Test rotations inside the compound of 90 degrees
  189. StaticCompoundShapeSettings compound_settings3;
  190. compound_settings3.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.5f * JPH_PI), triangle);
  191. compound_settings3.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisZ(), 0.5f * JPH_PI), new ScaledShape(triangle, Vec3(10, 11, 12)));
  192. Ref<Shape> compound3 = compound_settings3.Create().Get();
  193. CHECK(!compound3->IsValidScale(Vec3::sZero()));
  194. CHECK(compound3->IsValidScale(Vec3(1, 1, 1)));
  195. CHECK(compound3->IsValidScale(Vec3(2, 2, 2)));
  196. CHECK(compound3->IsValidScale(Vec3(2, 1, 1)));
  197. CHECK(compound3->IsValidScale(Vec3(1, 2, 1)));
  198. CHECK(compound3->IsValidScale(Vec3(1, 1, 2)));
  199. // Test non-90 degree rotations, this would cause shearing so is not allowed (we can't express that by passing a diagonal scale vector)
  200. StaticCompoundShapeSettings compound_settings4;
  201. compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), 0.25f * JPH_PI), triangle);
  202. compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.25f * JPH_PI), triangle);
  203. Ref<Shape> compound4 = compound_settings4.Create().Get();
  204. CHECK(!compound4->IsValidScale(Vec3::sZero()));
  205. CHECK(compound4->IsValidScale(Vec3(1, 1, 1)));
  206. CHECK(compound4->IsValidScale(Vec3(2, 2, 2)));
  207. CHECK(!compound4->IsValidScale(Vec3(2, 1, 1)));
  208. CHECK(!compound4->IsValidScale(Vec3(1, 2, 1)));
  209. CHECK(compound4->IsValidScale(Vec3(1, 1, 2))); // We're rotation around Z, so non-uniform in the Z direction is ok
  210. // Test a mutable compound with shapes that can only be scaled uniformly
  211. MutableCompoundShapeSettings mutable_compound_settings;
  212. mutable_compound_settings.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisX(), 0.1f * JPH_PI), sphere);
  213. mutable_compound_settings.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisY(), 0.1f * JPH_PI), capsule);
  214. Ref<Shape> mutable_compound = mutable_compound_settings.Create().Get();
  215. CHECK(!mutable_compound->IsValidScale(Vec3::sZero()));
  216. CHECK(mutable_compound->IsValidScale(Vec3(1, 1, 1)));
  217. CHECK(mutable_compound->IsValidScale(Vec3(2, 2, 2)));
  218. CHECK(!mutable_compound->IsValidScale(Vec3(2, 1, 1)));
  219. CHECK(!mutable_compound->IsValidScale(Vec3(1, 2, 1)));
  220. CHECK(!mutable_compound->IsValidScale(Vec3(1, 1, 2)));
  221. // Test mutable compound containing a triangle shape that can be scaled in any way
  222. MutableCompoundShapeSettings mutable_compound_settings2;
  223. mutable_compound_settings2.AddShape(Vec3(1, 2, 3), Quat::sIdentity(), triangle);
  224. mutable_compound_settings2.AddShape(Vec3(4, 5, 6), Quat::sIdentity(), new ScaledShape(triangle, Vec3(10, 11, 12)));
  225. Ref<Shape> mutable_compound2 = mutable_compound_settings2.Create().Get();
  226. CHECK(!mutable_compound2->IsValidScale(Vec3::sZero()));
  227. CHECK(mutable_compound2->IsValidScale(Vec3(1, 1, 1)));
  228. CHECK(mutable_compound2->IsValidScale(Vec3(2, 2, 2)));
  229. CHECK(mutable_compound2->IsValidScale(Vec3(2, 1, 1)));
  230. CHECK(mutable_compound2->IsValidScale(Vec3(1, 2, 1)));
  231. CHECK(mutable_compound2->IsValidScale(Vec3(1, 1, 2)));
  232. // Test rotations inside the mutable compound of 90 degrees
  233. MutableCompoundShapeSettings mutable_compound_settings3;
  234. mutable_compound_settings3.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.5f * JPH_PI), triangle);
  235. mutable_compound_settings3.AddShape(Vec3(4, 5, 6), Quat::sRotation(Vec3::sAxisZ(), 0.5f * JPH_PI), new ScaledShape(triangle, Vec3(10, 11, 12)));
  236. Ref<Shape> mutable_compound3 = mutable_compound_settings3.Create().Get();
  237. CHECK(!mutable_compound3->IsValidScale(Vec3::sZero()));
  238. CHECK(mutable_compound3->IsValidScale(Vec3(1, 1, 1)));
  239. CHECK(mutable_compound3->IsValidScale(Vec3(2, 2, 2)));
  240. CHECK(mutable_compound3->IsValidScale(Vec3(2, 1, 1)));
  241. CHECK(mutable_compound3->IsValidScale(Vec3(1, 2, 1)));
  242. CHECK(mutable_compound3->IsValidScale(Vec3(1, 1, 2)));
  243. // Test non-90 degree rotations, this would cause shearing so is not allowed (we can't express that by passing a diagonal scale vector)
  244. MutableCompoundShapeSettings mutable_compound_settings4;
  245. mutable_compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), 0.25f * JPH_PI), triangle);
  246. mutable_compound_settings4.AddShape(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.25f * JPH_PI), triangle);
  247. Ref<Shape> mutable_compound4 = mutable_compound_settings4.Create().Get();
  248. CHECK(!mutable_compound4->IsValidScale(Vec3::sZero()));
  249. CHECK(mutable_compound4->IsValidScale(Vec3(1, 1, 1)));
  250. CHECK(mutable_compound4->IsValidScale(Vec3(2, 2, 2)));
  251. CHECK(!mutable_compound4->IsValidScale(Vec3(2, 1, 1)));
  252. CHECK(!mutable_compound4->IsValidScale(Vec3(1, 2, 1)));
  253. CHECK(mutable_compound4->IsValidScale(Vec3(1, 1, 2))); // We're rotation around Z, so non-uniform in the Z direction is ok
  254. // Test a rotated translated shape that can only be scaled uniformly
  255. RotatedTranslatedShapeSettings rt_settings(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisX(), 0.1f * JPH_PI), sphere);
  256. Ref<Shape> rt_shape = rt_settings.Create().Get();
  257. CHECK(!rt_shape->IsValidScale(Vec3::sZero()));
  258. CHECK(rt_shape->IsValidScale(Vec3(1, 1, 1)));
  259. CHECK(rt_shape->IsValidScale(Vec3(2, 2, 2)));
  260. CHECK(!rt_shape->IsValidScale(Vec3(2, 1, 1)));
  261. CHECK(!rt_shape->IsValidScale(Vec3(1, 2, 1)));
  262. CHECK(!rt_shape->IsValidScale(Vec3(1, 1, 2)));
  263. // Test rotated translated shape containing a triangle shape that can be scaled in any way
  264. RotatedTranslatedShapeSettings rt_settings2(Vec3(4, 5, 6), Quat::sIdentity(), new ScaledShape(triangle, Vec3(10, 11, 12)));
  265. Ref<Shape> rt_shape2 = rt_settings2.Create().Get();
  266. CHECK(!rt_shape2->IsValidScale(Vec3::sZero()));
  267. CHECK(rt_shape2->IsValidScale(Vec3(1, 1, 1)));
  268. CHECK(rt_shape2->IsValidScale(Vec3(2, 2, 2)));
  269. CHECK(rt_shape2->IsValidScale(Vec3(2, 1, 1)));
  270. CHECK(rt_shape2->IsValidScale(Vec3(1, 2, 1)));
  271. CHECK(rt_shape2->IsValidScale(Vec3(1, 1, 2)));
  272. // Test rotations inside the rotated translated of 90 degrees
  273. RotatedTranslatedShapeSettings rt_settings3(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), -0.5f * JPH_PI), triangle);
  274. Ref<Shape> rt_shape3 = rt_settings3.Create().Get();
  275. CHECK(!rt_shape3->IsValidScale(Vec3::sZero()));
  276. CHECK(rt_shape3->IsValidScale(Vec3(1, 1, 1)));
  277. CHECK(rt_shape3->IsValidScale(Vec3(2, 2, 2)));
  278. CHECK(rt_shape3->IsValidScale(Vec3(2, 1, 1)));
  279. CHECK(rt_shape3->IsValidScale(Vec3(1, 2, 1)));
  280. CHECK(rt_shape3->IsValidScale(Vec3(1, 1, 2)));
  281. // Test non-90 degree rotations, this would cause shearing so is not allowed (we can't express that by passing a diagonal scale vector)
  282. RotatedTranslatedShapeSettings rt_settings4(Vec3(1, 2, 3), Quat::sRotation(Vec3::sAxisZ(), 0.25f * JPH_PI), triangle);
  283. Ref<Shape> rt_shape4 = rt_settings4.Create().Get();
  284. CHECK(!rt_shape4->IsValidScale(Vec3::sZero()));
  285. CHECK(rt_shape4->IsValidScale(Vec3(1, 1, 1)));
  286. CHECK(rt_shape4->IsValidScale(Vec3(2, 2, 2)));
  287. CHECK(!rt_shape4->IsValidScale(Vec3(2, 1, 1)));
  288. CHECK(!rt_shape4->IsValidScale(Vec3(1, 2, 1)));
  289. CHECK(rt_shape4->IsValidScale(Vec3(1, 1, 2))); // We're rotation around Z, so non-uniform in the Z direction is ok
  290. }
  291. // Test embedded shape
  292. TEST_CASE("TestEmbeddedShape")
  293. {
  294. {
  295. // Test shape constructed on stack, where shape construction succeeds
  296. ConvexHullShapeSettings settings;
  297. settings.mPoints.push_back(Vec3(0, 0, 0));
  298. settings.mPoints.push_back(Vec3(1, 0, 0));
  299. settings.mPoints.push_back(Vec3(0, 1, 0));
  300. settings.mPoints.push_back(Vec3(0, 0, 1));
  301. Shape::ShapeResult result;
  302. ConvexHullShape shape(settings, result);
  303. shape.SetEmbedded();
  304. CHECK(result.IsValid());
  305. result.Clear(); // Release the reference from the result
  306. // Test CollidePoint for this shape
  307. AllHitCollisionCollector<CollidePointCollector> collector;
  308. shape.CollidePoint(Vec3::sReplicate(-0.1f) - shape.GetCenterOfMass(), SubShapeIDCreator(), collector);
  309. CHECK(collector.mHits.empty());
  310. shape.CollidePoint(Vec3::sReplicate(0.1f) - shape.GetCenterOfMass(), SubShapeIDCreator(), collector);
  311. CHECK(collector.mHits.size() == 1);
  312. }
  313. {
  314. // Test shape constructed on stack, where shape construction fails
  315. ConvexHullShapeSettings settings;
  316. Shape::ShapeResult result;
  317. ConvexHullShape shape(settings, result);
  318. shape.SetEmbedded();
  319. CHECK(!result.IsValid());
  320. }
  321. }
  322. // Test re-creating shape using the same settings object
  323. TEST_CASE("TestClearCachedResult")
  324. {
  325. // Create a sphere and check radius
  326. SphereShapeSettings sphere_settings(1.0f);
  327. RefConst<SphereShape> sphere1 = static_cast<const SphereShape *>(sphere_settings.Create().Get().GetPtr());
  328. CHECK(sphere1->GetRadius() == 1.0f);
  329. // Modify radius and check that creating the shape again returns the cached result
  330. sphere_settings.mRadius = 2.0f;
  331. RefConst<SphereShape> sphere2 = static_cast<const SphereShape *>(sphere_settings.Create().Get().GetPtr());
  332. CHECK(sphere2 == sphere1);
  333. sphere_settings.ClearCachedResult();
  334. RefConst<SphereShape> sphere3 = static_cast<const SphereShape *>(sphere_settings.Create().Get().GetPtr());
  335. CHECK(sphere3->GetRadius() == 2.0f);
  336. }
  337. // Test submerged volume calculation
  338. TEST_CASE("TestGetSubmergedVolume")
  339. {
  340. Ref<BoxShape> box = new BoxShape(Vec3(1, 2, 3));
  341. Vec3 scale(2, -3, 4);
  342. Mat44 translation = Mat44::sTranslation(Vec3(0, 6, 0)); // Translate so we're on the y = 0 plane
  343. // Plane pointing positive Y
  344. // Entirely above the plane
  345. {
  346. float total_volume, submerged_volume;
  347. Vec3 center_of_buoyancy;
  348. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, -0.001f, 0), Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  349. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  350. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  351. }
  352. // Entirely below the plane
  353. {
  354. float total_volume, submerged_volume;
  355. Vec3 center_of_buoyancy;
  356. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 12.001f, 0), Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  357. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  358. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  359. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  360. }
  361. // Halfway through
  362. {
  363. float total_volume, submerged_volume;
  364. Vec3 center_of_buoyancy;
  365. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 6.0f, 0), Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  366. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  367. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 6.0f * 24.0f);
  368. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 3, 0));
  369. }
  370. // Plane pointing negative Y
  371. // Entirely above the plane
  372. {
  373. float total_volume, submerged_volume;
  374. Vec3 center_of_buoyancy;
  375. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(-4, 12.001f, 0), -Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  376. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  377. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  378. }
  379. // Entirely below the plane
  380. {
  381. float total_volume, submerged_volume;
  382. Vec3 center_of_buoyancy;
  383. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, -0.001f, 0), -Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  384. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  385. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  386. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  387. }
  388. // Halfway through
  389. {
  390. float total_volume, submerged_volume;
  391. Vec3 center_of_buoyancy;
  392. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 6.0f, 0), -Vec3::sAxisY()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  393. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  394. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 6.0f * 24.0f);
  395. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 9, 0));
  396. }
  397. // Plane pointing positive X
  398. // Entirely above the plane
  399. {
  400. float total_volume, submerged_volume;
  401. Vec3 center_of_buoyancy;
  402. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(-2.001f, 0, 0), Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  403. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  404. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  405. }
  406. // Entirely below the plane
  407. {
  408. float total_volume, submerged_volume;
  409. Vec3 center_of_buoyancy;
  410. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(2.001f, 0, 0), Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  411. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  412. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  413. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  414. }
  415. // Halfway through
  416. {
  417. float total_volume, submerged_volume;
  418. Vec3 center_of_buoyancy;
  419. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  420. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  421. CHECK_APPROX_EQUAL(submerged_volume, 2.0f * 12.0f * 24.0f);
  422. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(-1, 6, 0));
  423. }
  424. // Plane pointing negative X
  425. // Entirely above the plane
  426. {
  427. float total_volume, submerged_volume;
  428. Vec3 center_of_buoyancy;
  429. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(2.001f, 0, 0), -Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  430. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  431. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  432. }
  433. // Entirely below the plane
  434. {
  435. float total_volume, submerged_volume;
  436. Vec3 center_of_buoyancy;
  437. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(-2.001f, 0, 0), -Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  438. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  439. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  440. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  441. }
  442. // Halfway through
  443. {
  444. float total_volume, submerged_volume;
  445. Vec3 center_of_buoyancy;
  446. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), -Vec3::sAxisX()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  447. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  448. CHECK_APPROX_EQUAL(submerged_volume, 2.0f * 12.0f * 24.0f);
  449. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(1, 6, 0));
  450. }
  451. // Plane pointing positive Z
  452. // Entirely above the plane
  453. {
  454. float total_volume, submerged_volume;
  455. Vec3 center_of_buoyancy;
  456. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, -12.001f), Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  457. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  458. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  459. }
  460. // Entirely below the plane
  461. {
  462. float total_volume, submerged_volume;
  463. Vec3 center_of_buoyancy;
  464. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 12.001f), Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  465. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  466. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  467. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  468. }
  469. // Halfway through
  470. {
  471. float total_volume, submerged_volume;
  472. Vec3 center_of_buoyancy;
  473. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  474. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  475. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 12.0f);
  476. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, -6));
  477. }
  478. // Plane pointing negative Z
  479. // Entirely above the plane
  480. {
  481. float total_volume, submerged_volume;
  482. Vec3 center_of_buoyancy;
  483. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 12.001f), -Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  484. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  485. CHECK_APPROX_EQUAL(submerged_volume, 0.0f);
  486. }
  487. // Entirely below the plane
  488. {
  489. float total_volume, submerged_volume;
  490. Vec3 center_of_buoyancy;
  491. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, -12.001f), -Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  492. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  493. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 24.0f);
  494. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 0));
  495. }
  496. // Halfway through
  497. {
  498. float total_volume, submerged_volume;
  499. Vec3 center_of_buoyancy;
  500. box->GetSubmergedVolume(translation, scale, Plane::sFromPointAndNormal(Vec3(0, 0, 0), -Vec3::sAxisZ()), total_volume, submerged_volume, center_of_buoyancy JPH_IF_DEBUG_RENDERER(, RVec3::sZero()));
  501. CHECK_APPROX_EQUAL(total_volume, 4.0f * 12.0f * 24.0f);
  502. CHECK_APPROX_EQUAL(submerged_volume, 4.0f * 12.0f * 12.0f);
  503. CHECK_APPROX_EQUAL(center_of_buoyancy, Vec3(0, 6, 6));
  504. }
  505. }
  506. // Test setting user data on shapes
  507. TEST_CASE("TestShapeUserData")
  508. {
  509. const float cRadius = 2.0f;
  510. // Create a sphere with user data
  511. SphereShapeSettings sphere_settings(cRadius);
  512. sphere_settings.mUserData = 0x1234567887654321;
  513. Ref<Shape> sphere = sphere_settings.Create().Get();
  514. CHECK(sphere->GetUserData() == 0x1234567887654321);
  515. // Change the user data
  516. sphere->SetUserData(0x5678123443218765);
  517. CHECK(sphere->GetUserData() == 0x5678123443218765);
  518. stringstream data;
  519. // Write sphere to a binary stream
  520. {
  521. StreamOutWrapper stream_out(data);
  522. sphere->SaveBinaryState(stream_out);
  523. }
  524. // Destroy the sphere
  525. sphere = nullptr;
  526. // Read sphere from binary stream
  527. {
  528. StreamInWrapper stream_in(data);
  529. sphere = Shape::sRestoreFromBinaryState(stream_in).Get();
  530. }
  531. // Check that the sphere and its user data was preserved
  532. CHECK(sphere->GetType() == EShapeType::Convex);
  533. CHECK(sphere->GetSubType() == EShapeSubType::Sphere);
  534. CHECK(sphere->GetUserData() == 0x5678123443218765);
  535. CHECK(static_cast<SphereShape *>(sphere.GetPtr())->GetRadius() == cRadius);
  536. }
  537. // Test setting user data on shapes
  538. TEST_CASE("TestIsValidSubShapeID")
  539. {
  540. MutableCompoundShapeSettings shape1_settings;
  541. RefConst<CompoundShape> shape1 = static_cast<const CompoundShape *>(shape1_settings.Create().Get().GetPtr());
  542. MutableCompoundShapeSettings shape2_settings;
  543. shape2_settings.AddShape(Vec3::sZero(), Quat::sIdentity(), new SphereShape(1.0f));
  544. shape2_settings.AddShape(Vec3::sZero(), Quat::sIdentity(), new SphereShape(1.0f));
  545. shape2_settings.AddShape(Vec3::sZero(), Quat::sIdentity(), new SphereShape(1.0f));
  546. RefConst<CompoundShape> shape2 = static_cast<const CompoundShape *>(shape2_settings.Create().Get().GetPtr());
  547. // Get sub shape IDs of shape 2 and test if they're valid
  548. SubShapeID sub_shape1 = shape2->GetSubShapeIDFromIndex(0, SubShapeIDCreator()).GetID();
  549. CHECK(shape2->IsSubShapeIDValid(sub_shape1));
  550. SubShapeID sub_shape2 = shape2->GetSubShapeIDFromIndex(1, SubShapeIDCreator()).GetID();
  551. CHECK(shape2->IsSubShapeIDValid(sub_shape2));
  552. SubShapeID sub_shape3 = shape2->GetSubShapeIDFromIndex(2, SubShapeIDCreator()).GetID();
  553. CHECK(shape2->IsSubShapeIDValid(sub_shape3));
  554. SubShapeID sub_shape4 = shape2->GetSubShapeIDFromIndex(3, SubShapeIDCreator()).GetID(); // This one doesn't exist
  555. CHECK(!shape2->IsSubShapeIDValid(sub_shape4));
  556. // Shape 1 has no parts so these sub shape ID's should not be valid
  557. CHECK(!shape1->IsSubShapeIDValid(sub_shape1));
  558. CHECK(!shape1->IsSubShapeIDValid(sub_shape2));
  559. CHECK(!shape1->IsSubShapeIDValid(sub_shape3));
  560. CHECK(!shape1->IsSubShapeIDValid(sub_shape4));
  561. }
  562. // Test that an error is reported when we run out of sub shape bits
  563. TEST_CASE("TestOutOfSubShapeIDBits")
  564. {
  565. static constexpr uint32 cHeightFieldSamples = 1024;
  566. static constexpr int cNumBitsPerCompound = 4;
  567. // Create a heightfield
  568. float *samples = new float [cHeightFieldSamples * cHeightFieldSamples];
  569. memset(samples, 0, cHeightFieldSamples * cHeightFieldSamples * sizeof(float));
  570. RefConst<Shape> previous_shape = HeightFieldShapeSettings(samples, Vec3::sZero(), Vec3::sReplicate(1.0f), cHeightFieldSamples).Create().Get();
  571. delete [] samples;
  572. // Calculate the amount of bits needed to address all triangles in the heightfield
  573. uint num_bits = 32 - CountLeadingZeros((cHeightFieldSamples - 1) * (cHeightFieldSamples - 1) * 2);
  574. for (;;)
  575. {
  576. // Check that the total sub shape ID bits up to this point is correct
  577. CHECK(previous_shape->GetSubShapeIDBitsRecursive() == num_bits);
  578. // Create a compound with a number of sub shapes
  579. StaticCompoundShapeSettings compound_settings;
  580. compound_settings.SetEmbedded();
  581. for (int i = 0; i < (1 << cNumBitsPerCompound) ; ++i)
  582. compound_settings.AddShape(Vec3((float)i, 0, 0), Quat::sIdentity(), previous_shape);
  583. Shape::ShapeResult result = compound_settings.Create();
  584. num_bits += cNumBitsPerCompound;
  585. if (num_bits < SubShapeID::MaxBits)
  586. {
  587. // Creation should have succeeded
  588. CHECK(result.IsValid());
  589. previous_shape = result.Get();
  590. }
  591. else
  592. {
  593. // Creation should have failed because we ran out of bits
  594. CHECK(!result.IsValid());
  595. break;
  596. }
  597. }
  598. }
  599. TEST_CASE("TestEmptyMutableCompound")
  600. {
  601. // Create empty shape
  602. RefConst<Shape> mutable_compound = new MutableCompoundShape();
  603. // A non-identity rotation
  604. Quat rotation = Quat::sRotation(Vec3::sReplicate(1.0f / sqrt(3.0f)), 0.1f * JPH_PI);
  605. // Check that local bounding box is invalid
  606. AABox bounds1 = mutable_compound->GetLocalBounds();
  607. CHECK(!bounds1.IsValid());
  608. // Check that get world space bounds returns an invalid bounding box
  609. AABox bounds2 = mutable_compound->GetWorldSpaceBounds(Mat44::sRotationTranslation(rotation, Vec3(100, 200, 300)), Vec3(1, 2, 3));
  610. CHECK(!bounds2.IsValid());
  611. // Check that get world space bounds returns an invalid bounding box for double precision parameters
  612. AABox bounds3 = mutable_compound->GetWorldSpaceBounds(DMat44::sRotationTranslation(rotation, DVec3(100, 200, 300)), Vec3(1, 2, 3));
  613. CHECK(!bounds3.IsValid());
  614. }
  615. TEST_CASE("TestSaveMeshShape")
  616. {
  617. // Create an n x n grid of triangles
  618. const int n = 10;
  619. const float s = 0.1f;
  620. TriangleList triangles;
  621. for (int z = 0; z < n; ++z)
  622. for (int x = 0; x < n; ++x)
  623. {
  624. float fx = s * x - s * n / 2, fz = s * z - s * n / 2;
  625. triangles.push_back(Triangle(Vec3(fx, 0, fz), Vec3(fx, 0, fz + s), Vec3(fx + s, 0, fz + s)));
  626. triangles.push_back(Triangle(Vec3(fx, 0, fz), Vec3(fx + s, 0, fz + s), Vec3(fx + s, 0, fz)));
  627. }
  628. MeshShapeSettings mesh_settings(triangles);
  629. mesh_settings.SetEmbedded();
  630. RefConst<Shape> shape = mesh_settings.Create().Get();
  631. // Calculate expected bounds
  632. AABox expected_bounds;
  633. for (const Triangle &t : triangles)
  634. for (const Float3 &v : t.mV)
  635. expected_bounds.Encapsulate(Vec3(v));
  636. stringstream stream;
  637. {
  638. // Write mesh to stream
  639. StreamOutWrapper wrapper(stream);
  640. shape->SaveBinaryState(wrapper);
  641. }
  642. {
  643. // Read back mesh
  644. StreamInWrapper iwrapper(stream);
  645. Shape::ShapeResult result = Shape::sRestoreFromBinaryState(iwrapper);
  646. CHECK(result.IsValid());
  647. RefConst<MeshShape> mesh_shape = static_cast<const MeshShape *>(result.Get().GetPtr());
  648. // Test if it contains the same amount of triangles
  649. Shape::Stats stats = mesh_shape->GetStats();
  650. CHECK(stats.mNumTriangles == triangles.size());
  651. // Check bounding box
  652. CHECK(mesh_shape->GetLocalBounds() == expected_bounds);
  653. // Check if we can hit it with a ray
  654. RayCastResult hit;
  655. RayCast ray(Vec3(0.5f * s, 1, 0.25f * s), Vec3(0, -2, 0)); // Hit in the center of a triangle
  656. CHECK(mesh_shape->CastRay(ray, SubShapeIDCreator(), hit));
  657. CHECK(hit.mFraction == 0.5f);
  658. CHECK(mesh_shape->GetSurfaceNormal(hit.mSubShapeID2, ray.GetPointOnRay(hit.mFraction)) == Vec3::sAxisY());
  659. }
  660. }
  661. }