HingeConstraint.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443
  1. // Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
  2. // SPDX-FileCopyrightText: 2021 Jorrit Rouwe
  3. // SPDX-License-Identifier: MIT
  4. #include <Jolt/Jolt.h>
  5. #include <Jolt/Physics/Constraints/HingeConstraint.h>
  6. #include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
  7. #include <Jolt/Physics/Body/Body.h>
  8. #include <Jolt/ObjectStream/TypeDeclarations.h>
  9. #include <Jolt/Core/StreamIn.h>
  10. #include <Jolt/Core/StreamOut.h>
  11. #ifdef JPH_DEBUG_RENDERER
  12. #include <Jolt/Renderer/DebugRenderer.h>
  13. #endif // JPH_DEBUG_RENDERER
  14. JPH_NAMESPACE_BEGIN
  15. JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
  16. {
  17. JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
  18. JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
  19. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
  20. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
  21. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
  22. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
  23. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
  24. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
  25. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
  26. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
  27. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsSpringSettings)
  28. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
  29. JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
  30. }
  31. void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
  32. {
  33. ConstraintSettings::SaveBinaryState(inStream);
  34. inStream.Write(mSpace);
  35. inStream.Write(mPoint1);
  36. inStream.Write(mHingeAxis1);
  37. inStream.Write(mNormalAxis1);
  38. inStream.Write(mPoint2);
  39. inStream.Write(mHingeAxis2);
  40. inStream.Write(mNormalAxis2);
  41. inStream.Write(mLimitsMin);
  42. inStream.Write(mLimitsMax);
  43. inStream.Write(mMaxFrictionTorque);
  44. mLimitsSpringSettings.SaveBinaryState(inStream);
  45. mMotorSettings.SaveBinaryState(inStream);
  46. }
  47. void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
  48. {
  49. ConstraintSettings::RestoreBinaryState(inStream);
  50. inStream.Read(mSpace);
  51. inStream.Read(mPoint1);
  52. inStream.Read(mHingeAxis1);
  53. inStream.Read(mNormalAxis1);
  54. inStream.Read(mPoint2);
  55. inStream.Read(mHingeAxis2);
  56. inStream.Read(mNormalAxis2);
  57. inStream.Read(mLimitsMin);
  58. inStream.Read(mLimitsMax);
  59. inStream.Read(mMaxFrictionTorque);
  60. mLimitsSpringSettings.RestoreBinaryState(inStream);
  61. mMotorSettings.RestoreBinaryState(inStream);}
  62. TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
  63. {
  64. return new HingeConstraint(inBody1, inBody2, *this);
  65. }
  66. HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
  67. TwoBodyConstraint(inBody1, inBody2, inSettings),
  68. mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
  69. mMotorSettings(inSettings.mMotorSettings)
  70. {
  71. // Store limits
  72. JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint in this case");
  73. SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
  74. // Store inverse of initial rotation from body 1 to body 2 in body 1 space
  75. mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXZ(inSettings.mNormalAxis1, inSettings.mHingeAxis1, inSettings.mNormalAxis2, inSettings.mHingeAxis2);
  76. if (inSettings.mSpace == EConstraintSpace::WorldSpace)
  77. {
  78. // If all properties were specified in world space, take them to local space now
  79. RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
  80. mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
  81. mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(inSettings.mHingeAxis1).Normalized();
  82. mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
  83. RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
  84. mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
  85. mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(inSettings.mHingeAxis2).Normalized();
  86. mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(inSettings.mNormalAxis2).Normalized();
  87. // Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
  88. // => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
  89. mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
  90. }
  91. else
  92. {
  93. mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
  94. mLocalSpaceHingeAxis1 = inSettings.mHingeAxis1;
  95. mLocalSpaceNormalAxis1 = inSettings.mNormalAxis1;
  96. mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
  97. mLocalSpaceHingeAxis2 = inSettings.mHingeAxis2;
  98. mLocalSpaceNormalAxis2 = inSettings.mNormalAxis2;
  99. }
  100. // Store spring settings
  101. SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
  102. }
  103. void HingeConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
  104. {
  105. if (mBody1->GetID() == inBodyID)
  106. mLocalSpacePosition1 -= inDeltaCOM;
  107. else if (mBody2->GetID() == inBodyID)
  108. mLocalSpacePosition2 -= inDeltaCOM;
  109. }
  110. float HingeConstraint::GetCurrentAngle() const
  111. {
  112. // See: CalculateA1AndTheta
  113. Quat rotation1 = mBody1->GetRotation();
  114. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  115. return diff.GetRotationAngle(rotation1 * mLocalSpaceHingeAxis1);
  116. }
  117. void HingeConstraint::SetTargetOrientationBS(QuatArg inOrientation)
  118. {
  119. // See: CalculateA1AndTheta
  120. //
  121. // The rotation between body 1 and 2 can be written as:
  122. //
  123. // q2 = q1 rh1 r0
  124. //
  125. // where rh1 is a rotation around local hinge axis 1, also:
  126. //
  127. // q2 = q1 inOrientation
  128. //
  129. // This means:
  130. //
  131. // rh1 r0 = inOrientation <=> rh1 = inOrientation * r0^-1
  132. Quat rh1 = inOrientation * mInvInitialOrientation;
  133. SetTargetAngle(rh1.GetRotationAngle(mLocalSpaceHingeAxis1));
  134. }
  135. void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
  136. {
  137. JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
  138. JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
  139. mLimitsMin = inLimitsMin;
  140. mLimitsMax = inLimitsMax;
  141. mHasLimits = mLimitsMin > -JPH_PI || mLimitsMax < JPH_PI;
  142. }
  143. void HingeConstraint::CalculateA1AndTheta()
  144. {
  145. if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
  146. {
  147. Quat rotation1 = mBody1->GetRotation();
  148. // Calculate relative rotation in world space
  149. //
  150. // The rest rotation is:
  151. //
  152. // q2 = q1 r0
  153. //
  154. // But the actual rotation is
  155. //
  156. // q2 = diff q1 r0
  157. // <=> diff = q2 r0^-1 q1^-1
  158. //
  159. // Where:
  160. // q1 = current rotation of body 1
  161. // q2 = current rotation of body 2
  162. // diff = relative rotation in world space
  163. Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
  164. // Calculate hinge axis in world space
  165. mA1 = rotation1 * mLocalSpaceHingeAxis1;
  166. // Get rotation angle around the hinge axis
  167. mTheta = diff.GetRotationAngle(mA1);
  168. }
  169. }
  170. void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
  171. {
  172. // Apply constraint if outside of limits
  173. if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
  174. mRotationLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, GetSmallestAngleToLimit(), mLimitsSpringSettings);
  175. else
  176. mRotationLimitsConstraintPart.Deactivate();
  177. }
  178. void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
  179. {
  180. switch (mMotorState)
  181. {
  182. case EMotorState::Off:
  183. if (mMaxFrictionTorque > 0.0f)
  184. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1);
  185. else
  186. mMotorConstraintPart.Deactivate();
  187. break;
  188. case EMotorState::Velocity:
  189. mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1, -mTargetAngularVelocity);
  190. break;
  191. case EMotorState::Position:
  192. if (mMotorSettings.mSpringSettings.HasStiffness())
  193. mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mSpringSettings);
  194. else
  195. mMotorConstraintPart.Deactivate();
  196. break;
  197. }
  198. }
  199. void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
  200. {
  201. // Cache constraint values that are valid until the bodies move
  202. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
  203. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  204. mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
  205. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  206. CalculateA1AndTheta();
  207. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  208. CalculateMotorConstraintProperties(inDeltaTime);
  209. }
  210. void HingeConstraint::ResetWarmStart()
  211. {
  212. mMotorConstraintPart.Deactivate();
  213. mPointConstraintPart.Deactivate();
  214. mRotationConstraintPart.Deactivate();
  215. mRotationLimitsConstraintPart.Deactivate();
  216. }
  217. void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
  218. {
  219. // Warm starting: Apply previous frame impulse
  220. mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  221. mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  222. mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  223. mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
  224. }
  225. float HingeConstraint::GetSmallestAngleToLimit() const
  226. {
  227. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  228. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  229. return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
  230. }
  231. bool HingeConstraint::IsMinLimitClosest() const
  232. {
  233. float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
  234. float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
  235. return abs(dist_to_min) < abs(dist_to_max);
  236. }
  237. bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
  238. {
  239. // Solve motor
  240. bool motor = false;
  241. if (mMotorConstraintPart.IsActive())
  242. {
  243. switch (mMotorState)
  244. {
  245. case EMotorState::Off:
  246. {
  247. float max_lambda = mMaxFrictionTorque * inDeltaTime;
  248. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
  249. break;
  250. }
  251. case EMotorState::Velocity:
  252. case EMotorState::Position:
  253. motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
  254. break;
  255. }
  256. }
  257. // Solve point constraint
  258. bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  259. // Solve rotation constraint
  260. bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
  261. // Solve rotation limits
  262. bool limit = false;
  263. if (mRotationLimitsConstraintPart.IsActive())
  264. {
  265. float min_lambda, max_lambda;
  266. if (mLimitsMin == mLimitsMax)
  267. {
  268. min_lambda = -FLT_MAX;
  269. max_lambda = FLT_MAX;
  270. }
  271. else if (IsMinLimitClosest())
  272. {
  273. min_lambda = 0.0f;
  274. max_lambda = FLT_MAX;
  275. }
  276. else
  277. {
  278. min_lambda = -FLT_MAX;
  279. max_lambda = 0.0f;
  280. }
  281. limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, min_lambda, max_lambda);
  282. }
  283. return motor || pos || rot || limit;
  284. }
  285. bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
  286. {
  287. // Motor operates on velocities only, don't call SolvePositionConstraint
  288. // Solve point constraint
  289. mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
  290. bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  291. // Solve rotation constraint
  292. Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
  293. Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
  294. mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
  295. bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
  296. // Solve rotation limits
  297. bool limit = false;
  298. if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
  299. {
  300. CalculateA1AndTheta();
  301. CalculateRotationLimitsConstraintProperties(inDeltaTime);
  302. if (mRotationLimitsConstraintPart.IsActive())
  303. limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
  304. }
  305. return pos || rot || limit;
  306. }
  307. #ifdef JPH_DEBUG_RENDERER
  308. void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
  309. {
  310. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  311. RMat44 transform2 = mBody2->GetCenterOfMassTransform();
  312. // Draw constraint
  313. RVec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
  314. inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
  315. inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
  316. RVec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
  317. inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
  318. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
  319. inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
  320. }
  321. void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
  322. {
  323. if (mHasLimits && mLimitsMax > mLimitsMin)
  324. {
  325. // Get constraint properties in world space
  326. RMat44 transform1 = mBody1->GetCenterOfMassTransform();
  327. RVec3 position1 = transform1 * mLocalSpacePosition1;
  328. Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
  329. Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
  330. inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
  331. }
  332. }
  333. #endif // JPH_DEBUG_RENDERER
  334. void HingeConstraint::SaveState(StateRecorder &inStream) const
  335. {
  336. TwoBodyConstraint::SaveState(inStream);
  337. mMotorConstraintPart.SaveState(inStream);
  338. mRotationConstraintPart.SaveState(inStream);
  339. mPointConstraintPart.SaveState(inStream);
  340. mRotationLimitsConstraintPart.SaveState(inStream);
  341. inStream.Write(mMotorState);
  342. inStream.Write(mTargetAngularVelocity);
  343. inStream.Write(mTargetAngle);
  344. }
  345. void HingeConstraint::RestoreState(StateRecorder &inStream)
  346. {
  347. TwoBodyConstraint::RestoreState(inStream);
  348. mMotorConstraintPart.RestoreState(inStream);
  349. mRotationConstraintPart.RestoreState(inStream);
  350. mPointConstraintPart.RestoreState(inStream);
  351. mRotationLimitsConstraintPart.RestoreState(inStream);
  352. inStream.Read(mMotorState);
  353. inStream.Read(mTargetAngularVelocity);
  354. inStream.Read(mTargetAngle);
  355. }
  356. Ref<ConstraintSettings> HingeConstraint::GetConstraintSettings() const
  357. {
  358. HingeConstraintSettings *settings = new HingeConstraintSettings;
  359. ToConstraintSettings(*settings);
  360. settings->mSpace = EConstraintSpace::LocalToBodyCOM;
  361. settings->mPoint1 = RVec3(mLocalSpacePosition1);
  362. settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
  363. settings->mNormalAxis1 = mLocalSpaceNormalAxis1;
  364. settings->mPoint2 = RVec3(mLocalSpacePosition2);
  365. settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
  366. settings->mNormalAxis2 = mLocalSpaceNormalAxis2;
  367. settings->mLimitsMin = mLimitsMin;
  368. settings->mLimitsMax = mLimitsMax;
  369. settings->mLimitsSpringSettings = mLimitsSpringSettings;
  370. settings->mMaxFrictionTorque = mMaxFrictionTorque;
  371. settings->mMotorSettings = mMotorSettings;
  372. return settings;
  373. }
  374. Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
  375. {
  376. return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
  377. }
  378. Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
  379. {
  380. return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
  381. }
  382. JPH_NAMESPACE_END