Browse Source

Replace std::unordered_map with robin_hood

Michael Ragazzon 6 years ago
parent
commit
709852fcf8

+ 1 - 0
Build/cmake/FileList.cmake

@@ -112,6 +112,7 @@ set(Core_PUB_HDR_FILES
     ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/Box.h
     ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/Colour.h
     ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/Colour.inl
+    ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/Containers/robin_hood.h
     ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/Context.h
     ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/ContextInstancer.h
     ${PROJECT_SOURCE_DIR}/Include/Rocket/Core/ConvolutionFilter.h

+ 1745 - 0
Include/Rocket/Core/Containers/robin_hood.h

@@ -0,0 +1,1745 @@
+//                 ______  _____                 ______                _________
+//  ______________ ___  /_ ___(_)_______         ___  /_ ______ ______ ______  /
+//  __  ___/_  __ \__  __ \__  / __  __ \        __  __ \_  __ \_  __ \_  __  /
+//  _  /    / /_/ /_  /_/ /_  /  _  / / /        _  / / // /_/ // /_/ // /_/ /
+//  /_/     \____/ /_.___/ /_/   /_/ /_/ ________/_/ /_/ \____/ \____/ \__,_/
+//                                      _/_____/
+//
+// robin_hood::unordered_map for C++14
+// version 3.2.5
+// https://github.com/martinus/robin-hood-hashing
+//
+// Licensed under the MIT License <http://opensource.org/licenses/MIT>.
+// SPDX-License-Identifier: MIT
+// Copyright (c) 2018-2019 Martin Ankerl <http://martin.ankerl.com>
+//
+// Permission is hereby granted, free of charge, to any person obtaining a copy
+// of this software and associated documentation files (the "Software"), to deal
+// in the Software without restriction, including without limitation the rights
+// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+// copies of the Software, and to permit persons to whom the Software is
+// furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included in all
+// copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+// SOFTWARE.
+
+#ifndef ROBIN_HOOD_H_INCLUDED
+#define ROBIN_HOOD_H_INCLUDED
+
+// see https://semver.org/
+#define ROBIN_HOOD_VERSION_MAJOR 3 // for incompatible API changes
+#define ROBIN_HOOD_VERSION_MINOR 2 // for adding functionality in a backwards-compatible manner
+#define ROBIN_HOOD_VERSION_PATCH 4 // for backwards-compatible bug fixes
+
+#include <algorithm>
+#include <cstdlib>
+#include <cstring>
+#include <functional>
+#include <stdexcept>
+#include <string>
+#include <type_traits>
+#include <utility>
+
+// #define ROBIN_HOOD_LOG_ENABLED
+#ifdef ROBIN_HOOD_LOG_ENABLED
+#    include <iostream>
+#    define ROBIN_HOOD_LOG(x) std::cout << __FUNCTION__ << "@" << __LINE__ << ": " << x << std::endl
+#else
+#    define ROBIN_HOOD_LOG(x)
+#endif
+
+// mark unused members with this macro
+#define ROBIN_HOOD_UNUSED(identifier)
+
+// bitness
+#if SIZE_MAX == UINT32_MAX
+#    define ROBIN_HOOD_BITNESS 32
+#elif SIZE_MAX == UINT64_MAX
+#    define ROBIN_HOOD_BITNESS 64
+#else
+#    error Unsupported bitness
+#endif
+
+// endianess
+#ifdef _WIN32
+#    define ROBIN_HOOD_LITTLE_ENDIAN 1
+#    define ROBIN_HOOD_BIG_ENDIAN 0
+#else
+#    if __GNUC__ >= 4
+#        define ROBIN_HOOD_LITTLE_ENDIAN (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#        define ROBIN_HOOD_BIG_ENDIAN (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
+#    else
+#        error cannot determine endianness
+#    endif
+#endif
+
+// inline
+#ifdef _WIN32
+#    define ROBIN_HOOD_NOINLINE __declspec(noinline)
+#else
+#    if __GNUC__ >= 4
+#        define ROBIN_HOOD_NOINLINE __attribute__((noinline))
+#    else
+#        define ROBIN_HOOD_NOINLINE
+#    endif
+#endif
+
+// count leading/trailing bits
+#ifdef _WIN32
+#    if ROBIN_HOOD_BITNESS == 32
+#        define ROBIN_HOOD_BITSCANFORWARD _BitScanForward
+#    else
+#        define ROBIN_HOOD_BITSCANFORWARD _BitScanForward64
+#    endif
+#    include <intrin.h>
+#    pragma intrinsic(ROBIN_HOOD_BITSCANFORWARD)
+#    define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x)                                          \
+        [](size_t mask) -> int {                                                         \
+            unsigned long index;                                                         \
+            return ROBIN_HOOD_BITSCANFORWARD(&index, mask) ? index : ROBIN_HOOD_BITNESS; \
+        }(x)
+#else
+#    if __GNUC__ >= 4
+#        if ROBIN_HOOD_BITNESS == 32
+#            define ROBIN_HOOD_CTZ(x) __builtin_ctzl(x)
+#            define ROBIN_HOOD_CLZ(x) __builtin_clzl(x)
+#        else
+#            define ROBIN_HOOD_CTZ(x) __builtin_ctzll(x)
+#            define ROBIN_HOOD_CLZ(x) __builtin_clzll(x)
+#        endif
+#        define ROBIN_HOOD_COUNT_LEADING_ZEROES(x) (x ? ROBIN_HOOD_CLZ(x) : ROBIN_HOOD_BITNESS)
+#        define ROBIN_HOOD_COUNT_TRAILING_ZEROES(x) (x ? ROBIN_HOOD_CTZ(x) : ROBIN_HOOD_BITNESS)
+#    else
+#        error clz not supported
+#    endif
+#endif
+
+// umul
+namespace robin_hood {
+namespace detail {
+#if defined(__SIZEOF_INT128__)
+#    define ROBIN_HOOD_UMULH(a, b) \
+        static_cast<uint64_t>(     \
+            (static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b)) >> 64u)
+
+#    define ROBIN_HOOD_HAS_UMUL128 1
+inline uint64_t umul128(uint64_t a, uint64_t b, uint64_t* high) {
+    auto result = static_cast<unsigned __int128>(a) * static_cast<unsigned __int128>(b);
+    *high = static_cast<uint64_t>(result >> 64);
+    return static_cast<uint64_t>(result);
+}
+#elif (defined(_WIN32) && ROBIN_HOOD_BITNESS == 64)
+#    define ROBIN_HOOD_HAS_UMUL128 1
+#    include <intrin.h> // for __umulh
+#    pragma intrinsic(__umulh)
+#    pragma intrinsic(_umul128)
+#    define ROBIN_HOOD_UMULH(a, b) __umulh(a, b)
+inline uint64_t umul128(uint64_t a, uint64_t b, uint64_t* high) {
+    return _umul128(a, b, high);
+}
+#endif
+} // namespace detail
+} // namespace robin_hood
+
+// likely/unlikely
+#if __GNUC__ >= 4
+#    define ROBIN_HOOD_LIKELY(condition) __builtin_expect(static_cast<bool>(condition), 1)
+#    define ROBIN_HOOD_UNLIKELY(condition) __builtin_expect(static_cast<bool>(condition), 0)
+#else
+#    define ROBIN_HOOD_LIKELY(condition) condition
+#    define ROBIN_HOOD_UNLIKELY(condition) condition
+#endif
+namespace robin_hood {
+
+namespace detail {
+
+// make sure this is not inlined as it is slow and dramatically enlarges code, thus making other
+// inlinings more difficult. Throws are also generally the slow path.
+template <typename E, typename... Args>
+static ROBIN_HOOD_NOINLINE void doThrow(Args&&... args) {
+    throw E(std::forward<Args>(args)...);
+}
+
+template <typename E, typename T, typename... Args>
+static T* assertNotNull(T* t, Args&&... args) {
+    if (ROBIN_HOOD_UNLIKELY(nullptr == t)) {
+        doThrow<E>(std::forward<Args>(args)...);
+    }
+    return t;
+}
+
+template <typename T>
+inline T unaligned_load(void const* ptr) {
+    // using memcpy so we don't get into unaligned load problems.
+    // compiler should optimize this very well anyways.
+    T t;
+    std::memcpy(&t, ptr, sizeof(T));
+    return t;
+}
+
+// Allocates bulks of memory for objects of type T. This deallocates the memory in the destructor,
+// and keeps a linked list of the allocated memory around. Overhead per allocation is the size of a
+// pointer.
+template <typename T, size_t MinNumAllocs = 4, size_t MaxNumAllocs = 256>
+class BulkPoolAllocator {
+public:
+    BulkPoolAllocator()
+        : mHead(nullptr)
+        , mListForFree(nullptr) {}
+
+    // does not copy anything, just creates a new allocator.
+    BulkPoolAllocator(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/)
+        : mHead(nullptr)
+        , mListForFree(nullptr) {}
+
+    BulkPoolAllocator(BulkPoolAllocator&& o)
+        : mHead(o.mHead)
+        , mListForFree(o.mListForFree) {
+        o.mListForFree = nullptr;
+        o.mHead = nullptr;
+    }
+
+    BulkPoolAllocator& operator=(BulkPoolAllocator&& o) {
+        reset();
+        mHead = o.mHead;
+        mListForFree = o.mListForFree;
+        o.mListForFree = nullptr;
+        o.mHead = nullptr;
+        return *this;
+    }
+
+    BulkPoolAllocator& operator=(const BulkPoolAllocator& ROBIN_HOOD_UNUSED(o) /*unused*/) {
+        // does not do anything
+        return *this;
+    }
+
+    ~BulkPoolAllocator() {
+        reset();
+    }
+
+    // Deallocates all allocated memory.
+    void reset() {
+        while (mListForFree) {
+            T* tmp = *mListForFree;
+            free(mListForFree);
+            mListForFree = reinterpret_cast<T**>(tmp);
+        }
+        mHead = nullptr;
+    }
+
+    // allocates, but does NOT initialize. Use in-place new constructor, e.g.
+    //   T* obj = pool.allocate();
+    //   ::new (static_cast<void*>(obj)) T();
+    T* allocate() {
+        T* tmp = mHead;
+        if (!tmp) {
+            tmp = performAllocation();
+        }
+
+        mHead = *reinterpret_cast<T**>(tmp);
+        return tmp;
+    }
+
+    // does not actually deallocate but puts it in store.
+    // make sure you have already called the destructor! e.g. with
+    //  obj->~T();
+    //  pool.deallocate(obj);
+    void deallocate(T* obj) {
+        *reinterpret_cast<T**>(obj) = mHead;
+        mHead = obj;
+    }
+
+    // Adds an already allocated block of memory to the allocator. This allocator is from now on
+    // responsible for freeing the data (with free()). If the provided data is not large enough to
+    // make use of, it is immediately freed. Otherwise it is reused and freed in the destructor.
+    void addOrFree(void* ptr, const size_t numBytes) {
+        // calculate number of available elements in ptr
+        if (numBytes < ALIGNMENT + ALIGNED_SIZE) {
+            // not enough data for at least one element. Free and return.
+            free(ptr);
+        } else {
+            add(ptr, numBytes);
+        }
+    }
+
+    void swap(BulkPoolAllocator<T, MinNumAllocs, MaxNumAllocs>& other) {
+        using std::swap;
+        swap(mHead, other.mHead);
+        swap(mListForFree, other.mListForFree);
+    }
+
+private:
+    // iterates the list of allocated memory to calculate how many to alloc next.
+    // Recalculating this each time saves us a size_t member.
+    // This ignores the fact that memory blocks might have been added manually with addOrFree. In
+    // practice, this should not matter much.
+    size_t calcNumElementsToAlloc() const {
+        auto tmp = mListForFree;
+        size_t numAllocs = MinNumAllocs;
+
+        while (numAllocs * 2 <= MaxNumAllocs && tmp) {
+            auto x = reinterpret_cast<T***>(tmp);
+            tmp = *x;
+            numAllocs *= 2;
+        }
+
+        return numAllocs;
+    }
+
+    // WARNING: Underflow if numBytes < ALIGNMENT! This is guarded in addOrFree().
+    void add(void* ptr, const size_t numBytes) {
+        const size_t numElements = (numBytes - ALIGNMENT) / ALIGNED_SIZE;
+
+        auto data = reinterpret_cast<T**>(ptr);
+
+        // link free list
+        auto x = reinterpret_cast<T***>(data);
+        *x = mListForFree;
+        mListForFree = data;
+
+        // create linked list for newly allocated data
+        auto const headT = reinterpret_cast<T*>(reinterpret_cast<char*>(ptr) + ALIGNMENT);
+
+        auto const head = reinterpret_cast<char*>(headT);
+
+        // Visual Studio compiler automatically unrolls this loop, which is pretty cool
+        for (size_t i = 0; i < numElements; ++i) {
+            *reinterpret_cast<char**>(head + i * ALIGNED_SIZE) = head + (i + 1) * ALIGNED_SIZE;
+        }
+
+        // last one points to 0
+        *reinterpret_cast<T**>(head + (numElements - 1) * ALIGNED_SIZE) = mHead;
+        mHead = headT;
+    }
+
+    // Called when no memory is available (mHead == 0).
+    // Don't inline this slow path.
+    ROBIN_HOOD_NOINLINE T* performAllocation() {
+        size_t const numElementsToAlloc = calcNumElementsToAlloc();
+
+        // alloc new memory: [prev |T, T, ... T]
+        // std::cout << (sizeof(T*) + ALIGNED_SIZE * numElementsToAlloc) << " bytes" << std::endl;
+        size_t const bytes = ALIGNMENT + ALIGNED_SIZE * numElementsToAlloc;
+        add(assertNotNull<std::bad_alloc>(malloc(bytes)), bytes);
+        return mHead;
+    }
+
+    // enforce byte alignment of the T's
+    static constexpr size_t ALIGNMENT =
+        (std::max)(std::alignment_of<T>::value, std::alignment_of<T*>::value);
+    static constexpr size_t ALIGNED_SIZE = ((sizeof(T) - 1) / ALIGNMENT + 1) * ALIGNMENT;
+
+    static_assert(MinNumAllocs >= 1, "MinNumAllocs");
+    static_assert(MaxNumAllocs >= MinNumAllocs, "MaxNumAllocs");
+    static_assert(ALIGNED_SIZE >= sizeof(T*), "ALIGNED_SIZE");
+    static_assert(0 == (ALIGNED_SIZE % sizeof(T*)), "ALIGNED_SIZE mod");
+    static_assert(ALIGNMENT >= sizeof(T*), "ALIGNMENT");
+
+    T* mHead;
+    T** mListForFree;
+};
+
+template <typename T, size_t MinSize, size_t MaxSize, bool IsFlatMap>
+struct NodeAllocator;
+
+// dummy allocator that does nothing
+template <typename T, size_t MinSize, size_t MaxSize>
+struct NodeAllocator<T, MinSize, MaxSize, true> {
+
+    // we are not using the data, so just free it.
+    void addOrFree(void* ptr, size_t ROBIN_HOOD_UNUSED(numBytes) /*unused*/) {
+        free(ptr);
+    }
+};
+
+template <typename T, size_t MinSize, size_t MaxSize>
+struct NodeAllocator<T, MinSize, MaxSize, false> : public BulkPoolAllocator<T, MinSize, MaxSize> {};
+
+// All empty maps initial mInfo point to this infobyte. That way lookup in an empty map
+// always returns false, and this is a very hot byte.
+//
+// we have to use data >1byte (at least 2 bytes), because initially we set mShift to 63 (has to be
+// <63), so initial index will be 0 or 1.
+namespace DummyInfoByte {
+
+static uint64_t b = 0;
+
+} // namespace DummyInfoByte
+} // namespace detail
+
+struct is_transparent_tag {};
+
+// A custom pair implementation is used in the map because std::pair is not is_trivially_copyable,
+// which means it would  not be allowed to be used in std::memcpy. This struct is copyable, which is
+// also tested.
+template <typename First, typename Second>
+struct pair {
+    using first_type = First;
+    using second_type = Second;
+
+    // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
+    explicit pair(std::pair<First, Second> const& o)
+        : first{o.first}
+        , second{o.second} {}
+
+    // pair constructors are explicit so we don't accidentally call this ctor when we don't have to.
+    explicit pair(std::pair<First, Second>&& o)
+        : first{std::move(o.first)}
+        , second{std::move(o.second)} {}
+
+    constexpr pair(const First& firstArg, const Second& secondArg)
+        : first{firstArg}
+        , second{secondArg} {}
+
+    constexpr pair(First&& firstArg, Second&& secondArg)
+        : first{std::move(firstArg)}
+        , second{std::move(secondArg)} {}
+
+    template <typename FirstArg, typename SecondArg>
+    constexpr pair(FirstArg&& firstArg, SecondArg&& secondArg)
+        : first{std::forward<FirstArg>(firstArg)}
+        , second{std::forward<SecondArg>(secondArg)} {}
+
+    template <typename... Args1, typename... Args2>
+    pair(std::piecewise_construct_t /*unused*/, std::tuple<Args1...> firstArgs,
+         std::tuple<Args2...> secondArgs)
+        : pair{firstArgs, secondArgs, std::index_sequence_for<Args1...>{},
+               std::index_sequence_for<Args2...>{}} {}
+
+    // constructor called from the std::piecewise_construct_t ctor
+    template <typename... Args1, size_t... Indexes1, typename... Args2, size_t... Indexes2>
+    inline pair(std::tuple<Args1...>& tuple1, std::tuple<Args2...>& tuple2,
+                std::index_sequence<Indexes1...> /*unused*/,
+                std::index_sequence<Indexes2...> /*unused*/)
+        : first{std::forward<Args1>(std::get<Indexes1>(tuple1))...}
+        , second{std::forward<Args2>(std::get<Indexes2>(tuple2))...} {
+        // make visual studio compiler happy about warning about unused tuple1 & tuple2.
+        // Visual studio's pair implementation disables warning 4100.
+        (void)tuple1;
+        (void)tuple2;
+    }
+
+    first_type& getFirst() {
+        return first;
+    }
+    first_type const& getFirst() const {
+        return first;
+    }
+    second_type& getSecond() {
+        return second;
+    }
+    second_type const& getSecond() const {
+        return second;
+    }
+
+    void swap(pair<First, Second>& o) {
+        using std::swap;
+        swap(first, o.first);
+        swap(second, o.second);
+    }
+
+    First first;
+    Second second;
+};
+
+// A thin wrapper around std::hash, performing a single multiplication to (hopefully) get nicely
+// randomized upper bits, which are used by the unordered_map.
+template <typename T>
+struct hash : public std::hash<T> {
+    size_t operator()(T const& obj) const {
+        return std::hash<T>::operator()(obj);
+    }
+};
+
+// Hash an arbitrary amount of bytes. This is basically Murmur2 hash without caring about big
+// endianness. TODO add a fallback for very large strings?
+inline size_t hash_bytes(void const* ptr, size_t const len) {
+    static constexpr uint64_t m = UINT64_C(0xc6a4a7935bd1e995);
+    static constexpr uint64_t seed = UINT64_C(0xe17a1465);
+    static constexpr unsigned int r = 47;
+
+    auto const data64 = reinterpret_cast<uint64_t const*>(ptr);
+    uint64_t h = seed ^ (len * m);
+
+    size_t const n_blocks = len / 8;
+    for (size_t i = 0; i < n_blocks; ++i) {
+        uint64_t k = detail::unaligned_load<uint64_t>(data64 + i);
+
+        k *= m;
+        k ^= k >> r;
+        k *= m;
+
+        h ^= k;
+        h *= m;
+    }
+
+    auto const data8 = reinterpret_cast<uint8_t const*>(data64 + n_blocks);
+    switch (len & 7u) {
+    case 7:
+        h ^= static_cast<uint64_t>(data8[6]) << 48u;
+        // fallthrough
+    case 6:
+        h ^= static_cast<uint64_t>(data8[5]) << 40u;
+        // fallthrough
+    case 5:
+        h ^= static_cast<uint64_t>(data8[4]) << 32u;
+        // fallthrough
+    case 4:
+        h ^= static_cast<uint64_t>(data8[3]) << 24u;
+        // fallthrough
+    case 3:
+        h ^= static_cast<uint64_t>(data8[2]) << 16u;
+        // fallthrough
+    case 2:
+        h ^= static_cast<uint64_t>(data8[1]) << 8u;
+        // fallthrough
+    case 1:
+        h ^= static_cast<uint64_t>(data8[0]);
+        h *= m;
+    };
+
+    h ^= h >> r;
+    h *= m;
+    h ^= h >> r;
+
+    return static_cast<size_t>(h);
+}
+
+template <>
+struct hash<std::string> {
+    size_t operator()(std::string const& str) const {
+        return hash_bytes(str.data(), str.size());
+    }
+};
+
+// specialization used for uint64_t and int64_t. Uses 128bit multiplication
+template <>
+struct hash<uint64_t> {
+    size_t operator()(uint64_t const& obj) const {
+#if defined(ROBIN_HOOD_HAS_UMUL128)
+        // 167079903232 masksum, 120428523 ops best: 0xde5fb9d2630458e9
+        static constexpr uint64_t k = UINT64_C(0xde5fb9d2630458e9);
+        uint64_t h;
+        uint64_t l = detail::umul128(obj, k, &h);
+        return h + l;
+#elif ROBIN_HOOD_BITNESS == 32
+        static constexpr uint32_t k = UINT32_C(0x9a0ecda7);
+        uint64_t const r = obj * k;
+        uint32_t h = static_cast<uint32_t>(r >> 32);
+        uint32_t l = static_cast<uint32_t>(r);
+        return h + l;
+#else
+        // murmurhash 3 finalizer
+        uint64_t h = obj;
+        h ^= h >> 33;
+        h *= 0xff51afd7ed558ccd;
+        h ^= h >> 33;
+        h *= 0xc4ceb9fe1a85ec53;
+        h ^= h >> 33;
+        return static_cast<size_t>(h);
+#endif
+    }
+};
+
+template <>
+struct hash<int64_t> {
+    size_t operator()(int64_t const& obj) const {
+        return hash<uint64_t>{}(static_cast<uint64_t>(obj));
+    }
+};
+
+template <>
+struct hash<uint32_t> {
+    size_t operator()(uint32_t const& h) const {
+#if ROBIN_HOOD_BITNESS == 32
+        return static_cast<size_t>((UINT64_C(0xca4bcaa75ec3f625) * (uint64_t)h) >> 32);
+#else
+        return hash<uint64_t>{}(static_cast<uint64_t>(h));
+#endif
+    }
+};
+
+template <>
+struct hash<int32_t> {
+    size_t operator()(int32_t const& obj) const {
+        return hash<uint32_t>{}(static_cast<uint32_t>(obj));
+    }
+};
+
+namespace detail {
+
+// A highly optimized hashmap implementation, using the Robin Hood algorithm.
+//
+// In most cases, this map should be usable as a drop-in replacement for std::unordered_map, but be
+// about 2x faster in most cases and require much less allocations.
+//
+// This implementation uses the following memory layout:
+//
+// [Node, Node, ... Node | info, info, ... infoSentinel ]
+//
+// * Node: either a DataNode that directly has the std::pair<key, val> as member,
+//   or a DataNode with a pointer to std::pair<key,val>. Which DataNode representation to use
+//   depends on how fast the swap() operation is. Heuristically, this is automatically choosen based
+//   on sizeof(). there are always 2^n Nodes.
+//
+// * info: Each Node in the map has a corresponding info byte, so there are 2^n info bytes.
+//   Each byte is initialized to 0, meaning the corresponding Node is empty. Set to 1 means the
+//   corresponding node contains data. Set to 2 means the corresponding Node is filled, but it
+//   actually belongs to the previous position and was pushed out because that place is already
+//   taken.
+//
+// * infoSentinel: Sentinel byte set to 1, so that iterator's ++ can stop at end() without the need
+// for a idx
+//   variable.
+//
+// According to STL, order of templates has effect on throughput. That's why I've moved the boolean
+// to the front.
+// https://www.reddit.com/r/cpp/comments/ahp6iu/compile_time_binary_size_reductions_and_cs_future/eeguck4/
+template <bool IsFlatMap, size_t MaxLoadFactor100, typename Key, typename T, typename Hash,
+          typename KeyEqual>
+class unordered_map
+    : public Hash,
+      public KeyEqual,
+      detail::NodeAllocator<
+          robin_hood::pair<typename std::conditional<IsFlatMap, Key, Key const>::type, T>, 4, 16384,
+          IsFlatMap> {
+public:
+    using key_type = Key;
+    using mapped_type = T;
+    using value_type =
+        robin_hood::pair<typename std::conditional<IsFlatMap, Key, Key const>::type, T>;
+    using size_type = size_t;
+    using hasher = Hash;
+    using key_equal = KeyEqual;
+    using Self =
+        unordered_map<IsFlatMap, MaxLoadFactor100, key_type, mapped_type, hasher, key_equal>;
+    static constexpr bool is_flat_map = IsFlatMap;
+
+private:
+    static_assert(MaxLoadFactor100 > 10 && MaxLoadFactor100 < 100,
+                  "MaxLoadFactor100 needs to be >10 && < 100");
+
+    // configuration defaults
+
+    // make sure we have 8 elements, needed to quickly rehash mInfo
+    static constexpr size_t InitialNumElements = sizeof(uint64_t);
+    static constexpr int InitialInfoNumBits = 5;
+    static constexpr uint8_t InitialInfoInc = 1 << InitialInfoNumBits;
+    static constexpr uint8_t InitialInfoHashShift = sizeof(size_t) * 8 - InitialInfoNumBits;
+    using DataPool = detail::NodeAllocator<value_type, 4, 16384, IsFlatMap>;
+
+    // type needs to be wider than uint8_t.
+    using InfoType = int32_t;
+
+    // DataNode ////////////////////////////////////////////////////////
+
+    // Primary template for the data node. We have special implementations for small and big
+    // objects. For large objects it is assumed that swap() is fairly slow, so we allocate these on
+    // the heap so swap merely swaps a pointer.
+    template <typename M, bool>
+    class DataNode {};
+
+    // Small: just allocate on the stack.
+    template <typename M>
+    class DataNode<M, true> {
+    public:
+        template <typename... Args>
+        explicit DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, Args&&... args)
+            : mData(std::forward<Args>(args)...) {}
+
+        DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, true>&& n)
+            : mData(std::move(n.mData)) {}
+
+        // doesn't do anything
+        void destroy(M& ROBIN_HOOD_UNUSED(map) /*unused*/) {}
+        void destroyDoNotDeallocate() {}
+
+        value_type const* operator->() const {
+            return &mData;
+        }
+        value_type* operator->() {
+            return &mData;
+        }
+
+        const value_type& operator*() const {
+            return mData;
+        }
+
+        value_type& operator*() {
+            return mData;
+        }
+
+        typename value_type::first_type& getFirst() {
+            return mData.first;
+        }
+
+        typename value_type::first_type const& getFirst() const {
+            return mData.first;
+        }
+
+        typename value_type::second_type& getSecond() {
+            return mData.second;
+        }
+
+        typename value_type::second_type const& getSecond() const {
+            return mData.second;
+        }
+
+        void swap(DataNode<M, true>& o) {
+            mData.swap(o.mData);
+        }
+
+    private:
+        value_type mData;
+    };
+
+    // big object: allocate on heap.
+    template <typename M>
+    class DataNode<M, false> {
+    public:
+        template <typename... Args>
+        explicit DataNode(M& map, Args&&... args)
+            : mData(map.allocate()) {
+            ::new (static_cast<void*>(mData)) value_type(std::forward<Args>(args)...);
+        }
+
+        DataNode(M& ROBIN_HOOD_UNUSED(map) /*unused*/, DataNode<M, false>&& n)
+            : mData(std::move(n.mData)) {}
+
+        void destroy(M& map) {
+            // don't deallocate, just put it into list of datapool.
+            mData->~value_type();
+            map.deallocate(mData);
+        }
+
+        void destroyDoNotDeallocate() {
+            mData->~value_type();
+        }
+
+        value_type const* operator->() const {
+            return mData;
+        }
+
+        value_type* operator->() {
+            return mData;
+        }
+
+        const value_type& operator*() const {
+            return *mData;
+        }
+
+        value_type& operator*() {
+            return *mData;
+        }
+
+        typename value_type::first_type& getFirst() {
+            return mData->first;
+        }
+
+        typename value_type::first_type const& getFirst() const {
+            return mData->first;
+        }
+
+        typename value_type::second_type& getSecond() {
+            return mData->second;
+        }
+
+        typename value_type::second_type const& getSecond() const {
+            return mData->second;
+        }
+
+        void swap(DataNode<M, false>& o) {
+            using std::swap;
+            swap(mData, o.mData);
+        }
+
+    private:
+        value_type* mData;
+    };
+
+    using Node = DataNode<Self, IsFlatMap>;
+
+    // Cloner //////////////////////////////////////////////////////////
+
+    template <typename M, bool UseMemcpy>
+    struct Cloner;
+
+    // fast path: Just copy data, without allocating anything.
+    template <typename M>
+    struct Cloner<M, true> {
+        void operator()(M const& source, M& target) const {
+            // std::memcpy(target.mKeyVals, source.mKeyVals,
+            //             target.calcNumBytesTotal(target.mMask + 1));
+            auto src = reinterpret_cast<char const*>(source.mKeyVals);
+            auto tgt = reinterpret_cast<char*>(target.mKeyVals);
+            std::copy(src, src + target.calcNumBytesTotal(target.mMask + 1), tgt);
+        }
+    };
+
+    template <typename M>
+    struct Cloner<M, false> {
+        void operator()(M const& source, M& target) const {
+            // make sure to copy initialize sentinel as well
+            // std::memcpy(target.mInfo, source.mInfo, target.calcNumBytesInfo(target.mMask + 1));
+            std::copy(source.mInfo, source.mInfo + target.calcNumBytesInfo(target.mMask + 1),
+                      target.mInfo);
+
+            for (size_t i = 0; i < target.mMask + 1; ++i) {
+                if (target.mInfo[i]) {
+                    ::new (static_cast<void*>(target.mKeyVals + i))
+                        Node(target, *source.mKeyVals[i]);
+                }
+            }
+        }
+    };
+
+    // Destroyer ///////////////////////////////////////////////////////
+
+    template <typename M, bool IsFlatMapAndTrivial>
+    struct Destroyer {};
+
+    template <typename M>
+    struct Destroyer<M, true> {
+        void nodes(M& m) const {
+            m.mNumElements = 0;
+        }
+
+        void nodesDoNotDeallocate(M& m) const {
+            m.mNumElements = 0;
+        }
+    };
+
+    template <typename M>
+    struct Destroyer<M, false> {
+        void nodes(M& m) const {
+            m.mNumElements = 0;
+            // clear also resets mInfo to 0, that's sometimes not necessary.
+            for (size_t idx = 0; idx <= m.mMask; ++idx) {
+                if (0 != m.mInfo[idx]) {
+                    Node& n = m.mKeyVals[idx];
+                    n.destroy(m);
+                    n.~Node();
+                }
+            }
+        }
+
+        void nodesDoNotDeallocate(M& m) const {
+            m.mNumElements = 0;
+            // clear also resets mInfo to 0, that's sometimes not necessary.
+            for (size_t idx = 0; idx <= m.mMask; ++idx) {
+                if (0 != m.mInfo[idx]) {
+                    Node& n = m.mKeyVals[idx];
+                    n.destroyDoNotDeallocate();
+                    n.~Node();
+                }
+            }
+        }
+    };
+
+    // Iter ////////////////////////////////////////////////////////////
+
+    // generic iterator for both const_iterator and iterator.
+    template <bool IsConst>
+    class Iter {
+    private:
+        using NodePtr = typename std::conditional<IsConst, Node const*, Node*>::type;
+
+    public:
+        using difference_type = std::ptrdiff_t;
+        using value_type = typename Self::value_type;
+        using reference = typename std::conditional<IsConst, value_type const&, value_type&>::type;
+        using pointer = typename std::conditional<IsConst, value_type const*, value_type*>::type;
+        using iterator_category = std::forward_iterator_tag;
+
+        // default constructed iterator can be compared to itself, but WON'T return true when
+        // compared to end().
+        Iter()
+            : mKeyVals(nullptr)
+            , mInfo(nullptr) {}
+
+        // both const_iterator and iterator can be constructed from a non-const iterator
+        Iter(Iter<false> const& other)
+            : mKeyVals(other.mKeyVals)
+            , mInfo(other.mInfo) {}
+
+        Iter(NodePtr valPtr, uint8_t const* infoPtr)
+            : mKeyVals(valPtr)
+            , mInfo(infoPtr) {}
+
+        // prefix increment. Undefined behavior if we are at end()!
+        Iter& operator++() {
+            mInfo++;
+            mKeyVals++;
+            int inc;
+            do {
+                auto const n = detail::unaligned_load<size_t>(mInfo);
+#if ROBIN_HOOD_LITTLE_ENDIAN
+                inc = ROBIN_HOOD_COUNT_TRAILING_ZEROES(n) / 8;
+#else
+                inc = ROBIN_HOOD_COUNT_LEADING_ZEROES(n) / 8;
+#endif
+                mInfo += inc;
+                mKeyVals += inc;
+            } while (inc == sizeof(size_t));
+            return *this;
+        }
+
+        reference operator*() const {
+            return **mKeyVals;
+        }
+
+        pointer operator->() const {
+            return &**mKeyVals;
+        }
+
+        template <bool O>
+        bool operator==(Iter<O> const& o) const {
+            return mKeyVals == o.mKeyVals;
+        }
+
+        template <bool O>
+        bool operator!=(Iter<O> const& o) const {
+            return mKeyVals != o.mKeyVals;
+        }
+
+    private:
+        friend class unordered_map<IsFlatMap, MaxLoadFactor100, key_type, mapped_type, hasher,
+                                   key_equal>;
+        NodePtr mKeyVals;
+        uint8_t const* mInfo;
+    };
+
+    ////////////////////////////////////////////////////////////////////
+
+    size_t calcNumBytesInfo(size_t numElements) const {
+        const size_t s = sizeof(uint8_t) * (numElements + 1);
+        if (ROBIN_HOOD_UNLIKELY(s / sizeof(uint8_t) != numElements + 1)) {
+            throwOverflowError();
+        }
+        // make sure it's a bit larger, so we can load 64bit numbers
+        return s + sizeof(uint64_t);
+    }
+    size_t calcNumBytesNode(size_t numElements) const {
+        const size_t s = sizeof(Node) * numElements;
+        if (ROBIN_HOOD_UNLIKELY(s / sizeof(Node) != numElements)) {
+            throwOverflowError();
+        }
+        return s;
+    }
+    size_t calcNumBytesTotal(size_t numElements) const {
+        const size_t si = calcNumBytesInfo(numElements);
+        const size_t sn = calcNumBytesNode(numElements);
+        const size_t s = si + sn;
+        if (ROBIN_HOOD_UNLIKELY(s <= si || s <= sn)) {
+            throwOverflowError();
+        }
+        return s;
+    }
+
+    // highly performance relevant code.
+    // Lower bits are used for indexing into the array (2^n size)
+    // The upper 1-5 bits need to be a reasonable good hash, to save comparisons.
+    template <typename HashKey>
+    void keyToIdx(HashKey&& key, size_t& idx, InfoType& info) const {
+        static constexpr size_t bad_hash_prevention =
+            std::is_same<::robin_hood::hash<key_type>, hasher>::value
+                ? 1
+                : (ROBIN_HOOD_BITNESS == 64 ? UINT64_C(0xb3727c1f779b8d8b) : UINT32_C(0xda4afe47));
+        idx = Hash::operator()(key) * bad_hash_prevention;
+        info = static_cast<InfoType>(mInfoInc + static_cast<InfoType>(idx >> mInfoHashShift));
+        idx &= mMask;
+    }
+
+    // forwards the index by one, wrapping around at the end
+    void next(InfoType* info, size_t* idx) const {
+        *idx = (*idx + 1) & mMask;
+        *info = static_cast<InfoType>(*info + mInfoInc);
+    }
+
+    void nextWhileLess(InfoType* info, size_t* idx) const {
+        // unrolling this by hand did not bring any speedups.
+        while (*info < mInfo[*idx]) {
+            next(info, idx);
+        }
+    }
+
+    // Shift everything up by one element. Tries to move stuff around.
+    // True if some shifting has occured (entry under idx is a constructed object)
+    // Fals if no shift has occured (entry under idx is unconstructed memory)
+    void shiftUp(size_t idx, size_t const insertion_idx) {
+        while (idx != insertion_idx) {
+            size_t prev_idx = (idx - 1) & mMask;
+            if (mInfo[idx]) {
+                mKeyVals[idx] = std::move(mKeyVals[prev_idx]);
+            } else {
+                ::new (static_cast<void*>(mKeyVals + idx)) Node(std::move(mKeyVals[prev_idx]));
+            }
+            mInfo[idx] = static_cast<uint8_t>(mInfo[prev_idx] + mInfoInc);
+            if (ROBIN_HOOD_UNLIKELY(mInfo[idx] + mInfoInc > 0xFF)) {
+                mMaxNumElementsAllowed = 0;
+            }
+            idx = prev_idx;
+        }
+    }
+
+    void shiftDown(size_t idx) {
+        // until we find one that is either empty or has zero offset.
+        // TODO we don't need to move everything, just the last one for the same bucket.
+        mKeyVals[idx].destroy(*this);
+
+        // until we find one that is either empty or has zero offset.
+        size_t nextIdx = (idx + 1) & mMask;
+        while (mInfo[nextIdx] >= 2 * mInfoInc) {
+            mInfo[idx] = static_cast<uint8_t>(mInfo[nextIdx] - mInfoInc);
+            mKeyVals[idx] = std::move(mKeyVals[nextIdx]);
+            idx = nextIdx;
+            nextIdx = (idx + 1) & mMask;
+        }
+
+        mInfo[idx] = 0;
+        // don't destroy, we've moved it
+        // mKeyVals[idx].destroy(*this);
+        mKeyVals[idx].~Node();
+    }
+
+    // copy of find(), except that it returns iterator instead of const_iterator.
+    template <typename Other>
+    size_t findIdx(Other const& key) const {
+        size_t idx;
+        InfoType info;
+        keyToIdx(key, idx, info);
+
+        do {
+            // unrolling this twice gives a bit of a speedup. More unrolling did not help.
+            if (info == mInfo[idx] && KeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
+                return idx;
+            }
+            next(&info, &idx);
+            if (info == mInfo[idx] && KeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
+                return idx;
+            }
+            next(&info, &idx);
+        } while (info <= mInfo[idx]);
+
+        // nothing found!
+        return mMask + 1;
+    }
+
+    void cloneData(const unordered_map& o) {
+        Cloner<unordered_map, IsFlatMap && std::is_trivially_copyable<Node>::value>()(o, *this);
+    }
+
+    // inserts a keyval that is guaranteed to be new, e.g. when the hashmap is resized.
+    // @return index where the element was created
+    size_t insert_move(Node&& keyval) {
+        // we don't retry, fail if overflowing
+        // don't need to check max num elements
+        if (0 == mMaxNumElementsAllowed && !try_increase_info()) {
+            throwOverflowError();
+        }
+
+        size_t idx;
+        InfoType info;
+        keyToIdx(keyval.getFirst(), idx, info);
+
+        // skip forward. Use <= because we are certain that the element is not there.
+        while (info <= mInfo[idx]) {
+            idx = (idx + 1) & mMask;
+            info = static_cast<InfoType>(info + mInfoInc);
+        }
+
+        // key not found, so we are now exactly where we want to insert it.
+        auto const insertion_idx = idx;
+        auto const insertion_info = static_cast<uint8_t>(info);
+        if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
+            mMaxNumElementsAllowed = 0;
+        }
+
+        // find an empty spot
+        while (0 != mInfo[idx]) {
+            next(&info, &idx);
+        }
+
+        auto& l = mKeyVals[insertion_idx];
+        if (idx == insertion_idx) {
+            ::new (static_cast<void*>(&l)) Node(std::move(keyval));
+        } else {
+            shiftUp(idx, insertion_idx);
+            l = std::move(keyval);
+        }
+
+        // put at empty spot
+        mInfo[insertion_idx] = insertion_info;
+
+        ++mNumElements;
+        return insertion_idx;
+    }
+
+public:
+    using iterator = Iter<false>;
+    using const_iterator = Iter<true>;
+
+    // Creates an empty hash map. Nothing is allocated yet, this happens at the first insert. This
+    // tremendously speeds up ctor & dtor of a map that never receives an element. The penalty is
+    // payed at the first insert, and not before. Lookup of this empty map works because everybody
+    // points to DummyInfoByte::b. parameter bucket_count is dictated by the standard, but we can
+    // ignore it.
+    explicit unordered_map(size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
+                           const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
+        : Hash(h)
+        , KeyEqual(equal) {}
+
+    template <typename Iter>
+    unordered_map(Iter first, Iter last, size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0,
+                  const Hash& h = Hash{}, const KeyEqual& equal = KeyEqual{})
+        : Hash(h)
+        , KeyEqual(equal) {
+        insert(first, last);
+    }
+
+    unordered_map(std::initializer_list<value_type> init,
+                  size_t ROBIN_HOOD_UNUSED(bucket_count) /*unused*/ = 0, const Hash& h = Hash{},
+                  const KeyEqual& equal = KeyEqual{})
+        : Hash(h)
+        , KeyEqual(equal) {
+        insert(init.begin(), init.end());
+    }
+
+    unordered_map(unordered_map&& o)
+        : Hash(std::move(static_cast<Hash&>(o)))
+        , KeyEqual(std::move(static_cast<KeyEqual&>(o)))
+        , DataPool(std::move(static_cast<DataPool&>(o)))
+        , mKeyVals{std::move(o.mKeyVals)}
+        , mInfo{std::move(o.mInfo)}
+        , mNumElements{std::move(o.mNumElements)}
+        , mMask{std::move(o.mMask)}
+        , mMaxNumElementsAllowed{std::move(o.mMaxNumElementsAllowed)}
+        , mInfoInc{std::move(o.mInfoInc)}
+        , mInfoHashShift{std::move(o.mInfoHashShift)} {
+        // set other's mask to 0 so its destructor won't do anything
+        o.mMask = 0;
+    }
+
+    unordered_map& operator=(unordered_map&& o) {
+        if (&o != this) {
+            // different, move it
+            destroy();
+            mKeyVals = std::move(o.mKeyVals);
+            mInfo = std::move(o.mInfo);
+            mNumElements = std::move(o.mNumElements);
+            mMask = std::move(o.mMask);
+            mMaxNumElementsAllowed = std::move(o.mMaxNumElementsAllowed);
+            mInfoInc = std::move(o.mInfoInc);
+            mInfoHashShift = std::move(o.mInfoHashShift);
+            Hash::operator=(std::move(static_cast<Hash&>(o)));
+            KeyEqual::operator=(std::move(static_cast<KeyEqual&>(o)));
+            DataPool::operator=(std::move(static_cast<DataPool&>(o)));
+            // set other's mask to 0 so its destructor won't do anything
+            o.mMask = 0;
+        }
+        return *this;
+    }
+
+    unordered_map(const unordered_map& o)
+        : Hash(static_cast<const Hash&>(o))
+        , KeyEqual(static_cast<const KeyEqual&>(o))
+        , DataPool(static_cast<const DataPool&>(o)) {
+
+        if (!o.empty()) {
+            // not empty: create an exact copy. it is also possible to just iterate through all
+            // elements and insert them, but copying is probably faster.
+
+            mKeyVals = static_cast<Node*>(
+                detail::assertNotNull<std::bad_alloc>(malloc(calcNumBytesTotal(o.mMask + 1))));
+            // no need for calloc because clonData does memcpy
+            mInfo = reinterpret_cast<uint8_t*>(mKeyVals + o.mMask + 1);
+            mNumElements = o.mNumElements;
+            mMask = o.mMask;
+            mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
+            mInfoInc = o.mInfoInc;
+            mInfoHashShift = o.mInfoHashShift;
+            cloneData(o);
+        }
+    }
+
+    // Creates a copy of the given map. Copy constructor of each entry is used.
+    unordered_map& operator=(unordered_map const& o) {
+        if (&o == this) {
+            // prevent assigning of itself
+            return *this;
+        }
+
+        // we keep using the old allocator and not assign the new one, because we want to keep the
+        // memory available. when it is the same size.
+        if (o.empty()) {
+            if (0 == mMask) {
+                // nothing to do, we are empty too
+                return *this;
+            }
+
+            // not empty: destroy what we have there
+            // clear also resets mInfo to 0, that's sometimes not necessary.
+            destroy();
+
+            // we assign an invalid pointer, but this is ok because we never dereference it.
+            using detail::DummyInfoByte::b;
+            mKeyVals = reinterpret_cast<Node*>(&b) - 1; // lgtm [cpp/suspicious-pointer-scaling]
+            mInfo = reinterpret_cast<uint8_t*>(&b);
+            Hash::operator=(static_cast<const Hash&>(o));
+            KeyEqual::operator=(static_cast<const KeyEqual&>(o));
+            DataPool::operator=(static_cast<DataPool const&>(o));
+            mNumElements = 0;
+            mMask = 0;
+            mMaxNumElementsAllowed = 0;
+            mInfoInc = InitialInfoInc;
+            mInfoHashShift = InitialInfoHashShift;
+            return *this;
+        }
+
+        // clean up old stuff
+        Destroyer<Self, IsFlatMap && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
+
+        if (mMask != o.mMask) {
+            // no luck: we don't have the same array size allocated, so we need to realloc.
+            if (0 != mMask) {
+                // only deallocate if we actually have data!
+                free(mKeyVals);
+            }
+
+            mKeyVals = static_cast<Node*>(
+                detail::assertNotNull<std::bad_alloc>(malloc(calcNumBytesTotal(o.mMask + 1))));
+
+            // no need for calloc here because cloneData performs a memcpy.
+            mInfo = reinterpret_cast<uint8_t*>(mKeyVals + o.mMask + 1);
+            mInfoInc = o.mInfoInc;
+            mInfoHashShift = o.mInfoHashShift;
+            // sentinel is set in cloneData
+        }
+        Hash::operator=(static_cast<const Hash&>(o));
+        KeyEqual::operator=(static_cast<const KeyEqual&>(o));
+        mNumElements = o.mNumElements;
+        mMask = o.mMask;
+        mMaxNumElementsAllowed = o.mMaxNumElementsAllowed;
+        cloneData(o);
+
+        return *this;
+    }
+
+    // Swaps everything between the two maps.
+    void swap(unordered_map& o) {
+        using std::swap;
+        swap(mKeyVals, o.mKeyVals);
+        swap(mInfo, o.mInfo);
+        swap(mNumElements, o.mNumElements);
+        swap(mMask, o.mMask);
+        swap(mMaxNumElementsAllowed, o.mMaxNumElementsAllowed);
+        swap(mInfoInc, o.mInfoInc);
+        swap(mInfoHashShift, o.mInfoHashShift);
+        swap(static_cast<Hash&>(*this), static_cast<Hash&>(o));
+        swap(static_cast<KeyEqual&>(*this), static_cast<KeyEqual&>(o));
+        // no harm done in swapping datapool
+        swap(static_cast<DataPool&>(*this), static_cast<DataPool&>(o));
+    }
+
+    // Clears all data, without resizing.
+    void clear() {
+        if (empty()) {
+            // don't do anything! also important because we don't want to write to DummyInfoByte::b,
+            // even though we would just write 0 to it.
+            return;
+        }
+
+        Destroyer<Self, IsFlatMap && std::is_trivially_destructible<Node>::value>{}.nodes(*this);
+
+        // clear everything except the sentinel
+        // std::memset(mInfo, 0, sizeof(uint8_t) * (mMask + 1));
+        uint8_t const z = 0;
+        std::fill(mInfo, mInfo + (sizeof(uint8_t) * (mMask + 1)), z);
+
+        mInfoInc = InitialInfoInc;
+        mInfoHashShift = InitialInfoHashShift;
+    }
+
+    // Destroys the map and all it's contents.
+    ~unordered_map() {
+        destroy();
+    }
+
+    // Checks if both maps contain the same entries. Order is irrelevant.
+    bool operator==(const unordered_map& other) const {
+        if (other.size() != size()) {
+            return false;
+        }
+        for (auto const& otherEntry : other) {
+            auto const myIt = find(otherEntry.first);
+            if (myIt == end() || !(myIt->second == otherEntry.second)) {
+                return false;
+            }
+        }
+
+        return true;
+    }
+
+    bool operator!=(const unordered_map& other) const {
+        return !operator==(other);
+    }
+
+    mapped_type& operator[](const key_type& key) {
+        return doCreateByKey(key);
+    }
+
+    mapped_type& operator[](key_type&& key) {
+        return doCreateByKey(std::move(key));
+    }
+
+    template <typename Iter>
+    void insert(Iter first, Iter last) {
+        for (; first != last; ++first) {
+            // value_type ctor needed because this might be called with std::pair's
+            insert(value_type(*first));
+        }
+    }
+
+    template <typename... Args>
+    std::pair<iterator, bool> emplace(Args&&... args) {
+        Node n{*this, std::forward<Args>(args)...};
+        auto r = doInsert(std::move(n));
+        if (!r.second) {
+            // insertion not possible: destroy node
+            n.destroy(*this);
+        }
+        return r;
+    }
+
+    std::pair<iterator, bool> insert(const value_type& keyval) {
+        return doInsert(keyval);
+    }
+
+    std::pair<iterator, bool> insert(value_type&& keyval) {
+        return doInsert(std::move(keyval));
+    }
+
+    // Returns 1 if key is found, 0 otherwise.
+    size_t count(const key_type& key) const {
+        return findIdx(key) == (mMask + 1) ? 0 : 1;
+    }
+
+    // Returns a reference to the value found for key.
+    // Throws std::out_of_range if element cannot be found
+    mapped_type& at(key_type const& key) {
+        auto idx = findIdx(key);
+        if (idx == mMask + 1) {
+            doThrow<std::out_of_range>("key not found");
+        }
+        return mKeyVals[idx].getSecond();
+    }
+
+    // Returns a reference to the value found for key.
+    // Throws std::out_of_range if element cannot be found
+    mapped_type const& at(key_type const& key) const {
+        auto idx = findIdx(key);
+        if (idx == mMask + 1) {
+            doThrow<std::out_of_range>("key not found");
+        }
+        return mKeyVals[idx].getSecond();
+    }
+
+    const_iterator find(const key_type& key) const {
+        const size_t idx = findIdx(key);
+        return const_iterator{mKeyVals + idx, mInfo + idx};
+    }
+
+    template <typename OtherKey>
+    const_iterator find(const OtherKey& key, is_transparent_tag /*unused*/) const {
+        const size_t idx = findIdx(key);
+        return const_iterator{mKeyVals + idx, mInfo + idx};
+    }
+
+    iterator find(const key_type& key) {
+        const size_t idx = findIdx(key);
+        return iterator{mKeyVals + idx, mInfo + idx};
+    }
+
+    template <typename OtherKey>
+    iterator find(const OtherKey& key, is_transparent_tag /*unused*/) {
+        const size_t idx = findIdx(key);
+        return iterator{mKeyVals + idx, mInfo + idx};
+    }
+
+    iterator begin() {
+        if (empty()) {
+            return end();
+        }
+        return ++iterator(mKeyVals - 1, mInfo - 1);
+    }
+    const_iterator begin() const {
+        return cbegin();
+    }
+    const_iterator cbegin() const {
+        if (empty()) {
+            return cend();
+        }
+        return ++const_iterator(mKeyVals - 1, mInfo - 1);
+    }
+
+    iterator end() {
+        // no need to supply valid info pointer: end() must not be dereferenced, and only node
+        // pointer is compared.
+        return iterator{reinterpret_cast<Node*>(mInfo), nullptr};
+    }
+    const_iterator end() const {
+        return cend();
+    }
+    const_iterator cend() const {
+        return const_iterator{reinterpret_cast<Node*>(mInfo), nullptr};
+    }
+
+    iterator erase(const_iterator pos) {
+        // its safe to perform const cast here
+        return erase(iterator{const_cast<Node*>(pos.mKeyVals), const_cast<uint8_t*>(pos.mInfo)});
+    }
+
+    // Erases element at pos, returns iterator to the next element.
+    iterator erase(iterator pos) {
+        // we assume that pos always points to a valid entry, and not end().
+        auto const idx = static_cast<size_t>(pos.mKeyVals - mKeyVals);
+
+        shiftDown(idx);
+        --mNumElements;
+
+        if (*pos.mInfo) {
+            // we've backward shifted, return this again
+            return pos;
+        }
+
+        // no backward shift, return next element
+        return ++pos;
+    }
+
+    size_t erase(const key_type& key) {
+        size_t idx;
+        InfoType info;
+        keyToIdx(key, idx, info);
+
+        // check while info matches with the source idx
+        do {
+            if (info == mInfo[idx] && KeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
+                shiftDown(idx);
+                --mNumElements;
+                return 1;
+            }
+            next(&info, &idx);
+        } while (info <= mInfo[idx]);
+
+        // nothing found to delete
+        return 0;
+    }
+
+    void reserve(size_t count) {
+        auto newSize = InitialNumElements > mMask + 1 ? InitialNumElements : mMask + 1;
+        while (calcMaxNumElementsAllowed(newSize) < count && newSize != 0) {
+            newSize *= 2;
+        }
+        if (ROBIN_HOOD_UNLIKELY(newSize == 0)) {
+            throwOverflowError();
+        }
+
+        rehash(newSize);
+    }
+
+    void rehash(size_t numBuckets) {
+        if (ROBIN_HOOD_UNLIKELY((numBuckets & (numBuckets - 1)) != 0)) {
+            doThrow<std::runtime_error>("rehash only allowed for power of two");
+        }
+
+        Node* const oldKeyVals = mKeyVals;
+        uint8_t const* const oldInfo = mInfo;
+
+        const size_t oldMaxElements = mMask + 1;
+
+        // resize operation: move stuff
+        init_data(numBuckets);
+        if (oldMaxElements > 1) {
+            for (size_t i = 0; i < oldMaxElements; ++i) {
+                if (oldInfo[i] != 0) {
+                    insert_move(std::move(oldKeyVals[i]));
+                    // destroy the node but DON'T destroy the data.
+                    oldKeyVals[i].~Node();
+                }
+            }
+
+            // don't destroy old data: put it into the pool instead
+            DataPool::addOrFree(oldKeyVals, calcNumBytesTotal(oldMaxElements));
+        }
+    }
+
+    size_type size() const {
+        return mNumElements;
+    }
+
+    size_type max_size() const {
+        return static_cast<size_type>(-1);
+    }
+
+    bool empty() const {
+        return 0 == mNumElements;
+    }
+
+    float max_load_factor() const {
+        return MaxLoadFactor100 / 100.0f;
+    }
+
+    // Average number of elements per bucket. Since we allow only 1 per bucket
+    float load_factor() const {
+        return static_cast<float>(size()) / (mMask + 1);
+    }
+
+    size_t mask() const {
+        return mMask;
+    }
+
+private:
+    ROBIN_HOOD_NOINLINE void throwOverflowError() const {
+        throw std::overflow_error("robin_hood::map overflow");
+    }
+
+    void init_data(size_t max_elements) {
+        mNumElements = 0;
+        mMask = max_elements - 1;
+        mMaxNumElementsAllowed = calcMaxNumElementsAllowed(max_elements);
+
+        // calloc also zeroes everything
+        mKeyVals = reinterpret_cast<Node*>(
+            detail::assertNotNull<std::bad_alloc>(calloc(1, calcNumBytesTotal(max_elements))));
+        mInfo = reinterpret_cast<uint8_t*>(mKeyVals + max_elements);
+
+        // set sentinel
+        mInfo[max_elements] = 1;
+
+        mInfoInc = InitialInfoInc;
+        mInfoHashShift = InitialInfoHashShift;
+    }
+
+    template <typename Arg>
+    mapped_type& doCreateByKey(Arg&& key) {
+        while (true) {
+            size_t idx;
+            InfoType info;
+            keyToIdx(key, idx, info);
+            nextWhileLess(&info, &idx);
+
+            // while we potentially have a match. Can't do a do-while here because when mInfo is 0
+            // we don't want to skip forward
+            while (info == mInfo[idx]) {
+                if (KeyEqual::operator()(key, mKeyVals[idx].getFirst())) {
+                    // key already exists, do not insert.
+                    return mKeyVals[idx].getSecond();
+                }
+                next(&info, &idx);
+            }
+
+            // unlikely that this evaluates to true
+            if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
+                increase_size();
+                continue;
+            }
+
+            // key not found, so we are now exactly where we want to insert it.
+            auto const insertion_idx = idx;
+            auto const insertion_info = info;
+            if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
+                mMaxNumElementsAllowed = 0;
+            }
+
+            // find an empty spot
+            while (0 != mInfo[idx]) {
+                next(&info, &idx);
+            }
+
+            auto& l = mKeyVals[insertion_idx];
+            if (idx == insertion_idx) {
+                // put at empty spot. This forwards all arguments into the node where the object is
+                // constructed exactly where it is needed.
+                ::new (static_cast<void*>(&l))
+                    Node(*this, std::piecewise_construct,
+                         std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
+            } else {
+                shiftUp(idx, insertion_idx);
+                l = Node(*this, std::piecewise_construct,
+                         std::forward_as_tuple(std::forward<Arg>(key)), std::forward_as_tuple());
+            }
+
+            // mKeyVals[idx].getFirst() = std::move(key);
+            mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
+
+            ++mNumElements;
+            return mKeyVals[insertion_idx].getSecond();
+        }
+    }
+
+    // This is exactly the same code as operator[], except for the return values
+    template <typename Arg>
+    std::pair<iterator, bool> doInsert(Arg&& keyval) {
+        while (true) {
+            size_t idx;
+            InfoType info;
+            keyToIdx(keyval.getFirst(), idx, info);
+            nextWhileLess(&info, &idx);
+
+            // while we potentially have a match
+            while (info == mInfo[idx]) {
+                if (KeyEqual::operator()(keyval.getFirst(), mKeyVals[idx].getFirst())) {
+                    // key already exists, do NOT insert.
+                    // see http://en.cppreference.com/w/cpp/container/unordered_map/insert
+                    return std::make_pair<iterator, bool>(iterator(mKeyVals + idx, mInfo + idx),
+                                                          false);
+                }
+                next(&info, &idx);
+            }
+
+            // unlikely that this evaluates to true
+            if (ROBIN_HOOD_UNLIKELY(mNumElements >= mMaxNumElementsAllowed)) {
+                increase_size();
+                continue;
+            }
+
+            // key not found, so we are now exactly where we want to insert it.
+            auto const insertion_idx = idx;
+            auto const insertion_info = info;
+            if (ROBIN_HOOD_UNLIKELY(insertion_info + mInfoInc > 0xFF)) {
+                mMaxNumElementsAllowed = 0;
+            }
+
+            // find an empty spot
+            while (0 != mInfo[idx]) {
+                next(&info, &idx);
+            }
+
+            auto& l = mKeyVals[insertion_idx];
+            if (idx == insertion_idx) {
+                ::new (static_cast<void*>(&l)) Node(*this, std::forward<Arg>(keyval));
+            } else {
+                shiftUp(idx, insertion_idx);
+                l = Node(*this, std::forward<Arg>(keyval));
+            }
+
+            // put at empty spot
+            mInfo[insertion_idx] = static_cast<uint8_t>(insertion_info);
+
+            ++mNumElements;
+            return std::make_pair(iterator(mKeyVals + insertion_idx, mInfo + insertion_idx), true);
+        }
+    }
+
+    size_t calcMaxNumElementsAllowed(size_t maxElements) {
+        static constexpr size_t overflowLimit = (std::numeric_limits<size_t>::max)() / 100;
+        static constexpr double factor = MaxLoadFactor100 / 100.0;
+
+        // make sure we can't get an overflow; use floatingpoint arithmetic if necessary.
+        if (maxElements > overflowLimit) {
+            return static_cast<size_t>(static_cast<double>(maxElements) * factor);
+        } else {
+            return (maxElements * MaxLoadFactor100) / 100;
+        }
+    }
+
+    bool try_increase_info() {
+        ROBIN_HOOD_LOG("mInfoInc=" << mInfoInc << ", numElements=" << mNumElements
+                                   << ", maxNumElementsAllowed="
+                                   << calcMaxNumElementsAllowed(mMask + 1));
+        if (mInfoInc <= 2) {
+            // need to be > 2 so that shift works (otherwise undefined behavior!)
+            return false;
+        }
+        // we got space left, try to make info smaller
+        mInfoInc = static_cast<uint8_t>(mInfoInc >> 1);
+
+        // remove one bit of the hash, leaving more space for the distance info.
+        // This is extremely fast because we can operate on 8 bytes at once.
+        ++mInfoHashShift;
+        auto const data = reinterpret_cast<uint64_t*>(mInfo);
+        auto const numEntries = (mMask + 1) / 8;
+
+        for (size_t i = 0; i < numEntries; ++i) {
+            data[i] = (data[i] >> 1) & UINT64_C(0x7f7f7f7f7f7f7f7f);
+        }
+        mMaxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
+        return true;
+    }
+
+    void increase_size() {
+        // nothing allocated yet? just allocate InitialNumElements
+        if (0 == mMask) {
+            init_data(InitialNumElements);
+            return;
+        }
+
+        auto const maxNumElementsAllowed = calcMaxNumElementsAllowed(mMask + 1);
+        if (mNumElements < maxNumElementsAllowed && try_increase_info()) {
+            return;
+        }
+
+        ROBIN_HOOD_LOG("mNumElements=" << mNumElements << ", maxNumElementsAllowed="
+                                       << maxNumElementsAllowed << ", load="
+                                       << (static_cast<double>(mNumElements) * 100.0 /
+                                           (static_cast<double>(mMask) + 1)));
+        // it seems we have a really bad hash function! don't try to resize again
+        if (mNumElements * 2 < calcMaxNumElementsAllowed(mMask + 1)) {
+            throwOverflowError();
+        }
+
+        rehash((mMask + 1) * 2);
+    }
+
+    void destroy() {
+        if (0 == mMask) {
+            // don't deallocate! we are pointing to DummyInfoByte::b.
+            return;
+        }
+
+        Destroyer<Self, IsFlatMap && std::is_trivially_destructible<Node>::value>{}
+            .nodesDoNotDeallocate(*this);
+        free(mKeyVals);
+    }
+
+    // members are sorted so no padding occurs
+    Node* mKeyVals = reinterpret_cast<Node*>(reinterpret_cast<uint8_t*>(&detail::DummyInfoByte::b) -
+                                             sizeof(Node));                 // 8 byte  8
+    uint8_t* mInfo = reinterpret_cast<uint8_t*>(&detail::DummyInfoByte::b); // 8 byte 16
+    size_t mNumElements = 0;                                                // 8 byte 24
+    size_t mMask = 0;                                                       // 8 byte 32
+    size_t mMaxNumElementsAllowed = 0;                                      // 8 byte 40
+    InfoType mInfoInc = InitialInfoInc;                                     // 4 byte 44
+    InfoType mInfoHashShift = InitialInfoHashShift;                         // 4 byte 48
+                                                    // 16 byte 56 if NodeAllocator
+};
+
+} // namespace detail
+
+template <typename Key, typename T, typename Hash = hash<Key>,
+          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
+using unordered_flat_map = detail::unordered_map<true, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
+
+template <typename Key, typename T, typename Hash = hash<Key>,
+          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
+using unordered_node_map = detail::unordered_map<false, MaxLoadFactor100, Key, T, Hash, KeyEqual>;
+
+template <typename Key, typename T, typename Hash = hash<Key>,
+          typename KeyEqual = std::equal_to<Key>, size_t MaxLoadFactor100 = 80>
+using unordered_map =
+    detail::unordered_map<sizeof(robin_hood::pair<Key, T>) <= sizeof(size_t) * 6 &&
+                              std::is_nothrow_move_constructible<robin_hood::pair<Key, T>>::value &&
+                              std::is_nothrow_move_assignable<robin_hood::pair<Key, T>>::value,
+                          MaxLoadFactor100, Key, T, Hash, KeyEqual>;
+
+} // namespace robin_hood
+
+#endif

+ 1 - 1
Include/Rocket/Core/FontEffect.h

@@ -121,7 +121,7 @@ private:
 };
 
 typedef std::vector< FontEffect* > FontEffectList;
-typedef std::unordered_map< String, FontEffect* > FontEffectMap;
+typedef UnorderedMap< String, FontEffect* > FontEffectMap;
 
 }
 }

+ 1 - 1
Include/Rocket/Core/FontFace.h

@@ -69,7 +69,7 @@ protected:
 	bool release_stream;
 
 	typedef std::vector< FontFaceHandle* > HandleList;
-	typedef std::unordered_map< int, HandleList > HandleMap;
+	typedef UnorderedMap< int, HandleList > HandleMap;
 	HandleMap handles;
 };
 

+ 2 - 2
Include/Rocket/Core/PropertySpecification.h

@@ -107,8 +107,8 @@ public:
 	void SetPropertyDefaults(PropertyDictionary& dictionary) const;
 
 private:
-	typedef std::unordered_map< String, PropertyDefinition* > PropertyMap;
-	typedef std::unordered_map< String, PropertyShorthandDefinition* > ShorthandMap;
+	typedef UnorderedMap< String, PropertyDefinition* > PropertyMap;
+	typedef UnorderedMap< String, PropertyShorthandDefinition* > ShorthandMap;
 
 	PropertyMap properties;
 	ShorthandMap shorthands;

+ 3 - 3
Include/Rocket/Core/StyleSheet.h

@@ -48,7 +48,7 @@ struct Keyframes {
 	std::vector<String> property_names;
 	std::vector<KeyframeBlock> blocks;
 };
-typedef std::unordered_map<String, Keyframes> KeyframesMap;
+typedef UnorderedMap<String, Keyframes> KeyframesMap;
 
 /**
 	StyleSheet maintains a single stylesheet definition. A stylesheet can be combined with another stylesheet to create
@@ -61,7 +61,7 @@ class ROCKETCORE_API StyleSheet : public ReferenceCountable
 {
 public:
 	typedef std::unordered_set< StyleSheetNode* > NodeList;
-	typedef std::unordered_map< String, NodeList > NodeIndex;
+	typedef UnorderedMap< String, NodeList > NodeIndex;
 
 	StyleSheet();
 	virtual ~StyleSheet();
@@ -104,7 +104,7 @@ private:
 	// Map of every node, even empty, un-styled, nodes.
 	NodeIndex complete_node_index;
 
-	typedef std::unordered_map< String, ElementDefinition* > ElementDefinitionCache;
+	typedef UnorderedMap< String, ElementDefinition* > ElementDefinitionCache;
 	// Index of element addresses to element definitions.
 	mutable ElementDefinitionCache address_cache;
 	// Index of node sets to element definitions.

+ 1 - 1
Include/Rocket/Core/StyleSheetSpecification.h

@@ -110,7 +110,7 @@ private:
 	void RegisterDefaultProperties();
 
 	// Parsers used by all property definitions.
-	typedef std::unordered_map< String, PropertyParser* > ParserMap;
+	typedef UnorderedMap< String, PropertyParser* > ParserMap;
 	ParserMap parsers;
 
 	// The properties defined in the style sheet specification.

+ 6 - 1
Include/Rocket/Core/Types.h

@@ -42,6 +42,7 @@
 #include <set>
 #include <unordered_set>
 #include <vector>
+#include "Containers/robin_hood.h"
 
 #include "Platform.h"
 #include "Debug.h"
@@ -109,7 +110,11 @@ typedef std::unordered_set< String > PropertyNameList;
 typedef std::unordered_set< String > AttributeNameList;
 typedef Dictionary ElementAttributes;
 typedef std::vector< ElementAnimation > ElementAnimationList;
-typedef std::unordered_map< String, Property > PropertyMap;
+
+template < typename Key, typename Value>
+using UnorderedMap = robin_hood::unordered_flat_map< Key, Value >;
+
+typedef UnorderedMap< String, Property > PropertyMap;
 
 // Reference types
 typedef std::shared_ptr< Transform > TransformRef;

+ 1 - 1
Include/Rocket/Core/URL.h

@@ -101,7 +101,7 @@ public:
 	const String& GetExtension() const;
 	
 	/// Access the url parameters
-	typedef std::unordered_map< String, String > Parameters;
+	typedef UnorderedMap< String, String > Parameters;
 	const Parameters& GetParameters() const;
 	void SetParameter(const String& name, const String& value);
 	void SetParameters( const Parameters& parameters );

+ 1 - 1
Include/Rocket/Core/Variant.h

@@ -138,7 +138,7 @@ private:
 	void Set(ScriptInterface* value);
 	
 #ifdef ROCKET_ARCH_64
-		static const int LOCAL_DATA_SIZE = 40; // Required for Strings
+		static const int LOCAL_DATA_SIZE = 32; // Required for Strings
 #else
 		static const int LOCAL_DATA_SIZE = 24;
 #endif

+ 2 - 0
Samples/basic/animation/src/main.cpp

@@ -134,6 +134,8 @@ public:
 		  FPS values
 		  Original: 18.5
 		  Without property counter: 22.0
+		  With std::string: 23.0
+		  robin_hood unordered_flat_map: 24.0
 		
 		*/
 		if (!document)

+ 1 - 1
Source/Core/Core.cpp

@@ -49,7 +49,7 @@ static FileInterfaceDefault file_interface_default;
 #endif
 static bool initialised = false;
 
-typedef std::unordered_map< String, Context* > ContextMap;
+typedef UnorderedMap< String, Context* > ContextMap;
 static ContextMap contexts;
 
 #ifndef ROCKET_VERSION

+ 2 - 2
Source/Core/ElementDefinition.h

@@ -47,9 +47,9 @@ class FontEffect;
 // one. This makes it much more straight-forward to query at run-time.
 typedef std::pair< StringList, Property > PseudoClassProperty;
 typedef std::vector< PseudoClassProperty > PseudoClassPropertyList;
-typedef std::unordered_map< String, PseudoClassPropertyList > PseudoClassPropertyDictionary;
+typedef UnorderedMap< String, PseudoClassPropertyList > PseudoClassPropertyDictionary;
 
-typedef std::unordered_map< String, Decorator* > DecoratorMap;
+typedef UnorderedMap< String, Decorator* > DecoratorMap;
 typedef std::map< StringList, DecoratorMap > PseudoClassDecoratorMap;
 
 /**

+ 1 - 1
Source/Core/EventDispatcher.cpp

@@ -60,7 +60,7 @@ void EventDispatcher::AttachEvent(const String& type, EventListener* listener, b
 	// Ensure the event is in the event list
 	if (event_itr == events.end())
 	{
-		event_itr = events.insert(std::pair< String, Listeners >(type, Listeners())).first;
+		event_itr = events.emplace(type, Listeners()).first;
 	}
 
 	// Add the action to the events

+ 1 - 1
Source/Core/EventDispatcher.h

@@ -92,7 +92,7 @@ private:
 		bool in_capture_phase;
 	};
 	typedef std::vector< Listener > Listeners;
-	typedef std::unordered_map< String, Listeners > Events;
+	typedef UnorderedMap< String, Listeners > Events;
 	Events events;
 
 	void TriggerEvents(Event* event);

+ 3 - 3
Source/Core/Factory.cpp

@@ -56,15 +56,15 @@ namespace Rocket {
 namespace Core {
 
 // Element instancers.
-typedef std::unordered_map< String, ElementInstancer* > ElementInstancerMap;
+typedef UnorderedMap< String, ElementInstancer* > ElementInstancerMap;
 static ElementInstancerMap element_instancers;
 
 // Decorator instancers.
-typedef std::unordered_map< String, DecoratorInstancer* > DecoratorInstancerMap;
+typedef UnorderedMap< String, DecoratorInstancer* > DecoratorInstancerMap;
 static DecoratorInstancerMap decorator_instancers;
 
 // Font effect instancers.
-typedef std::unordered_map< String, FontEffectInstancer* > FontEffectInstancerMap;
+typedef UnorderedMap< String, FontEffectInstancer* > FontEffectInstancerMap;
 static FontEffectInstancerMap font_effect_instancers;
 
 // The context instancer.

+ 1 - 1
Source/Core/FontDatabase.cpp

@@ -38,7 +38,7 @@ namespace Core {
 FontDatabase* FontDatabase::instance = NULL;
 FontDatabase::FontProviderTable FontDatabase::font_provider_table;
 
-typedef std::unordered_map< String, FontEffect* > FontEffectCache;
+typedef UnorderedMap< String, FontEffect* > FontEffectCache;
 FontEffectCache font_effect_cache;
 
 FontDatabase::FontDatabase()

+ 2 - 2
Source/Core/FontFaceHandle.h

@@ -125,8 +125,8 @@ protected:
 	FontGlyphList glyphs;
 	FontKerningList kerning;
 
-	typedef std::unordered_map< const FontEffect*, FontFaceLayer* > FontLayerMap;
-	typedef std::unordered_map< String, FontFaceLayer* > FontLayerCache;
+	typedef UnorderedMap< const FontEffect*, FontFaceLayer* > FontLayerMap;
+	typedef UnorderedMap< String, FontFaceLayer* > FontLayerCache;
 	typedef std::vector< FontFaceLayer* > LayerConfiguration;
 	typedef std::vector< LayerConfiguration > LayerConfigurationList;
 

+ 1 - 1
Source/Core/PropertyParserAnimation.cpp

@@ -51,7 +51,7 @@ struct Keyword {
 };
 
 
-static const std::unordered_map<String, Keyword> keywords = {
+static const UnorderedMap<String, Keyword> keywords = {
 		{"none", {Keyword::NONE} },
 		{"all", {Keyword::ALL}},
 		{"alternate", {Keyword::ALTERNATE}},

+ 2 - 2
Source/Core/StyleSheet.cpp

@@ -56,10 +56,10 @@ StyleSheet::~StyleSheet()
 	delete root;
 
 	// Release our reference count on the cached element definitions.
-	for (ElementDefinitionCache::iterator cache_iterator = address_cache.begin(); cache_iterator != address_cache.end(); cache_iterator++)
+	for (ElementDefinitionCache::iterator cache_iterator = address_cache.begin(); cache_iterator != address_cache.end(); ++cache_iterator)
 		(*cache_iterator).second->RemoveReference();
 
-	for (ElementDefinitionCache::iterator cache_iterator = node_cache.begin(); cache_iterator != node_cache.end(); cache_iterator++)
+	for (ElementDefinitionCache::iterator cache_iterator = node_cache.begin(); cache_iterator != node_cache.end(); ++cache_iterator)
 		(*cache_iterator).second->RemoveReference();
 }
 

+ 2 - 2
Source/Core/StyleSheetFactory.h

@@ -75,14 +75,14 @@ private:
 	StyleSheet* LoadStyleSheet(const String& sheet);
 
 	// Individual loaded stylesheets
-	typedef std::unordered_map<String, StyleSheet*> StyleSheets;
+	typedef UnorderedMap<String, StyleSheet*> StyleSheets;
 	StyleSheets stylesheets;
 
 	// Cache of combined style sheets
 	StyleSheets stylesheet_cache;
 
 	// Custom complex selectors available for style sheets.
-	typedef std::unordered_map< String, StyleSheetNodeSelector* > SelectorMap;
+	typedef UnorderedMap< String, StyleSheetNodeSelector* > SelectorMap;
 	SelectorMap selectors;
 };
 

+ 2 - 2
Source/Core/StyleSheetNode.cpp

@@ -64,7 +64,7 @@ StyleSheetNode::~StyleSheetNode()
 {
 	for (int i = 0; i < NUM_NODE_TYPES; i++)
 	{
-		for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); j++)
+		for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j)
 			delete (*j).second;
 	}
 }
@@ -141,7 +141,7 @@ bool StyleSheetNode::MergeHierarchy(StyleSheetNode* node, int specificity_offset
 
 	for (int i = 0; i < NUM_NODE_TYPES; i++)
 	{
-		for (NodeMap::iterator iterator = node->children[i].begin(); iterator != node->children[i].end(); iterator++)
+		for (NodeMap::iterator iterator = node->children[i].begin(); iterator != node->children[i].end(); ++iterator)
 		{
 			StyleSheetNode* local_node = GetChildNode((*iterator).second->name, (NodeType) i);
 			local_node->MergeHierarchy((*iterator).second, specificity_offset);

+ 1 - 1
Source/Core/StyleSheetNode.h

@@ -145,7 +145,7 @@ private:
 	PropertyDictionary properties;
 
 	// This node's child nodes, whether standard tagged children, or further derivations of this tag by ID or class.
-	typedef std::unordered_map< String, StyleSheetNode* > NodeMap;
+	typedef UnorderedMap< String, StyleSheetNode* > NodeMap;
 	NodeMap children[NUM_NODE_TYPES];
 };
 

+ 1 - 1
Source/Core/StyleSheetSpecification.cpp

@@ -69,7 +69,7 @@ void StyleSheetSpecification::Shutdown()
 {
 	if (instance != NULL)
 	{
-		for (ParserMap::iterator iterator = instance->parsers.begin(); iterator != instance->parsers.end(); iterator++)
+		for (ParserMap::iterator iterator = instance->parsers.begin(); iterator != instance->parsers.end(); ++iterator)
 			(*iterator).second->Release();
 
 		delete instance;

+ 1 - 1
Source/Core/TemplateCache.h

@@ -60,7 +60,7 @@ private:
 	TemplateCache();
 	~TemplateCache();
 
-	typedef std::unordered_map<String, Template*> Templates;
+	typedef UnorderedMap<String, Template*> Templates;
 	Templates templates;
 	Templates template_ids;
 };

+ 1 - 1
Source/Core/TextureDatabase.h

@@ -64,7 +64,7 @@ private:
 	TextureDatabase();
 	~TextureDatabase();
 
-	typedef std::unordered_map< String, TextureResource* > TextureMap;
+	typedef UnorderedMap< String, TextureResource* > TextureMap;
 	TextureMap textures;
 };
 

+ 1 - 1
Source/Core/TextureResource.h

@@ -77,7 +77,7 @@ private:
 	String source;
 
 	typedef std::pair< TextureHandle, Vector2i > TextureData;
-	typedef std::unordered_map< RenderInterface*, TextureData > TextureDataMap;
+	typedef UnorderedMap< RenderInterface*, TextureData > TextureDataMap;
 	mutable TextureDataMap texture_data;
 };
 

+ 1 - 1
Source/Core/XMLParser.cpp

@@ -34,7 +34,7 @@
 namespace Rocket {
 namespace Core {
 
-typedef std::unordered_map< String, XMLNodeHandler* > NodeHandlers;
+typedef UnorderedMap< String, XMLNodeHandler* > NodeHandlers;
 static NodeHandlers node_handlers;
 static XMLNodeHandler* default_node_handler = NULL;