/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019-2023 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "../../Include/RmlUi/Core/Element.h"
#include "../../Include/RmlUi/Core/Context.h"
#include "../../Include/RmlUi/Core/Core.h"
#include "../../Include/RmlUi/Core/Dictionary.h"
#include "../../Include/RmlUi/Core/ElementDocument.h"
#include "../../Include/RmlUi/Core/ElementScroll.h"
#include "../../Include/RmlUi/Core/ElementUtilities.h"
#include "../../Include/RmlUi/Core/Factory.h"
#include "../../Include/RmlUi/Core/Math.h"
#include "../../Include/RmlUi/Core/NodeInstancer.h"
#include "../../Include/RmlUi/Core/Profiling.h"
#include "../../Include/RmlUi/Core/PropertiesIteratorView.h"
#include "../../Include/RmlUi/Core/PropertyDefinition.h"
#include "../../Include/RmlUi/Core/PropertyIdSet.h"
#include "../../Include/RmlUi/Core/StyleSheet.h"
#include "../../Include/RmlUi/Core/StyleSheetSpecification.h"
#include "../../Include/RmlUi/Core/TransformPrimitive.h"
#include "Clock.h"
#include "ComputeProperty.h"
#include "DataModel.h"
#include "ElementAnimation.h"
#include "ElementBackgroundBorder.h"
#include "ElementDefinition.h"
#include "ElementEffects.h"
#include "ElementMeta.h"
#include "ElementStyle.h"
#include "EventDispatcher.h"
#include "EventSpecification.h"
#include "Layout/LayoutEngine.h"
#include "PluginRegistry.h"
#include "Pool.h"
#include "PropertiesIterator.h"
#include "StyleSheetNode.h"
#include "StyleSheetParser.h"
#include "TransformState.h"
#include "TransformUtilities.h"
#include "XMLParseTools.h"
#include
#include
namespace Rml {
// Determines how many levels up in the hierarchy the OnChildAdd and OnChildRemove are called (starting at the child itself)
static constexpr int ChildNotifyLevels = 2;
// Helper function to select scroll offset delta
static float GetScrollOffsetDelta(ScrollAlignment alignment, float begin_offset, float end_offset)
{
switch (alignment)
{
case ScrollAlignment::Start: return begin_offset;
case ScrollAlignment::Center: return (begin_offset + end_offset) / 2.0f;
case ScrollAlignment::End: return end_offset;
case ScrollAlignment::Nearest:
if (begin_offset >= 0.f && end_offset <= 0.f)
return 0.f; // Element is already visible, don't scroll
else if (begin_offset < 0.f && end_offset < 0.f)
return Math::Max(begin_offset, end_offset);
else if (begin_offset > 0.f && end_offset > 0.f)
return Math::Min(begin_offset, end_offset);
else
return 0.f; // Shouldn't happen
}
return 0.f;
}
Element::Element(const String& tag) :
local_stacking_context(false), local_stacking_context_forced(false), stacking_context_dirty(false), computed_values_are_default_initialized(true),
visible(true), offset_fixed(false), absolute_offset_dirty(true), rounded_main_padding_size_dirty(true), dirty_definition(false),
dirty_child_definitions(false), dirty_animation(false), dirty_transition(false), dirty_transform(false), dirty_perspective(false), tag(tag),
relative_offset_base(0, 0), relative_offset_position(0, 0), absolute_offset(0, 0), scroll_offset(0, 0)
{
RMLUI_ASSERT(tag == StringUtilities::ToLower(String(tag)));
focus = nullptr;
offset_parent = nullptr;
clip_area = BoxArea::Padding;
baseline = 0.0f;
z_index = 0;
meta = ElementMetaPool::element_meta_pool->pool.AllocateAndConstruct(this);
data_model = nullptr;
}
Element::~Element()
{
RMLUI_ASSERT(GetParentNode() == nullptr);
PluginRegistry::NotifyElementDestroy(this);
for (Element* child : IterateChildren(true))
{
Element* child_ancestor = child;
for (int i = 0; i <= ChildNotifyLevels && child_ancestor; i++, child_ancestor = child_ancestor->GetParentElement())
child_ancestor->OnChildRemove(child);
}
ElementMetaPool::element_meta_pool->pool.DestroyAndDeallocate(meta);
}
void Element::Update(float dp_ratio, Vector2f vp_dimensions)
{
#ifdef RMLUI_TRACY_PROFILING
auto name = GetAddress(false, false);
RMLUI_ZoneScoped;
RMLUI_ZoneText(name.c_str(), name.size());
#endif
OnUpdate();
HandleTransitionProperty();
HandleAnimationProperty();
AdvanceAnimations();
meta->scroll.Update();
UpdateProperties(dp_ratio, vp_dimensions);
// Do en extra pass over the animations and properties if the 'animation' property was just changed.
if (dirty_animation)
{
HandleAnimationProperty();
AdvanceAnimations();
UpdateProperties(dp_ratio, vp_dimensions);
}
meta->effects.InstanceEffects();
for (Element* child : IterateChildren(true))
child->Update(dp_ratio, vp_dimensions);
if (!animations.empty() && IsVisible(true))
{
if (Context* ctx = GetContext())
ctx->RequestNextUpdate(0);
}
}
void Element::UpdateProperties(const float dp_ratio, const Vector2f vp_dimensions)
{
UpdateDefinition();
if (meta->style.AnyPropertiesDirty())
{
Element* parent = GetParentElement();
const ComputedValues* parent_values = parent ? &parent->GetComputedValues() : nullptr;
ElementDocument* owner_document = GetOwnerDocument();
const ComputedValues* document_values = owner_document ? &owner_document->GetComputedValues() : nullptr;
// Compute values and clear dirty properties
PropertyIdSet dirty_properties = meta->style.ComputeValues(meta->computed_values, parent_values, document_values,
computed_values_are_default_initialized, dp_ratio, vp_dimensions);
computed_values_are_default_initialized = false;
// Computed values are just calculated and can safely be used in OnPropertyChange.
// However, new properties set during this call will not be available until the next update loop.
if (!dirty_properties.Empty())
OnPropertyChange(dirty_properties);
}
}
void Element::Render()
{
#ifdef RMLUI_TRACY_PROFILING
auto name = GetAddress(false, false);
RMLUI_ZoneScoped;
RMLUI_ZoneText(name.c_str(), name.size());
#endif
UpdateAbsoluteOffsetAndRenderBoxData();
// Rebuild our stacking context if necessary.
if (stacking_context_dirty)
BuildLocalStackingContext();
UpdateTransformState();
// Apply our transform
ElementUtilities::ApplyTransform(*this);
meta->effects.RenderEffects(RenderStage::Enter);
// Set up the clipping region for this element.
if (ElementUtilities::SetClippingRegion(this))
{
meta->background_border.Render(this);
meta->effects.RenderEffects(RenderStage::Decoration);
{
RMLUI_ZoneScopedNC("OnRender", 0x228B22);
OnRender();
}
// TODO(Michael): Offset is not correct. Should we make these nodes part of the stacking context?
for (ElementText* child : IterateChildren(true))
child->Render(this, absolute_offset);
}
// Render all elements in our local stacking context.
for (Element* element : stacking_context)
element->Render();
meta->effects.RenderEffects(RenderStage::Exit);
}
ElementPtr Element::Clone() const
{
NodeInstancer* instancer = GetInstancer();
RMLUI_ASSERT(instancer);
ElementPtr clone = As(instancer->InstanceNode(tag));
if (clone)
{
clone->SetInstancer(instancer);
// Copy over the attributes. The 'style' and 'class' attributes are skipped because inline styles and class names are copied manually below.
// This is necessary in case any properties or classes have been set manually, in which case the 'style' and 'class' attributes are out of
// sync with the used style and active classes.
ElementAttributes clone_attributes = attributes;
clone_attributes.erase("style");
clone_attributes.erase("class");
clone->SetAttributes(clone_attributes);
for (auto& id_property : GetStyle()->GetLocalStyleProperties())
clone->SetProperty(id_property.first, id_property.second);
clone->GetStyle()->SetClassNames(GetStyle()->GetClassNames());
String inner_rml;
GetInnerRML(inner_rml);
clone->SetInnerRML(inner_rml);
}
return clone;
}
void Element::SetClass(const String& class_name, bool activate)
{
if (meta->style.SetClass(class_name, activate))
DirtyDefinition(DirtyNodes::SelfAndSiblings);
}
bool Element::IsClassSet(const String& class_name) const
{
return meta->style.IsClassSet(class_name);
}
void Element::SetClassNames(const String& class_names)
{
SetAttribute("class", class_names);
}
String Element::GetClassNames() const
{
return meta->style.GetClassNames();
}
const StyleSheet* Element::GetStyleSheet() const
{
if (ElementDocument* document = GetOwnerDocument())
return document->GetStyleSheet();
return nullptr;
}
String Element::GetAddress(bool include_pseudo_classes, bool include_parents) const
{
// Add the tag name onto the address.
String address(tag);
// Add the ID if we have one.
if (!id.empty())
{
address += "#";
address += id;
}
String classes = meta->style.GetClassNames();
if (!classes.empty())
{
classes = StringUtilities::Replace(classes, ' ', '.');
address += ".";
address += classes;
}
if (include_pseudo_classes)
{
const PseudoClassMap& pseudo_classes = meta->style.GetActivePseudoClasses();
for (auto& pseudo_class : pseudo_classes)
{
address += ":";
address += pseudo_class.first;
}
}
if (include_parents && GetParentElement())
{
address += " < ";
return address + GetParentElement()->GetAddress(include_pseudo_classes, true);
}
else
return address;
}
void Element::SetOffset(Vector2f offset, Element* _offset_parent, bool _offset_fixed)
{
_offset_fixed |= GetPosition() == Style::Position::Fixed;
// If our offset has definitely changed, or any of our parenting has, then these are set and
// updated based on our left / right / top / bottom properties.
if (relative_offset_base != offset || offset_parent != _offset_parent || offset_fixed != _offset_fixed)
{
relative_offset_base = offset;
offset_fixed = _offset_fixed;
offset_parent = _offset_parent;
UpdateOffset();
DirtyAbsoluteOffset();
}
// Otherwise, our offset is updated in case left / right / top / bottom will have an impact on
// our final position, and our children are dirtied if they do.
else
{
const Vector2f old_base = relative_offset_base;
const Vector2f old_position = relative_offset_position;
UpdateOffset();
if (old_base != relative_offset_base || old_position != relative_offset_position)
DirtyAbsoluteOffset();
}
}
Vector2f Element::GetRelativeOffset(BoxArea area)
{
return relative_offset_base + relative_offset_position + GetBox().GetPosition(area);
}
Vector2f Element::GetAbsoluteOffset(BoxArea area)
{
UpdateAbsoluteOffsetAndRenderBoxData();
return area == BoxArea::Border ? absolute_offset : absolute_offset + GetBox().GetPosition(area);
}
void Element::UpdateAbsoluteOffsetAndRenderBoxData()
{
if (absolute_offset_dirty || rounded_main_padding_size_dirty)
{
absolute_offset_dirty = false;
rounded_main_padding_size_dirty = false;
Vector2f offset_from_ancestors;
if (offset_parent)
offset_from_ancestors = offset_parent->GetAbsoluteOffset(BoxArea::Border);
if (!offset_fixed)
{
// Add any parent scrolling onto our position as well.
if (offset_parent)
offset_from_ancestors -= offset_parent->scroll_offset;
// Finally, there may be relatively positioned elements between ourself and our containing block, add their relative offsets as well.
for (Node* ancestor = GetParentNode(); ancestor && ancestor != offset_parent; ancestor = ancestor->GetParentNode())
{
if (Element* ancestor_element = AsIf(ancestor))
offset_from_ancestors += ancestor_element->relative_offset_position;
}
}
const Vector2f relative_offset = relative_offset_base + relative_offset_position;
absolute_offset = relative_offset + offset_from_ancestors;
// Next, we find the rounded size of the box so that elements can be placed border-to-border next to each other
// without any gaps. To achieve this, we have to adjust their rounded/rendered sizes based on their position, in
// such a way that the bottom-right of this element exactly matches the top-left of the next element. The order
// of floating-point operations matter here, we want to replicate the operations in the layout engine as close
// as possible to avoid any gaps.
const Vector2f main_padding_size = main_box.GetSize(BoxArea::Padding);
const Vector2f bottom_right_absolute_offset = (relative_offset + main_padding_size) + offset_from_ancestors;
const Vector2f new_rounded_main_padding_size = bottom_right_absolute_offset.Round() - absolute_offset.Round();
if (new_rounded_main_padding_size != rounded_main_padding_size)
{
rounded_main_padding_size = new_rounded_main_padding_size;
meta->background_border.DirtyBackground();
meta->background_border.DirtyBorder();
meta->effects.DirtyEffectsData();
}
}
}
void Element::SetClipArea(BoxArea _clip_area)
{
clip_area = _clip_area;
}
BoxArea Element::GetClipArea() const
{
return clip_area;
}
void Element::SetScrollableOverflowRectangle(Vector2f _scrollable_overflow_rectangle, bool clamp_scroll_offset)
{
if (scrollable_overflow_rectangle != _scrollable_overflow_rectangle)
{
scrollable_overflow_rectangle = _scrollable_overflow_rectangle;
if (clamp_scroll_offset)
ClampScrollOffset();
}
}
void Element::SetBox(const Box& box)
{
if (box != main_box || additional_boxes.size() > 0)
{
#ifdef RMLUI_DEBUG
for (const BoxEdge edge : {BoxEdge::Top, BoxEdge::Right, BoxEdge::Bottom, BoxEdge::Left})
{
const float border_width = box.GetEdge(BoxArea::Border, edge);
if (border_width != Math::Round(border_width))
Log::Message(Log::LT_WARNING, "Expected integer border width but got %g px on element: %s", border_width, GetAddress().c_str());
}
#endif
main_box = box;
additional_boxes.clear();
OnResize();
rounded_main_padding_size_dirty = true;
meta->background_border.DirtyBackground();
meta->background_border.DirtyBorder();
meta->effects.DirtyEffectsData();
}
}
void Element::AddBox(const Box& box, Vector2f offset)
{
additional_boxes.emplace_back(PositionedBox{box, offset});
OnResize();
meta->background_border.DirtyBackground();
meta->background_border.DirtyBorder();
meta->effects.DirtyEffectsData();
}
const Box& Element::GetBox()
{
return main_box;
}
const Box& Element::GetBox(int index, Vector2f& offset)
{
offset = Vector2f(0);
const int additional_box_index = index - 1;
if (index < 1 || additional_box_index >= (int)additional_boxes.size())
return main_box;
offset = additional_boxes[additional_box_index].offset;
return additional_boxes[additional_box_index].box;
}
RenderBox Element::GetRenderBox(BoxArea fill_area, int index)
{
RMLUI_ASSERTMSG(fill_area >= BoxArea::Border && fill_area <= BoxArea::Content,
"Render box can only be generated with fill area of border, padding or content.");
UpdateAbsoluteOffsetAndRenderBoxData();
struct BoxReference {
const Box& box;
Vector2f padding_size;
Vector2f offset;
};
auto GetBoxAndOffset = [this, index]() {
const int additional_box_index = index - 1;
if (index < 1 || additional_box_index >= (int)additional_boxes.size())
return BoxReference{main_box, rounded_main_padding_size, {}};
const PositionedBox& positioned_box = additional_boxes[additional_box_index];
return BoxReference{positioned_box.box, positioned_box.box.GetSize(BoxArea::Padding), positioned_box.offset.Round()};
};
BoxReference box = GetBoxAndOffset();
EdgeSizes edge_sizes = {};
for (int area = (int)BoxArea::Border; area < (int)fill_area; area++)
{
edge_sizes[0] += box.box.GetEdge(BoxArea(area), BoxEdge::Top);
edge_sizes[1] += box.box.GetEdge(BoxArea(area), BoxEdge::Right);
edge_sizes[2] += box.box.GetEdge(BoxArea(area), BoxEdge::Bottom);
edge_sizes[3] += box.box.GetEdge(BoxArea(area), BoxEdge::Left);
}
Vector2f inner_size;
switch (fill_area)
{
case BoxArea::Border: inner_size = box.padding_size + box.box.GetFrameSize(BoxArea::Border); break;
case BoxArea::Padding: inner_size = box.padding_size; break;
case BoxArea::Content: inner_size = box.padding_size - box.box.GetFrameSize(BoxArea::Padding); break;
case BoxArea::Margin:
case BoxArea::Auto: RMLUI_ERROR;
}
return RenderBox{inner_size, box.offset, edge_sizes, meta->computed_values.border_radius()};
}
int Element::GetNumBoxes()
{
return 1 + (int)additional_boxes.size();
}
float Element::GetBaseline() const
{
return baseline;
}
bool Element::GetIntrinsicDimensions(Vector2f& /*dimensions*/, float& /*ratio*/)
{
return false;
}
bool Element::IsReplaced()
{
Vector2f unused_dimensions;
float unused_ratio = 0.f;
return GetIntrinsicDimensions(unused_dimensions, unused_ratio);
}
bool Element::IsPointWithinElement(const Vector2f point)
{
const Vector2f position = GetAbsoluteOffset(BoxArea::Border);
for (int i = 0; i < GetNumBoxes(); ++i)
{
Vector2f box_offset;
const Box& box = GetBox(i, box_offset);
const Vector2f box_position = position + box_offset;
const Vector2f box_dimensions = box.GetSize(BoxArea::Border);
if (point.x >= box_position.x && point.x <= (box_position.x + box_dimensions.x) && point.y >= box_position.y &&
point.y <= (box_position.y + box_dimensions.y))
{
return true;
}
}
return false;
}
bool Element::IsVisible(bool include_ancestors) const
{
if (!include_ancestors)
return visible;
const Element* element = this;
while (element)
{
if (!element->visible)
return false;
element = element->GetParentElement();
}
return true;
}
float Element::GetZIndex() const
{
return z_index;
}
FontFaceHandle Element::GetFontFaceHandle() const
{
return meta->computed_values.font_face_handle();
}
bool Element::SetProperty(const String& name, const String& value)
{
// The name may be a shorthand giving us multiple underlying properties
PropertyDictionary properties;
if (!StyleSheetSpecification::ParsePropertyDeclaration(properties, name, value))
{
Log::Message(Log::LT_WARNING, "Syntax error parsing inline property declaration '%s: %s;'.", name.c_str(), value.c_str());
return false;
}
for (auto& property : properties.GetProperties())
{
if (!meta->style.SetProperty(property.first, property.second))
return false;
}
return true;
}
bool Element::SetProperty(PropertyId id, const Property& property)
{
return meta->style.SetProperty(id, property);
}
void Element::RemoveProperty(const String& name)
{
auto property_id = StyleSheetSpecification::GetPropertyId(name);
if (property_id != PropertyId::Invalid)
meta->style.RemoveProperty(property_id);
else
{
auto shorthand_id = StyleSheetSpecification::GetShorthandId(name);
if (shorthand_id != ShorthandId::Invalid)
{
auto property_id_set = StyleSheetSpecification::GetShorthandUnderlyingProperties(shorthand_id);
for (auto it = property_id_set.begin(); it != property_id_set.end(); ++it)
meta->style.RemoveProperty(*it);
}
}
}
void Element::RemoveProperty(PropertyId id)
{
meta->style.RemoveProperty(id);
}
const Property* Element::GetProperty(const String& name)
{
return meta->style.GetProperty(StyleSheetSpecification::GetPropertyId(name));
}
const Property* Element::GetProperty(PropertyId id)
{
return meta->style.GetProperty(id);
}
const Property* Element::GetLocalProperty(const String& name)
{
return meta->style.GetLocalProperty(StyleSheetSpecification::GetPropertyId(name));
}
const Property* Element::GetLocalProperty(PropertyId id)
{
return meta->style.GetLocalProperty(id);
}
const PropertyMap& Element::GetLocalStyleProperties()
{
return meta->style.GetLocalStyleProperties();
}
float Element::ResolveLength(NumericValue value)
{
float result = 0.f;
if (Any(value.unit & Unit::LENGTH))
result = meta->style.ResolveNumericValue(value, 0.f);
return result;
}
float Element::ResolveNumericValue(NumericValue value, float base_value)
{
float result = 0.f;
if (Any(value.unit & Unit::NUMERIC))
result = meta->style.ResolveNumericValue(value, base_value);
return result;
}
Vector2f Element::GetContainingBlock()
{
Vector2f containing_block;
if (offset_parent)
{
using namespace Style;
Position position_property = GetPosition();
const Box& parent_box = offset_parent->GetBox();
if (position_property == Position::Static || position_property == Position::Relative)
{
containing_block = parent_box.GetSize();
containing_block.x -= meta->scroll.GetScrollbarSize(ElementScroll::VERTICAL);
containing_block.y -= meta->scroll.GetScrollbarSize(ElementScroll::HORIZONTAL);
}
else if (position_property == Position::Absolute || position_property == Position::Fixed)
{
containing_block = parent_box.GetSize(BoxArea::Padding);
}
}
else if (Context* context = GetContext())
{
containing_block = Vector2f(context->GetDimensions());
}
return containing_block;
}
Style::Position Element::GetPosition()
{
return meta->computed_values.position();
}
Style::Float Element::GetFloat()
{
return meta->computed_values.float_();
}
Style::Display Element::GetDisplay()
{
return meta->computed_values.display();
}
float Element::GetLineHeight()
{
return meta->computed_values.line_height().value;
}
const TransformState* Element::GetTransformState() const noexcept
{
return transform_state.get();
}
bool Element::Project(Vector2f& point) const noexcept
{
if (!transform_state || !transform_state->GetTransform())
return true;
// The input point is in window coordinates. Need to find the projection of the point onto the current element plane,
// taking into account the full transform applied to the element.
if (const Matrix4f* inv_transform = transform_state->GetInverseTransform())
{
// Pick two points forming a line segment perpendicular to the window.
Vector4f window_points[2] = {{point.x, point.y, -10, 1}, {point.x, point.y, 10, 1}};
// Project them into the local element space.
window_points[0] = *inv_transform * window_points[0];
window_points[1] = *inv_transform * window_points[1];
Vector3f local_points[2] = {window_points[0].PerspectiveDivide(), window_points[1].PerspectiveDivide()};
// Construct a ray from the two projected points in the local space of the current element.
// Find the intersection with the z=0 plane to produce our destination point.
Vector3f ray = local_points[1] - local_points[0];
// Only continue if we are not close to parallel with the plane.
if (Math::Absolute(ray.z) > 1.0f)
{
// Solving the line equation p = p0 + t*ray for t, knowing that p.z = 0, produces the following.
float t = -local_points[0].z / ray.z;
Vector3f p = local_points[0] + ray * t;
point = Vector2f(p.x, p.y);
return true;
}
}
// The transformation matrix is either singular, or the ray is parallel to the element's plane.
return false;
}
PropertiesIteratorView Element::IterateLocalProperties() const
{
return PropertiesIteratorView(MakeUnique(meta->style.Iterate()));
}
void Element::SetPseudoClass(const String& pseudo_class, bool activate)
{
if (meta->style.SetPseudoClass(pseudo_class, activate, false))
{
// Include siblings in case of RCSS presence of sibling combinators '+', '~'.
DirtyDefinition(DirtyNodes::SelfAndSiblings);
OnPseudoClassChange(pseudo_class, activate);
}
}
bool Element::IsPseudoClassSet(const String& pseudo_class) const
{
return meta->style.IsPseudoClassSet(pseudo_class);
}
bool Element::ArePseudoClassesSet(const StringList& pseudo_classes) const
{
for (const String& pseudo_class : pseudo_classes)
{
if (!IsPseudoClassSet(pseudo_class))
return false;
}
return true;
}
StringList Element::GetActivePseudoClasses() const
{
const PseudoClassMap& pseudo_classes = meta->style.GetActivePseudoClasses();
StringList names;
names.reserve(pseudo_classes.size());
for (auto& pseudo_class : pseudo_classes)
{
names.push_back(pseudo_class.first);
}
return names;
}
void Element::OverridePseudoClass(Element* element, const String& pseudo_class, bool activate)
{
RMLUI_ASSERT(element);
element->GetStyle()->SetPseudoClass(pseudo_class, activate, true);
}
Variant* Element::GetAttribute(const String& name)
{
return GetIf(attributes, name);
}
const Variant* Element::GetAttribute(const String& name) const
{
return GetIf(attributes, name);
}
bool Element::HasAttribute(const String& name) const
{
return attributes.find(name) != attributes.end();
}
void Element::RemoveAttribute(const String& name)
{
auto it = attributes.find(name);
if (it != attributes.end())
{
attributes.erase(it);
ElementAttributes changed_attributes;
changed_attributes.emplace(name, Variant());
OnAttributeChange(changed_attributes);
}
}
Element* Element::GetFocusLeafNode()
{
// If there isn't a focus, then we are the leaf.
if (!focus)
{
return this;
}
// Recurse down the tree until we found the leaf focus element
Element* focus_element = focus;
while (focus_element->focus)
focus_element = focus_element->focus;
return focus_element;
}
void Element::SetAttributes(const ElementAttributes& _attributes)
{
attributes.reserve(attributes.size() + _attributes.size());
for (auto& pair : _attributes)
attributes[pair.first] = pair.second;
OnAttributeChange(_attributes);
}
int Element::GetNumAttributes() const
{
return (int)attributes.size();
}
const String& Element::GetTagName() const
{
return tag;
}
const String& Element::GetId() const
{
return id;
}
void Element::SetId(const String& _id)
{
SetAttribute("id", _id);
}
float Element::GetAbsoluteLeft()
{
return GetAbsoluteOffset(BoxArea::Border).x;
}
float Element::GetAbsoluteTop()
{
return GetAbsoluteOffset(BoxArea::Border).y;
}
float Element::GetClientLeft()
{
return GetBox().GetPosition(BoxArea::Padding).x;
}
float Element::GetClientTop()
{
return GetBox().GetPosition(BoxArea::Padding).y;
}
float Element::GetClientWidth()
{
return GetBox().GetSize(BoxArea::Padding).x - meta->scroll.GetScrollbarSize(ElementScroll::VERTICAL);
}
float Element::GetClientHeight()
{
return GetBox().GetSize(BoxArea::Padding).y - meta->scroll.GetScrollbarSize(ElementScroll::HORIZONTAL);
}
Element* Element::GetOffsetParent()
{
return offset_parent;
}
float Element::GetOffsetLeft()
{
return relative_offset_base.x + relative_offset_position.x;
}
float Element::GetOffsetTop()
{
return relative_offset_base.y + relative_offset_position.y;
}
float Element::GetOffsetWidth()
{
return GetBox().GetSize(BoxArea::Border).x;
}
float Element::GetOffsetHeight()
{
return GetBox().GetSize(BoxArea::Border).y;
}
float Element::GetScrollLeft()
{
return scroll_offset.x;
}
void Element::SetScrollLeft(float scroll_left)
{
const float new_offset = Math::Round(Math::Clamp(scroll_left, 0.0f, GetScrollWidth() - GetClientWidth()));
if (new_offset != scroll_offset.x)
{
scroll_offset.x = new_offset;
meta->scroll.UpdateScrollbar(ElementScroll::HORIZONTAL);
DirtyAbsoluteOffset();
DispatchEvent(EventId::Scroll, Dictionary());
}
}
float Element::GetScrollTop()
{
return scroll_offset.y;
}
void Element::SetScrollTop(float scroll_top)
{
const float new_offset = Math::Round(Math::Clamp(Math::Round(scroll_top), 0.0f, GetScrollHeight() - GetClientHeight()));
if (new_offset != scroll_offset.y)
{
scroll_offset.y = new_offset;
meta->scroll.UpdateScrollbar(ElementScroll::VERTICAL);
DirtyAbsoluteOffset();
DispatchEvent(EventId::Scroll, Dictionary());
}
}
float Element::GetScrollWidth()
{
return Math::Max(scrollable_overflow_rectangle.x, GetClientWidth());
}
float Element::GetScrollHeight()
{
return Math::Max(scrollable_overflow_rectangle.y, GetClientHeight());
}
ElementStyle* Element::GetStyle() const
{
return &meta->style;
}
Element* Element::Closest(const String& selectors) const
{
StyleSheetNode root_node;
StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors);
if (leaf_nodes.empty())
{
Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str());
return nullptr;
}
Element* parent = GetParentElement();
while (parent)
{
for (const StyleSheetNode* node : leaf_nodes)
{
if (node->IsApplicable(parent, this))
{
return parent;
}
}
parent = parent->GetParentElement();
}
return nullptr;
}
Element* Element::GetNextElementSibling() const
{
Element* parent = GetParentElement();
if (!parent)
return nullptr;
bool return_next = false;
for (Element* sibling : parent->IterateChildren())
{
if (return_next)
return sibling;
if (sibling == this)
return_next = true;
}
return nullptr;
}
Element* Element::GetPreviousElementSibling() const
{
Element* parent = GetParentElement();
if (!parent)
return nullptr;
Element* previous_sibling = nullptr;
for (Element* sibling : parent->IterateChildren())
{
if (sibling == this)
return previous_sibling;
previous_sibling = sibling;
}
return nullptr;
}
Element* Element::GetFirstElementChild() const
{
auto range = IterateChildren();
auto it = range.begin();
if (it == range.end())
return nullptr;
return *it;
}
Element* Element::GetLastElementChild() const
{
auto range = IterateChildrenReverse();
auto it = range.begin();
if (it == range.end())
return nullptr;
return *it;
}
Element* Element::GetChild(int index) const
{
int i_element = 0;
for (Element* child : IterateChildren(true))
{
if (i_element == index)
return child;
i_element += 1;
}
return nullptr;
}
int Element::GetNumChildren(bool include_non_dom_elements) const
{
int num_elements = 0;
for (Element* child : IterateChildren(include_non_dom_elements))
{
num_elements += 1;
(void)child;
}
return num_elements;
}
void Element::GetInnerRML(String& content) const
{
for (Node* child : IterateChildren())
{
if (Element* element = AsIf(child))
element->GetRML(content);
else if (ElementText* text = AsIf(child))
content += StringUtilities::EncodeRml(text->GetText());
}
}
String Element::GetInnerRML() const
{
String result;
GetInnerRML(result);
return result;
}
void Element::SetInnerRML(const String& rml)
{
RMLUI_ZoneScopedC(0x6495ED);
// Remove all DOM children.
while (GetNumChildNodes() > 0)
RemoveChild(GetChildNode(0));
if (!rml.empty())
Factory::InstanceElementText(this, rml);
}
bool Element::Focus(bool focus_visible)
{
// Are we allowed focus?
Style::Focus focus_property = meta->computed_values.focus();
if (focus_property == Style::Focus::None)
return false;
// Ask our context if we can switch focus.
Context* context = GetContext();
if (context == nullptr)
return false;
if (!context->OnFocusChange(this, focus_visible))
return false;
// Set this as the end of the focus chain.
focus = nullptr;
// Update the focus chain up the hierarchy.
Element* element = this;
while (Element* parent = element->GetParentElement())
{
parent->focus = element;
element = parent;
}
return true;
}
void Element::Blur()
{
if (Element* parent = GetParentElement())
{
Context* context = GetContext();
if (context == nullptr)
return;
if (context->GetFocusElement() == this)
{
parent->Focus();
}
else if (parent->focus == this)
{
parent->focus = nullptr;
}
}
}
void Element::Click()
{
Context* context = GetContext();
if (context == nullptr)
return;
context->GenerateClickEvent(this);
}
void Element::AddEventListener(const String& event, EventListener* listener, const bool in_capture_phase)
{
const EventId id = EventSpecificationInterface::GetIdOrInsert(event);
meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase);
}
void Element::AddEventListener(const EventId id, EventListener* listener, const bool in_capture_phase)
{
meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase);
}
void Element::RemoveEventListener(const String& event, EventListener* listener, bool in_capture_phase)
{
EventId id = EventSpecificationInterface::GetIdOrInsert(event);
meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase);
}
void Element::RemoveEventListener(EventId id, EventListener* listener, bool in_capture_phase)
{
meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase);
}
bool Element::DispatchEvent(const String& type, const Dictionary& parameters)
{
const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type);
return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, specification.interruptible, specification.bubbles,
specification.default_action_phase);
}
bool Element::DispatchEvent(const String& type, const Dictionary& parameters, bool interruptible, bool bubbles)
{
const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type);
return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, interruptible, bubbles, specification.default_action_phase);
}
bool Element::DispatchEvent(EventId id, const Dictionary& parameters)
{
const EventSpecification& specification = EventSpecificationInterface::Get(id);
return EventDispatcher::DispatchEvent(this, specification.id, specification.type, parameters, specification.interruptible, specification.bubbles,
specification.default_action_phase);
}
void Element::ScrollIntoView(const ScrollIntoViewOptions options)
{
const Vector2f size = main_box.GetSize(BoxArea::Border);
ScrollBehavior scroll_behavior = options.behavior;
for (Element* scroll_parent = GetParentElement(); scroll_parent; scroll_parent = scroll_parent->GetParentElement())
{
using Style::Overflow;
const ComputedValues& computed = scroll_parent->GetComputedValues();
const bool scrollable_box_x = (computed.overflow_x() != Overflow::Visible && computed.overflow_x() != Overflow::Hidden);
const bool scrollable_box_y = (computed.overflow_y() != Overflow::Visible && computed.overflow_y() != Overflow::Hidden);
const Vector2f parent_scroll_size = {scroll_parent->GetScrollWidth(), scroll_parent->GetScrollHeight()};
const Vector2f parent_client_size = {scroll_parent->GetClientWidth(), scroll_parent->GetClientHeight()};
if ((scrollable_box_x && parent_scroll_size.x > parent_client_size.x) || (scrollable_box_y && parent_scroll_size.y > parent_client_size.y))
{
const Vector2f relative_offset = scroll_parent->GetAbsoluteOffset(BoxArea::Border) - GetAbsoluteOffset(BoxArea::Border);
const Vector2f old_scroll_offset = {scroll_parent->GetScrollLeft(), scroll_parent->GetScrollTop()};
const Vector2f parent_client_offset = {scroll_parent->GetClientLeft(), scroll_parent->GetClientTop()};
const Vector2f delta_scroll_offset_start = parent_client_offset - relative_offset;
const Vector2f delta_scroll_offset_end = delta_scroll_offset_start + size - parent_client_size;
Vector2f scroll_delta = {
scrollable_box_x ? GetScrollOffsetDelta(options.horizontal, delta_scroll_offset_start.x, delta_scroll_offset_end.x) : 0.f,
scrollable_box_y ? GetScrollOffsetDelta(options.vertical, delta_scroll_offset_start.y, delta_scroll_offset_end.y) : 0.f,
};
scroll_parent->ScrollTo(old_scroll_offset + scroll_delta, scroll_behavior);
// Currently, only a single scrollable parent can be smooth scrolled at a time, so any other parents must be instant scrolled.
scroll_behavior = ScrollBehavior::Instant;
}
if ((scrollable_box_x || scrollable_box_y) && options.parentage == ScrollParentage::Closest)
break;
}
}
void Element::ScrollIntoView(bool align_with_top)
{
ScrollIntoViewOptions options;
options.vertical = (align_with_top ? ScrollAlignment::Start : ScrollAlignment::End);
options.horizontal = ScrollAlignment::Nearest;
ScrollIntoView(options);
}
void Element::ScrollTo(Vector2f offset, ScrollBehavior behavior)
{
if (behavior != ScrollBehavior::Instant)
{
if (Context* context = GetContext())
{
context->PerformSmoothscrollOnTarget(this, offset - scroll_offset, behavior);
return;
}
}
SetScrollLeft(offset.x);
SetScrollTop(offset.y);
}
Element* Element::GetElementById(const String& id)
{
// Check for special-case tokens.
if (id == "#self")
return this;
else if (id == "#document")
return GetOwnerDocument();
else if (id == "#parent")
return GetParentElement();
else
{
Element* search_root = GetOwnerDocument();
if (search_root == nullptr)
search_root = this;
return ElementUtilities::GetElementById(search_root, id);
}
}
void Element::GetElementsByTagName(ElementList& elements, const String& tag)
{
return ElementUtilities::GetElementsByTagName(elements, this, tag);
}
void Element::GetElementsByClassName(ElementList& elements, const String& class_name)
{
return ElementUtilities::GetElementsByClassName(elements, this, class_name);
}
static Element* QuerySelectorMatchRecursive(const StyleSheetNodeListRaw& nodes, Element* element, Element* scope)
{
const int num_children = element->GetNumChildren();
for (int i = 0; i < num_children; i++)
{
Element* child = element->GetChild(i);
if (child->GetTagName() == "#text")
continue;
for (const StyleSheetNode* node : nodes)
{
if (node->IsApplicable(child, scope))
return child;
}
Element* matching_element = QuerySelectorMatchRecursive(nodes, child, scope);
if (matching_element)
return matching_element;
}
return nullptr;
}
static void QuerySelectorAllMatchRecursive(ElementList& matching_elements, const StyleSheetNodeListRaw& nodes, Element* element, Element* scope)
{
const int num_children = element->GetNumChildren();
for (int i = 0; i < num_children; i++)
{
Element* child = element->GetChild(i);
if (child->GetTagName() == "#text")
continue;
for (const StyleSheetNode* node : nodes)
{
if (node->IsApplicable(child, scope))
{
matching_elements.push_back(child);
break;
}
}
QuerySelectorAllMatchRecursive(matching_elements, nodes, child, scope);
}
}
Element* Element::QuerySelector(const String& selectors)
{
StyleSheetNode root_node;
StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors);
if (leaf_nodes.empty())
{
Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str());
return nullptr;
}
return QuerySelectorMatchRecursive(leaf_nodes, this, this);
}
void Element::QuerySelectorAll(ElementList& elements, const String& selectors)
{
StyleSheetNode root_node;
StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors);
if (leaf_nodes.empty())
{
Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str());
return;
}
QuerySelectorAllMatchRecursive(elements, leaf_nodes, this, this);
}
bool Element::Matches(const String& selectors)
{
StyleSheetNode root_node;
StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors);
if (leaf_nodes.empty())
{
Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str());
return false;
}
for (const StyleSheetNode* node : leaf_nodes)
{
if (node->IsApplicable(this, this))
{
return true;
}
}
return false;
}
bool Element::Contains(Element* element) const
{
while (element)
{
if (element == this)
return true;
element = element->GetParentElement();
}
return false;
}
ElementPtr Element::Remove()
{
if (Node* parent = GetParentNode())
{
if (NodePtr self = parent->RemoveChild(this))
return As(std::move(self));
}
return nullptr;
}
EventDispatcher* Element::GetEventDispatcher() const
{
return &meta->event_dispatcher;
}
String Element::GetEventDispatcherSummary() const
{
return meta->event_dispatcher.ToString();
}
ElementBackgroundBorder* Element::GetElementBackgroundBorder() const
{
return &meta->background_border;
}
ElementScroll* Element::GetElementScroll() const
{
return &meta->scroll;
}
DataModel* Element::GetDataModel() const
{
return data_model;
}
void Element::ForceLocalStackingContext()
{
local_stacking_context_forced = true;
local_stacking_context = true;
DirtyStackingContext();
}
void Element::OnUpdate() {}
void Element::OnRender() {}
void Element::OnResize() {}
void Element::OnLayout() {}
void Element::OnDpRatioChange() {}
void Element::OnStyleSheetChange() {}
void Element::OnAttributeChange(const ElementAttributes& changed_attributes)
{
for (const auto& element_attribute : changed_attributes)
{
const auto& attribute = element_attribute.first;
const auto& value = element_attribute.second;
if (attribute == "id")
{
id = value.Get();
}
else if (attribute == "class")
{
meta->style.SetClassNames(value.Get());
}
else if (((attribute == "colspan" || attribute == "rowspan") && meta->computed_values.display() == Style::Display::TableCell) ||
(attribute == "span" &&
(meta->computed_values.display() == Style::Display::TableColumn ||
meta->computed_values.display() == Style::Display::TableColumnGroup)))
{
DirtyLayout();
}
else if (attribute.size() > 2 && attribute[0] == 'o' && attribute[1] == 'n')
{
static constexpr size_t on_length = 2;
static constexpr size_t capture_length = 7;
const bool in_capture_phase = StringUtilities::EndsWith(attribute, "capture");
auto& attribute_event_listeners = meta->attribute_event_listeners;
auto& event_dispatcher = meta->event_dispatcher;
const size_t event_name_length = attribute.size() - on_length - (in_capture_phase ? capture_length : 0);
const auto event_id = EventSpecificationInterface::GetIdOrInsert(attribute.substr(on_length, event_name_length));
const auto remove_event_listener_if_exists = [&attribute_event_listeners, &event_dispatcher, event_id, in_capture_phase]() {
const auto listener_it = attribute_event_listeners.find(event_id);
if (listener_it != attribute_event_listeners.cend())
{
event_dispatcher.DetachEvent(event_id, listener_it->second, in_capture_phase);
attribute_event_listeners.erase(listener_it);
}
};
if (value.GetType() == Variant::Type::STRING)
{
remove_event_listener_if_exists();
const auto value_as_string = value.Get();
auto insertion_result = attribute_event_listeners.emplace(event_id, Factory::InstanceEventListener(value_as_string, this));
if (auto* listener = insertion_result.first->second)
event_dispatcher.AttachEvent(event_id, listener, in_capture_phase);
}
else if (value.GetType() == Variant::Type::NONE)
remove_event_listener_if_exists();
}
else if (attribute == "style")
{
if (value.GetType() == Variant::STRING)
{
PropertyDictionary properties;
StyleSheetParser parser;
parser.ParseProperties(properties, value.GetReference());
for (const auto& name_value : properties.GetProperties())
meta->style.SetProperty(name_value.first, name_value.second);
}
else if (value.GetType() != Variant::NONE)
Log::Message(Log::LT_WARNING, "Invalid 'style' attribute, string type required. In element: %s", GetAddress().c_str());
}
else if (attribute == "lang")
{
if (value.GetType() == Variant::STRING)
meta->style.SetProperty(PropertyId::RmlUi_Language, Property(value.GetReference(), Unit::STRING));
else if (value.GetType() != Variant::NONE)
Log::Message(Log::LT_WARNING, "Invalid 'lang' attribute, string type required. In element: %s", GetAddress().c_str());
}
else if (attribute == "dir")
{
if (value.GetType() == Variant::STRING)
{
const String& dir_value = value.GetReference();
if (dir_value == "auto")
meta->style.SetProperty(PropertyId::RmlUi_Direction, Property(Style::Direction::Auto));
else if (dir_value == "ltr")
meta->style.SetProperty(PropertyId::RmlUi_Direction, Property(Style::Direction::Ltr));
else if (dir_value == "rtl")
meta->style.SetProperty(PropertyId::RmlUi_Direction, Property(Style::Direction::Rtl));
else
Log::Message(Log::LT_WARNING, "Invalid 'dir' attribute '%s', value must be 'auto', 'ltr', or 'rtl'. In element: %s",
dir_value.c_str(), GetAddress().c_str());
}
else if (value.GetType() != Variant::NONE)
Log::Message(Log::LT_WARNING, "Invalid 'dir' attribute, string type required. In element: %s", GetAddress().c_str());
}
}
// Any change to the attributes may affect which styles apply to the current element, in particular due to attribute selectors, ID selectors, and
// class selectors. This can further affect all siblings or descendants due to sibling or descendant combinators.
DirtyDefinition(DirtyNodes::SelfAndSiblings);
}
void Element::OnPropertyChange(const PropertyIdSet& changed_properties)
{
RMLUI_ZoneScoped;
const bool top_right_bottom_left_changed = ( //
changed_properties.Contains(PropertyId::Top) || //
changed_properties.Contains(PropertyId::Right) || //
changed_properties.Contains(PropertyId::Bottom) || //
changed_properties.Contains(PropertyId::Left) //
);
// See if the document layout needs to be updated.
if (!IsLayoutDirty())
{
// Force a relayout if any of the changed properties require it.
const PropertyIdSet changed_properties_forcing_layout =
(changed_properties & StyleSheetSpecification::GetRegisteredPropertiesForcingLayout());
if (!changed_properties_forcing_layout.Empty())
{
DirtyLayout();
}
else if (top_right_bottom_left_changed)
{
// Normally, the position properties only affect the position of the element and not the layout. Thus, these properties are not registered
// as affecting layout. However, when absolutely positioned elements with both left & right, or top & bottom are set to definite values,
// they affect the size of the element and thereby also the layout. This layout-dirtying condition needs to be registered manually.
using namespace Style;
const ComputedValues& computed = GetComputedValues();
const bool absolutely_positioned = (computed.position() == Position::Absolute || computed.position() == Position::Fixed);
const bool sized_width =
(computed.width().type == Width::Auto && computed.left().type != Left::Auto && computed.right().type != Right::Auto);
const bool sized_height =
(computed.height().type == Height::Auto && computed.top().type != Top::Auto && computed.bottom().type != Bottom::Auto);
if (absolutely_positioned && (sized_width || sized_height))
DirtyLayout();
}
}
// Update the position.
if (top_right_bottom_left_changed)
{
UpdateOffset();
DirtyAbsoluteOffset();
}
// Update the visibility.
if (changed_properties.Contains(PropertyId::Visibility) || changed_properties.Contains(PropertyId::Display))
{
bool new_visibility =
(meta->computed_values.display() != Style::Display::None && meta->computed_values.visibility() == Style::Visibility::Visible);
if (visible != new_visibility)
{
visible = new_visibility;
if (Element* parent = GetParentElement())
parent->DirtyStackingContext();
if (!visible)
Blur();
}
}
const bool border_radius_changed = ( //
changed_properties.Contains(PropertyId::BorderTopLeftRadius) || //
changed_properties.Contains(PropertyId::BorderTopRightRadius) || //
changed_properties.Contains(PropertyId::BorderBottomRightRadius) || //
changed_properties.Contains(PropertyId::BorderBottomLeftRadius) //
);
const bool filter_or_mask_changed = (changed_properties.Contains(PropertyId::Filter) || changed_properties.Contains(PropertyId::BackdropFilter) ||
changed_properties.Contains(PropertyId::MaskImage));
// Update the z-index and stacking context.
if (changed_properties.Contains(PropertyId::ZIndex) || filter_or_mask_changed)
{
const Style::ZIndex z_index_property = meta->computed_values.z_index();
const float new_z_index = (z_index_property.type == Style::ZIndex::Auto ? 0.f : z_index_property.value);
const bool enable_local_stacking_context = (z_index_property.type != Style::ZIndex::Auto || local_stacking_context_forced ||
meta->computed_values.has_filter() || meta->computed_values.has_backdrop_filter() || meta->computed_values.has_mask_image());
if (z_index != new_z_index || local_stacking_context != enable_local_stacking_context)
{
z_index = new_z_index;
if (local_stacking_context != enable_local_stacking_context)
{
local_stacking_context = enable_local_stacking_context;
// If we are no longer acting as a local stacking context, then we clear the list and are all set. Otherwise, we need to rebuild our
// local stacking context.
stacking_context.clear();
stacking_context_dirty = local_stacking_context;
}
// When our z-index or local stacking context changes, then we must dirty our parent stacking context so we are re-indexed.
if (Element* parent = GetParentElement())
parent->DirtyStackingContext();
}
}
// Dirty the background if it's changed.
if (border_radius_changed || //
changed_properties.Contains(PropertyId::BackgroundColor) || //
changed_properties.Contains(PropertyId::Opacity) || //
changed_properties.Contains(PropertyId::ImageColor) || //
changed_properties.Contains(PropertyId::BoxShadow)) //
{
meta->background_border.DirtyBackground();
}
// Dirty the border if it's changed.
if (border_radius_changed || //
changed_properties.Contains(PropertyId::BorderTopWidth) || //
changed_properties.Contains(PropertyId::BorderRightWidth) || //
changed_properties.Contains(PropertyId::BorderBottomWidth) || //
changed_properties.Contains(PropertyId::BorderLeftWidth) || //
changed_properties.Contains(PropertyId::BorderTopColor) || //
changed_properties.Contains(PropertyId::BorderRightColor) || //
changed_properties.Contains(PropertyId::BorderBottomColor) || //
changed_properties.Contains(PropertyId::BorderLeftColor) || //
changed_properties.Contains(PropertyId::Opacity))
{
meta->background_border.DirtyBorder();
}
// Dirty the effects if they've changed.
if (border_radius_changed || filter_or_mask_changed || changed_properties.Contains(PropertyId::Decorator))
{
meta->effects.DirtyEffects();
}
const bool font_changed = (changed_properties.Contains(PropertyId::FontFamily) || changed_properties.Contains(PropertyId::FontStyle) ||
changed_properties.Contains(PropertyId::FontWeight) || changed_properties.Contains(PropertyId::FontSize) ||
changed_properties.Contains(PropertyId::FontKerning) || changed_properties.Contains(PropertyId::LetterSpacing));
// Dirty the effects data when their visual looks may have changed.
if (border_radius_changed || //
font_changed || //
changed_properties.Contains(PropertyId::Opacity) || //
changed_properties.Contains(PropertyId::Color) || //
changed_properties.Contains(PropertyId::ImageColor))
{
meta->effects.DirtyEffectsData();
}
// Check for `perspective' and `perspective-origin' changes
if (changed_properties.Contains(PropertyId::Perspective) || //
changed_properties.Contains(PropertyId::PerspectiveOriginX) || //
changed_properties.Contains(PropertyId::PerspectiveOriginY))
{
DirtyTransformState(true, false);
}
// Check for `transform' and `transform-origin' changes
if (changed_properties.Contains(PropertyId::Transform) || //
changed_properties.Contains(PropertyId::TransformOriginX) || //
changed_properties.Contains(PropertyId::TransformOriginY) || //
changed_properties.Contains(PropertyId::TransformOriginZ))
{
DirtyTransformState(false, true);
}
// Check for `animation' changes
if (changed_properties.Contains(PropertyId::Animation))
{
dirty_animation = true;
}
// Check for `transition' changes
if (changed_properties.Contains(PropertyId::Transition))
{
dirty_transition = true;
}
for (ElementText* text : IterateChildren())
text->OnParentPropertyChange(this, changed_properties);
}
void Element::OnPseudoClassChange(const String& /*pseudo_class*/, bool /*activate*/) {}
void Element::OnChildAdd(Element* /*child*/) {}
void Element::OnChildRemove(Element* /*child*/) {}
Element* Element::GetClosestScrollableContainer()
{
using namespace Style;
Overflow overflow_x = meta->computed_values.overflow_x();
Overflow overflow_y = meta->computed_values.overflow_y();
bool scrollable_x = (overflow_x == Overflow::Auto || overflow_x == Overflow::Scroll);
bool scrollable_y = (overflow_y == Overflow::Auto || overflow_y == Overflow::Scroll);
scrollable_x = (scrollable_x && GetScrollWidth() > GetClientWidth());
scrollable_y = (scrollable_y && GetScrollHeight() > GetClientHeight());
if (scrollable_x || scrollable_y || meta->computed_values.overscroll_behavior() == OverscrollBehavior::Contain)
return this;
else if (Element* parent = GetParentElement())
return parent->GetClosestScrollableContainer();
return nullptr;
}
void Element::ProcessDefaultAction(Event& event)
{
if (event == EventId::Mousedown)
{
const Vector2f mouse_pos(event.GetParameter("mouse_x", 0.f), event.GetParameter("mouse_y", 0.f));
if (IsPointWithinElement(mouse_pos) && event.GetParameter("button", 0) == 0)
SetPseudoClass("active", true);
}
if (event.GetPhase() == EventPhase::Target)
{
switch (event.GetId())
{
case EventId::Mouseover: SetPseudoClass("hover", true); break;
case EventId::Mouseout: SetPseudoClass("hover", false); break;
case EventId::Focus:
SetPseudoClass("focus", true);
if (event.GetParameter("focus_visible", false))
SetPseudoClass("focus-visible", true);
break;
case EventId::Blur:
SetPseudoClass("focus", false);
SetPseudoClass("focus-visible", false);
break;
default: break;
}
}
}
const Style::ComputedValues& Element::GetComputedValues() const
{
return meta->computed_values;
}
void Element::GetRML(String& content)
{
// First we start the open tag, add the attributes then close the open tag.
// Then comes the children in order, then we add our close tag.
content += "<";
content += tag;
for (auto& pair : attributes)
{
const String& name = pair.first;
if (name == "style")
continue;
const Variant& variant = pair.second;
String value;
if (variant.GetInto(value))
{
content += ' ';
content += name;
content += "=\"";
content += value;
content += "\"";
}
}
const PropertyMap& local_properties = meta->style.GetLocalStyleProperties();
if (!local_properties.empty())
content += " style=\"";
for (const auto& pair : local_properties)
{
const PropertyId id = pair.first;
const Property& property = pair.second;
content += StyleSheetSpecification::GetPropertyName(id);
content += ": ";
content += StringUtilities::EncodeRml(property.ToString());
content += "; ";
}
if (!local_properties.empty())
content.back() = '\"';
if (HasChildNodes())
{
content += ">";
GetInnerRML(content);
content += "";
content += tag;
content += ">";
}
else
{
content += " />";
}
}
void Element::SetDataModel(DataModel* new_data_model)
{
RMLUI_ASSERTMSG(!data_model || !new_data_model, "We must either attach a new data model, or detach the old one.");
if (data_model == new_data_model)
return;
// stop descent if a nested data model is encountered
if (data_model && new_data_model && data_model != new_data_model)
return;
if (data_model)
data_model->OnElementRemove(this);
data_model = new_data_model;
if (data_model)
ElementUtilities::ApplyDataViewsControllers(this);
for (Element* child : IterateChildren(true))
child->SetDataModel(new_data_model);
}
void Element::OnChildNodeAdd(Node* child_node, bool dom_node)
{
Element* child = AsIf(child_node);
Element* ancestor = child;
for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentElement())
ancestor->OnChildAdd(child);
DirtyStackingContext();
// Not only does the element definition of the newly inserted element need to be dirtied, but also our own definition and implicitly all of our
// children's. This ensures correct styles being applied in the presence of tree-structural selectors such as ':first-child'.
DirtyDefinition(DirtyNodes::Self);
if (dom_node)
DirtyLayout();
}
void Element::OnChildNodeRemove(Node* child_node, bool dom_node)
{
Element* child = AsIf(child_node);
Element* ancestor = child;
for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentElement())
ancestor->OnChildRemove(child);
// Remove the child element as the focused child of this element.
if (child && child == focus)
{
focus = nullptr;
// If this child (or a descendant of this child) is the context's currently
// focused element, set the focus to us instead.
if (Context* context = GetContext())
{
Element* focus_element = context->GetFocusElement();
while (focus_element)
{
if (focus_element == child)
{
Focus();
break;
}
focus_element = focus_element->GetParentElement();
}
}
}
DirtyStackingContext();
DirtyDefinition(DirtyNodes::Self);
if (dom_node)
DirtyLayout();
}
void Element::OnParentChange(Node* parent_node)
{
if (!parent_node)
{
if (data_model)
SetDataModel(nullptr);
return;
}
Element* parent = As(parent_node);
if (!parent)
{
// New parent is a non-element node.
return;
}
// We need to update our definition and make sure we inherit the properties of our new parent.
DirtyDefinition(DirtyNodes::Self);
meta->style.DirtyInheritedProperties();
// The transform state may require recalculation.
DirtyTransformState(true, true);
auto it = attributes.find("data-model");
if (it == attributes.end())
{
SetDataModel(parent->data_model);
}
else if (Context* context = GetContext())
{
String name = it->second.Get();
if (DataModel* model = context->GetDataModelPtr(name))
{
model->AttachModelRootElement(this);
SetDataModel(model);
}
else
Log::Message(Log::LT_ERROR, "Could not locate data model '%s' in element %s.", name.c_str(), GetAddress().c_str());
}
}
void Element::DirtyAbsoluteOffset()
{
if (!absolute_offset_dirty)
DirtyAbsoluteOffsetRecursive();
}
void Element::DirtyAbsoluteOffsetRecursive()
{
if (!absolute_offset_dirty)
{
absolute_offset_dirty = true;
if (transform_state)
DirtyTransformState(true, true);
}
for (Element* child : IterateChildren(true))
child->DirtyAbsoluteOffsetRecursive();
}
void Element::UpdateOffset()
{
using namespace Style;
const auto& computed = meta->computed_values;
Position position_property = computed.position();
if (position_property == Position::Absolute || position_property == Position::Fixed)
{
if (offset_parent != nullptr)
{
const Box& parent_box = offset_parent->GetBox();
Vector2f containing_block = parent_box.GetSize(BoxArea::Padding);
// If the element is anchored left, then the position is offset by that resolved value.
if (computed.left().type != Left::Auto)
relative_offset_base.x = parent_box.GetEdge(BoxArea::Border, BoxEdge::Left) +
(ResolveValue(computed.left(), containing_block.x) + GetBox().GetEdge(BoxArea::Margin, BoxEdge::Left));
// If the element is anchored right, then the position is set first so the element's right-most edge
// (including margins) will render up against the containing box's right-most content edge, and then
// offset by the resolved value.
else if (computed.right().type != Right::Auto)
{
relative_offset_base.x = containing_block.x + parent_box.GetEdge(BoxArea::Border, BoxEdge::Left) -
(ResolveValue(computed.right(), containing_block.x) + GetBox().GetSize(BoxArea::Border).x +
GetBox().GetEdge(BoxArea::Margin, BoxEdge::Right));
}
// If the element is anchored top, then the position is offset by that resolved value.
if (computed.top().type != Top::Auto)
{
relative_offset_base.y = parent_box.GetEdge(BoxArea::Border, BoxEdge::Top) +
(ResolveValue(computed.top(), containing_block.y) + GetBox().GetEdge(BoxArea::Margin, BoxEdge::Top));
}
// If the element is anchored bottom, then the position is set first so the element's right-most edge
// (including margins) will render up against the containing box's right-most content edge, and then
// offset by the resolved value.
else if (computed.bottom().type != Bottom::Auto)
{
relative_offset_base.y = containing_block.y + parent_box.GetEdge(BoxArea::Border, BoxEdge::Top) -
(ResolveValue(computed.bottom(), containing_block.y) + GetBox().GetSize(BoxArea::Border).y +
GetBox().GetEdge(BoxArea::Margin, BoxEdge::Bottom));
}
}
}
else if (position_property == Position::Relative)
{
if (offset_parent != nullptr)
{
const Box& parent_box = offset_parent->GetBox();
Vector2f containing_block = parent_box.GetSize();
if (computed.left().type != Left::Auto)
relative_offset_position.x = ResolveValue(computed.left(), containing_block.x);
else if (computed.right().type != Right::Auto)
relative_offset_position.x = -1 * ResolveValue(computed.right(), containing_block.x);
else
relative_offset_position.x = 0;
if (computed.top().type != Top::Auto)
relative_offset_position.y = ResolveValue(computed.top(), containing_block.y);
else if (computed.bottom().type != Bottom::Auto)
relative_offset_position.y = -1 * ResolveValue(computed.bottom(), containing_block.y);
else
relative_offset_position.y = 0;
}
}
else
{
relative_offset_position.x = 0;
relative_offset_position.y = 0;
}
}
void Element::SetBaseline(float in_baseline)
{
baseline = in_baseline;
}
enum class RenderOrder {
StackNegative, // Local stacking context with z < 0.
Block,
TableColumnGroup,
TableColumn,
TableRowGroup,
TableRow,
TableCell,
Floating,
Inline,
Positioned, // Positioned element, or local stacking context with z == 0.
StackPositive, // Local stacking context with z > 0.
};
struct StackingContextChild {
Element* element = nullptr;
RenderOrder order = {};
};
static bool operator<(const StackingContextChild& lhs, const StackingContextChild& rhs)
{
if (int(lhs.order) == int(rhs.order))
return lhs.element->GetZIndex() < rhs.element->GetZIndex();
return int(lhs.order) < int(rhs.order);
}
// Treat all children in the range [index_begin, end) as if the parent created a new stacking context, by sorting them
// separately and then assigning their parent's paint order. However, positioned and descendants which create a new
// stacking context should be considered part of the parent stacking context. See CSS 2, Appendix E.
static void StackingContext_MakeAtomicRange(Vector& stacking_children, size_t index_begin, RenderOrder parent_render_order)
{
std::stable_sort(stacking_children.begin() + index_begin, stacking_children.end());
for (auto it = stacking_children.begin() + index_begin; it != stacking_children.end(); ++it)
{
auto order = it->order;
if (order != RenderOrder::StackNegative && order != RenderOrder::Positioned && order != RenderOrder::StackPositive)
it->order = parent_render_order;
}
}
void Element::BuildLocalStackingContext()
{
stacking_context_dirty = false;
Vector stacking_children;
AddChildrenToStackingContext(stacking_children);
std::stable_sort(stacking_children.begin(), stacking_children.end());
stacking_context.resize(stacking_children.size());
for (size_t i = 0; i < stacking_children.size(); i++)
stacking_context[i] = stacking_children[i].element;
}
void Element::AddChildrenToStackingContext(Vector& stacking_children)
{
bool is_flex_container = (GetDisplay() == Style::Display::Flex);
const int num_children_dom = GetNumChildNodes();
const int num_children_all = GetNumChildNodes(true);
for (int i = 0; i < num_children_all; ++i)
{
if (Element* child = AsIf(GetChildNode(i)))
{
const bool is_non_dom_element = (i >= num_children_dom);
child->AddToStackingContext(stacking_children, is_flex_container, is_non_dom_element);
}
}
}
void Element::AddToStackingContext(Vector& stacking_children, bool is_flex_item, bool is_non_dom_element)
{
using Style::Display;
if (!IsVisible())
return;
const Display display = GetDisplay();
RenderOrder order = RenderOrder::Inline;
bool include_children = true;
bool render_as_atomic_unit = false;
if (local_stacking_context)
{
if (z_index > 0.f)
order = RenderOrder::StackPositive;
else if (z_index < 0.f)
order = RenderOrder::StackNegative;
else
order = RenderOrder::Positioned;
include_children = false;
}
else if (display == Display::TableRow || display == Display::TableRowGroup || display == Display::TableColumn ||
display == Display::TableColumnGroup)
{
// Handle internal display values taking priority over position and float.
switch (display)
{
case Display::TableRow: order = RenderOrder::TableRow; break;
case Display::TableRowGroup: order = RenderOrder::TableRowGroup; break;
case Display::TableColumn: order = RenderOrder::TableColumn; break;
case Display::TableColumnGroup: order = RenderOrder::TableColumnGroup; break;
default: break;
}
}
else if (GetPosition() != Style::Position::Static)
{
order = RenderOrder::Positioned;
render_as_atomic_unit = true;
}
else if (GetFloat() != Style::Float::None)
{
order = RenderOrder::Floating;
render_as_atomic_unit = true;
}
else
{
switch (display)
{
case Display::Block:
case Display::FlowRoot:
case Display::Table:
case Display::Flex:
order = RenderOrder::Block;
render_as_atomic_unit = (display == Display::Table || is_flex_item);
break;
case Display::Inline:
case Display::InlineBlock:
case Display::InlineFlex:
case Display::InlineTable:
order = RenderOrder::Inline;
render_as_atomic_unit = (display != Display::Inline || is_flex_item);
break;
case Display::TableCell:
order = RenderOrder::TableCell;
render_as_atomic_unit = true;
break;
case Display::TableRow:
case Display::TableRowGroup:
case Display::TableColumn:
case Display::TableColumnGroup:
case Display::None: RMLUI_ERROR; break; // Handled above.
}
}
if (is_non_dom_element)
render_as_atomic_unit = true;
stacking_children.push_back(StackingContextChild{this, order});
if (include_children && GetNumChildNodes(true) > 0)
{
const size_t index_child_begin = stacking_children.size();
AddChildrenToStackingContext(stacking_children);
if (render_as_atomic_unit)
StackingContext_MakeAtomicRange(stacking_children, index_child_begin, order);
}
}
void Element::DirtyStackingContext()
{
// Find the first ancestor that has a local stacking context, that is our stacking context parent.
Element* stacking_context_parent = this;
while (stacking_context_parent && !stacking_context_parent->local_stacking_context)
{
stacking_context_parent = stacking_context_parent->GetParentElement();
}
if (stacking_context_parent)
stacking_context_parent->stacking_context_dirty = true;
}
void Element::DirtyDefinition(DirtyNodes dirty_nodes)
{
switch (dirty_nodes)
{
case DirtyNodes::Self: dirty_definition = true; break;
case DirtyNodes::SelfAndSiblings:
dirty_definition = true;
if (Element* parent = GetParentElement())
parent->dirty_child_definitions = true;
break;
}
}
void Element::UpdateDefinition()
{
if (dirty_definition)
{
dirty_definition = false;
// Dirty definition implies all our descendent elements. Anything that can change the definition of this element can also change the
// definition of any descendants due to the presence of RCSS descendant or child combinators. In principle this also applies to sibling
// combinators, but those are handled during the DirtyDefinition call.
dirty_child_definitions = true;
GetStyle()->UpdateDefinition();
}
if (dirty_child_definitions)
{
dirty_child_definitions = false;
for (Element* child : IterateChildren(true))
child->dirty_definition = true;
}
}
bool Element::Animate(const String& property_name, const Property& target_value, float duration, Tween tween, int num_iterations,
bool alternate_direction, float delay, const Property* start_value)
{
return Animate(StyleSheetSpecification::GetPropertyId(property_name), target_value, duration, tween, num_iterations, alternate_direction, delay,
start_value);
}
bool Element::Animate(PropertyId id, const Property& target_value, float duration, Tween tween, int num_iterations, bool alternate_direction,
float delay, const Property* start_value)
{
bool result = false;
auto it_animation = StartAnimation(id, start_value, num_iterations, alternate_direction, delay, false);
if (it_animation != animations.end())
{
result = it_animation->AddKey(duration, target_value, *this, tween, true);
if (!result)
animations.erase(it_animation);
}
return result;
}
bool Element::AddAnimationKey(const String& property_name, const Property& target_value, float duration, Tween tween)
{
return AddAnimationKey(StyleSheetSpecification::GetPropertyId(property_name), target_value, duration, tween);
}
bool Element::AddAnimationKey(PropertyId id, const Property& target_value, float duration, Tween tween)
{
ElementAnimation* animation = nullptr;
for (auto& existing_animation : animations)
{
if (existing_animation.GetPropertyId() == id)
{
animation = &existing_animation;
break;
}
}
if (!animation)
return false;
bool result = animation->AddKey(animation->GetDuration() + duration, target_value, *this, tween, true);
return result;
}
ElementAnimationList::iterator Element::StartAnimation(PropertyId property_id, const Property* start_value, int num_iterations,
bool alternate_direction, float delay, bool initiated_by_animation_property)
{
auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == property_id; });
if (it != animations.end())
{
const bool allow_overwriting_animation = !initiated_by_animation_property;
if (!allow_overwriting_animation)
{
Log::Message(Log::LT_WARNING,
"Could not animate property '%s' on element: %s. "
"Please ensure that the property does not appear in multiple animations on the same element.",
StyleSheetSpecification::GetPropertyName(property_id).c_str(), GetAddress().c_str());
return it;
}
*it = ElementAnimation{};
}
else
{
animations.emplace_back();
it = animations.end() - 1;
}
Property value;
if (start_value)
{
value = *start_value;
if (!value.definition)
if (auto default_value = GetProperty(property_id))
value.definition = default_value->definition;
}
else if (auto default_value = GetProperty(property_id))
{
value = *default_value;
}
if (value.definition)
{
ElementAnimationOrigin origin = (initiated_by_animation_property ? ElementAnimationOrigin::Animation : ElementAnimationOrigin::User);
double start_time = Clock::GetElapsedTime() + (double)delay;
*it = ElementAnimation{property_id, origin, value, *this, start_time, 0.0f, num_iterations, alternate_direction};
}
if (!it->IsInitalized())
{
animations.erase(it);
it = animations.end();
}
return it;
}
bool Element::AddAnimationKeyTime(PropertyId property_id, const Property* target_value, float time, Tween tween)
{
if (!target_value)
target_value = meta->style.GetProperty(property_id);
if (!target_value)
return false;
ElementAnimation* animation = nullptr;
for (auto& existing_animation : animations)
{
if (existing_animation.GetPropertyId() == property_id)
{
animation = &existing_animation;
break;
}
}
if (!animation)
return false;
bool result = animation->AddKey(time, *target_value, *this, tween, true);
return result;
}
bool Element::StartTransition(const Transition& transition, const Property& start_value, const Property& target_value)
{
auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == transition.id; });
if (it != animations.end() && !it->IsTransition())
return false;
float duration = transition.duration;
double start_time = Clock::GetElapsedTime() + (double)transition.delay;
if (it == animations.end())
{
// Add transition as new animation
animations.push_back(ElementAnimation{transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false});
it = (animations.end() - 1);
}
else
{
// Compress the duration based on the progress of the current animation
float f = it->GetInterpolationFactor();
f = 1.0f - (1.0f - f) * transition.reverse_adjustment_factor;
duration = duration * f;
// Replace old transition
*it = ElementAnimation{transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false};
}
bool result = it->AddKey(duration, target_value, *this, transition.tween, true);
if (result)
SetProperty(transition.id, start_value);
else
animations.erase(it);
return result;
}
void Element::HandleTransitionProperty()
{
if (dirty_transition)
{
dirty_transition = false;
// Remove all transitions that are no longer in our local list
const TransitionList* keep_transitions = GetComputedValues().transition();
if (keep_transitions && keep_transitions->all)
return;
auto it_remove = animations.end();
if (!keep_transitions || keep_transitions->none)
{
// All transitions should be removed, but only touch the animations that originate from the 'transition' property.
// Move all animations to be erased in a valid state at the end of the list, and erase later.
it_remove = std::partition(animations.begin(), animations.end(),
[](const ElementAnimation& animation) -> bool { return !animation.IsTransition(); });
}
else
{
RMLUI_ASSERT(keep_transitions);
// Only remove the transitions that are not in our keep list.
const auto& keep_transitions_list = keep_transitions->transitions;
it_remove = std::partition(animations.begin(), animations.end(), [&keep_transitions_list](const ElementAnimation& animation) -> bool {
if (!animation.IsTransition())
return true;
auto it = std::find_if(keep_transitions_list.begin(), keep_transitions_list.end(),
[&animation](const Transition& transition) { return animation.GetPropertyId() == transition.id; });
bool keep_animation = (it != keep_transitions_list.end());
return keep_animation;
});
}
// We can decide what to do with cancelled transitions here.
for (auto it = it_remove; it != animations.end(); ++it)
RemoveProperty(it->GetPropertyId());
animations.erase(it_remove, animations.end());
}
}
void Element::HandleAnimationProperty()
{
// Note: We are effectively restarting all animations whenever 'dirty_animation' is set. Use the dirty flag with care,
// or find another approach which only updates actual "dirty" animations.
if (dirty_animation)
{
dirty_animation = false;
const AnimationList* animation_list = meta->computed_values.animation();
bool element_has_animations = ((animation_list && !animation_list->empty()) || !animations.empty());
const StyleSheet* stylesheet = nullptr;
if (element_has_animations)
stylesheet = GetStyleSheet();
if (stylesheet)
{
// Remove existing animations
{
// We only touch the animations that originate from the 'animation' property.
auto it_remove = std::partition(animations.begin(), animations.end(),
[](const ElementAnimation& animation) { return animation.GetOrigin() != ElementAnimationOrigin::Animation; });
// We can decide what to do with cancelled animations here.
for (auto it = it_remove; it != animations.end(); ++it)
RemoveProperty(it->GetPropertyId());
animations.erase(it_remove, animations.end());
}
// Start animations
if (animation_list)
{
for (const auto& animation : *animation_list)
{
const Keyframes* keyframes_ptr = stylesheet->GetKeyframes(animation.name);
if (keyframes_ptr && keyframes_ptr->blocks.size() >= 1 && !animation.paused)
{
auto& property_ids = keyframes_ptr->property_ids;
auto& blocks = keyframes_ptr->blocks;
bool has_from_key = (blocks[0].normalized_time == 0);
bool has_to_key = (blocks.back().normalized_time == 1);
// If the first key defines initial conditions for a given property, use those values, else, use this element's current
// values.
for (PropertyId id : property_ids)
StartAnimation(id, (has_from_key ? blocks[0].properties.GetProperty(id) : nullptr), animation.num_iterations,
animation.alternate, animation.delay, true);
// Add middle keys: Need to skip the first and last keys if they set the initial and end conditions, respectively.
for (int i = (has_from_key ? 1 : 0); i < (int)blocks.size() + (has_to_key ? -1 : 0); i++)
{
// Add properties of current key to animation
float time = blocks[i].normalized_time * animation.duration;
for (auto& property : blocks[i].properties.GetProperties())
AddAnimationKeyTime(property.first, &property.second, time, animation.tween);
}
// If the last key defines end conditions for a given property, use those values, else, use this element's current values.
float time = animation.duration;
for (PropertyId id : property_ids)
AddAnimationKeyTime(id, (has_to_key ? blocks.back().properties.GetProperty(id) : nullptr), time, animation.tween);
}
}
}
}
}
}
void Element::AdvanceAnimations()
{
if (!animations.empty())
{
double time = Clock::GetElapsedTime();
for (auto& animation : animations)
{
Property property = animation.UpdateAndGetProperty(time, *this);
if (property.unit != Unit::UNKNOWN)
SetProperty(animation.GetPropertyId(), property);
}
// Move all completed animations to the end of the list
auto it_completed =
std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return !animation.IsComplete(); });
Vector dictionary_list;
Vector is_transition;
dictionary_list.reserve(animations.end() - it_completed);
is_transition.reserve(animations.end() - it_completed);
for (auto it = it_completed; it != animations.end(); ++it)
{
const String& property_name = StyleSheetSpecification::GetPropertyName(it->GetPropertyId());
dictionary_list.emplace_back();
dictionary_list.back().emplace("property", Variant(property_name));
is_transition.push_back(it->IsTransition());
// Remove completed transition- and animation-initiated properties.
// Should behave like in HandleTransitionProperty() and HandleAnimationProperty() respectively.
if (it->GetOrigin() != ElementAnimationOrigin::User)
RemoveProperty(it->GetPropertyId());
}
// Need to erase elements before submitting event, as iterators might be invalidated when calling external code.
animations.erase(it_completed, animations.end());
for (size_t i = 0; i < dictionary_list.size(); i++)
DispatchEvent(is_transition[i] ? EventId::Transitionend : EventId::Animationend, dictionary_list[i]);
}
}
void Element::DirtyTransformState(bool perspective_dirty, bool transform_dirty)
{
dirty_perspective |= perspective_dirty;
dirty_transform |= transform_dirty;
}
void Element::UpdateTransformState()
{
if (!dirty_perspective && !dirty_transform)
return;
const ComputedValues& computed = meta->computed_values;
const Vector2f pos = GetAbsoluteOffset(BoxArea::Border);
const Vector2f size = GetBox().GetSize(BoxArea::Border);
bool perspective_or_transform_changed = false;
if (dirty_perspective)
{
// If perspective is set on this element, then it applies to our children. We just calculate it here,
// and let the children's transform update merge it with their transform.
bool had_perspective = (transform_state && transform_state->GetLocalPerspective());
float distance = computed.perspective();
Vector2f vanish = Vector2f(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f);
bool have_perspective = false;
if (distance > 0.0f)
{
have_perspective = true;
// Compute the vanishing point from the perspective origin
if (computed.perspective_origin_x().type == Style::PerspectiveOrigin::Percentage)
vanish.x = pos.x + computed.perspective_origin_x().value * 0.01f * size.x;
else
vanish.x = pos.x + computed.perspective_origin_x().value;
if (computed.perspective_origin_y().type == Style::PerspectiveOrigin::Percentage)
vanish.y = pos.y + computed.perspective_origin_y().value * 0.01f * size.y;
else
vanish.y = pos.y + computed.perspective_origin_y().value;
}
if (have_perspective)
{
// Equivalent to: Translate(x,y,0) * Perspective(distance) * Translate(-x,-y,0)
Matrix4f perspective = Matrix4f::FromRows( //
{1, 0, -vanish.x / distance, 0}, //
{0, 1, -vanish.y / distance, 0}, //
{0, 0, 1, 0}, //
{0, 0, -1 / distance, 1} //
);
if (!transform_state)
transform_state = MakeUnique();
perspective_or_transform_changed |= transform_state->SetLocalPerspective(&perspective);
}
else if (transform_state)
transform_state->SetLocalPerspective(nullptr);
perspective_or_transform_changed |= (have_perspective != had_perspective);
dirty_perspective = false;
}
if (dirty_transform)
{
// We want to find the accumulated transform given all our ancestors. It is assumed here that the parent transform is already updated,
// so that we only need to consider our local transform and combine it with our parent's transform and perspective matrices.
bool had_transform = (transform_state && transform_state->GetTransform());
bool have_transform = false;
Matrix4f transform = Matrix4f::Identity();
if (TransformPtr transform_ptr = computed.transform())
{
// First find the current element's transform
const int n = transform_ptr->GetNumPrimitives();
for (int i = 0; i < n; ++i)
{
const TransformPrimitive& primitive = transform_ptr->GetPrimitive(i);
Matrix4f matrix = TransformUtilities::ResolveTransform(primitive, *this);
transform *= matrix;
have_transform = true;
}
if (have_transform)
{
// Compute the transform origin
Vector3f transform_origin(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f, 0);
if (computed.transform_origin_x().type == Style::TransformOrigin::Percentage)
transform_origin.x = pos.x + computed.transform_origin_x().value * size.x * 0.01f;
else
transform_origin.x = pos.x + computed.transform_origin_x().value;
if (computed.transform_origin_y().type == Style::TransformOrigin::Percentage)
transform_origin.y = pos.y + computed.transform_origin_y().value * size.y * 0.01f;
else
transform_origin.y = pos.y + computed.transform_origin_y().value;
transform_origin.z = computed.transform_origin_z();
// Make the transformation apply relative to the transform origin
transform = Matrix4f::Translate(transform_origin) * transform * Matrix4f::Translate(-transform_origin);
}
// We may want to include the local offsets here, as suggested by the CSS specs, so that the local transform is applied after the offset I
// believe the motivation is. Then we would need to subtract the absolute zero-offsets during geometry submit whenever we have transforms.
}
if (Element* parent = GetParentElement(); parent && parent->transform_state)
{
// Apply the parent's local perspective and transform.
// @performance: If we have no local transform and no parent perspective, we can effectively just point to the parent transform instead of
// copying it.
const TransformState& parent_state = *parent->transform_state;
if (auto parent_perspective = parent_state.GetLocalPerspective())
{
transform = *parent_perspective * transform;
have_transform = true;
}
if (auto parent_transform = parent_state.GetTransform())
{
transform = *parent_transform * transform;
have_transform = true;
}
}
if (have_transform)
{
if (!transform_state)
transform_state = MakeUnique();
perspective_or_transform_changed |= transform_state->SetTransform(&transform);
}
else if (transform_state)
transform_state->SetTransform(nullptr);
perspective_or_transform_changed |= (had_transform != have_transform);
}
// A change in perspective or transform will require an update to children transforms as well.
if (perspective_or_transform_changed)
{
for (Element* child : IterateChildren(true))
child->DirtyTransformState(false, true);
}
// No reason to keep the transform state around if transform and perspective have been removed.
if (transform_state && !transform_state->GetTransform() && !transform_state->GetLocalPerspective())
{
transform_state.reset();
}
}
void Element::OnStyleSheetChangeRecursive()
{
meta->effects.DirtyEffects();
OnStyleSheetChange();
// Now dirty all of our descendants.
const int num_children = GetNumChildren(true);
for (int i = 0; i < num_children; ++i)
GetChild(i)->OnStyleSheetChangeRecursive();
}
void Element::OnDpRatioChangeRecursive()
{
meta->effects.DirtyEffects();
GetStyle()->DirtyPropertiesWithUnits(Unit::DP_SCALABLE_LENGTH);
OnDpRatioChange();
// Now dirty all of our descendants.
const int num_children = GetNumChildren(true);
for (int i = 0; i < num_children; ++i)
GetChild(i)->OnDpRatioChangeRecursive();
}
void Element::DirtyFontFaceRecursive()
{
// Dirty the font size to force the element to update the face handle during the next Update(), and update any existing text geometry.
meta->style.DirtyProperty(PropertyId::FontSize);
meta->computed_values.font_face_handle(0);
const int num_children = GetNumChildren(true);
for (int i = 0; i < num_children; ++i)
GetChild(i)->DirtyFontFaceRecursive();
}
void Element::ClampScrollOffset()
{
const Vector2f new_scroll_offset = {
Math::Round(Math::Min(scroll_offset.x, GetScrollWidth() - GetClientWidth())),
Math::Round(Math::Min(scroll_offset.y, GetScrollHeight() - GetClientHeight())),
};
if (new_scroll_offset != scroll_offset)
{
scroll_offset = new_scroll_offset;
DirtyAbsoluteOffset();
}
// At this point the scrollbars have been resolved, both in terms of size and visibility. Update their properties
// now so that any visibility changes in particular are reflected immediately on the next render. Otherwise we risk
// that the scrollbars renders a frame late, since changes to scrollbars can happen during layouting.
meta->scroll.UpdateProperties();
}
void Element::ClampScrollOffsetRecursive()
{
ClampScrollOffset();
const int num_children = GetNumChildren();
for (int i = 0; i < num_children; ++i)
GetChild(i)->ClampScrollOffsetRecursive();
}
} // namespace Rml