/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019-2023 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/Context.h" #include "../../Include/RmlUi/Core/Core.h" #include "../../Include/RmlUi/Core/Dictionary.h" #include "../../Include/RmlUi/Core/ElementDocument.h" #include "../../Include/RmlUi/Core/ElementScroll.h" #include "../../Include/RmlUi/Core/ElementUtilities.h" #include "../../Include/RmlUi/Core/Factory.h" #include "../../Include/RmlUi/Core/Math.h" #include "../../Include/RmlUi/Core/NodeInstancer.h" #include "../../Include/RmlUi/Core/Profiling.h" #include "../../Include/RmlUi/Core/PropertiesIteratorView.h" #include "../../Include/RmlUi/Core/PropertyDefinition.h" #include "../../Include/RmlUi/Core/PropertyIdSet.h" #include "../../Include/RmlUi/Core/StyleSheet.h" #include "../../Include/RmlUi/Core/StyleSheetSpecification.h" #include "../../Include/RmlUi/Core/TransformPrimitive.h" #include "Clock.h" #include "ComputeProperty.h" #include "DataModel.h" #include "ElementAnimation.h" #include "ElementBackgroundBorder.h" #include "ElementDefinition.h" #include "ElementEffects.h" #include "ElementMeta.h" #include "ElementStyle.h" #include "EventDispatcher.h" #include "EventSpecification.h" #include "Layout/LayoutEngine.h" #include "PluginRegistry.h" #include "Pool.h" #include "PropertiesIterator.h" #include "StyleSheetNode.h" #include "StyleSheetParser.h" #include "TransformState.h" #include "TransformUtilities.h" #include "XMLParseTools.h" #include #include namespace Rml { // Determines how many levels up in the hierarchy the OnChildAdd and OnChildRemove are called (starting at the child itself) static constexpr int ChildNotifyLevels = 2; // Helper function to select scroll offset delta static float GetScrollOffsetDelta(ScrollAlignment alignment, float begin_offset, float end_offset) { switch (alignment) { case ScrollAlignment::Start: return begin_offset; case ScrollAlignment::Center: return (begin_offset + end_offset) / 2.0f; case ScrollAlignment::End: return end_offset; case ScrollAlignment::Nearest: if (begin_offset >= 0.f && end_offset <= 0.f) return 0.f; // Element is already visible, don't scroll else if (begin_offset < 0.f && end_offset < 0.f) return Math::Max(begin_offset, end_offset); else if (begin_offset > 0.f && end_offset > 0.f) return Math::Min(begin_offset, end_offset); else return 0.f; // Shouldn't happen } return 0.f; } Element::Element(const String& tag) : local_stacking_context(false), local_stacking_context_forced(false), stacking_context_dirty(false), computed_values_are_default_initialized(true), visible(true), offset_fixed(false), absolute_offset_dirty(true), rounded_main_padding_size_dirty(true), dirty_definition(false), dirty_child_definitions(false), dirty_animation(false), dirty_transition(false), dirty_transform(false), dirty_perspective(false), tag(tag), relative_offset_base(0, 0), relative_offset_position(0, 0), absolute_offset(0, 0), scroll_offset(0, 0) { RMLUI_ASSERT(tag == StringUtilities::ToLower(String(tag))); focus = nullptr; offset_parent = nullptr; clip_area = BoxArea::Padding; baseline = 0.0f; z_index = 0; meta = ElementMetaPool::element_meta_pool->pool.AllocateAndConstruct(this); data_model = nullptr; } Element::~Element() { RMLUI_ASSERT(GetParentNode() == nullptr); PluginRegistry::NotifyElementDestroy(this); for (Element* child : IterateChildren(true)) { Element* child_ancestor = child; for (int i = 0; i <= ChildNotifyLevels && child_ancestor; i++, child_ancestor = child_ancestor->GetParentElement()) child_ancestor->OnChildRemove(child); } ElementMetaPool::element_meta_pool->pool.DestroyAndDeallocate(meta); } void Element::Update(float dp_ratio, Vector2f vp_dimensions) { #ifdef RMLUI_TRACY_PROFILING auto name = GetAddress(false, false); RMLUI_ZoneScoped; RMLUI_ZoneText(name.c_str(), name.size()); #endif OnUpdate(); HandleTransitionProperty(); HandleAnimationProperty(); AdvanceAnimations(); meta->scroll.Update(); UpdateProperties(dp_ratio, vp_dimensions); // Do en extra pass over the animations and properties if the 'animation' property was just changed. if (dirty_animation) { HandleAnimationProperty(); AdvanceAnimations(); UpdateProperties(dp_ratio, vp_dimensions); } meta->effects.InstanceEffects(); for (Element* child : IterateChildren(true)) child->Update(dp_ratio, vp_dimensions); if (!animations.empty() && IsVisible(true)) { if (Context* ctx = GetContext()) ctx->RequestNextUpdate(0); } } void Element::UpdateProperties(const float dp_ratio, const Vector2f vp_dimensions) { UpdateDefinition(); if (meta->style.AnyPropertiesDirty()) { Element* parent = GetParentElement(); const ComputedValues* parent_values = parent ? &parent->GetComputedValues() : nullptr; ElementDocument* owner_document = GetOwnerDocument(); const ComputedValues* document_values = owner_document ? &owner_document->GetComputedValues() : nullptr; // Compute values and clear dirty properties PropertyIdSet dirty_properties = meta->style.ComputeValues(meta->computed_values, parent_values, document_values, computed_values_are_default_initialized, dp_ratio, vp_dimensions); computed_values_are_default_initialized = false; // Computed values are just calculated and can safely be used in OnPropertyChange. // However, new properties set during this call will not be available until the next update loop. if (!dirty_properties.Empty()) OnPropertyChange(dirty_properties); } } void Element::Render() { #ifdef RMLUI_TRACY_PROFILING auto name = GetAddress(false, false); RMLUI_ZoneScoped; RMLUI_ZoneText(name.c_str(), name.size()); #endif UpdateAbsoluteOffsetAndRenderBoxData(); // Rebuild our stacking context if necessary. if (stacking_context_dirty) BuildLocalStackingContext(); UpdateTransformState(); // Apply our transform ElementUtilities::ApplyTransform(*this); meta->effects.RenderEffects(RenderStage::Enter); // Set up the clipping region for this element. if (ElementUtilities::SetClippingRegion(this)) { meta->background_border.Render(this); meta->effects.RenderEffects(RenderStage::Decoration); { RMLUI_ZoneScopedNC("OnRender", 0x228B22); OnRender(); } // TODO(Michael): Offset is not correct. Should we make these nodes part of the stacking context? for (ElementText* child : IterateChildren(true)) child->Render(this, absolute_offset); } // Render all elements in our local stacking context. for (Element* element : stacking_context) element->Render(); meta->effects.RenderEffects(RenderStage::Exit); } ElementPtr Element::Clone() const { NodeInstancer* instancer = GetInstancer(); RMLUI_ASSERT(instancer); ElementPtr clone = As(instancer->InstanceNode(tag)); if (clone) { clone->SetInstancer(instancer); // Copy over the attributes. The 'style' and 'class' attributes are skipped because inline styles and class names are copied manually below. // This is necessary in case any properties or classes have been set manually, in which case the 'style' and 'class' attributes are out of // sync with the used style and active classes. ElementAttributes clone_attributes = attributes; clone_attributes.erase("style"); clone_attributes.erase("class"); clone->SetAttributes(clone_attributes); for (auto& id_property : GetStyle()->GetLocalStyleProperties()) clone->SetProperty(id_property.first, id_property.second); clone->GetStyle()->SetClassNames(GetStyle()->GetClassNames()); String inner_rml; GetInnerRML(inner_rml); clone->SetInnerRML(inner_rml); } return clone; } void Element::SetClass(const String& class_name, bool activate) { if (meta->style.SetClass(class_name, activate)) DirtyDefinition(DirtyNodes::SelfAndSiblings); } bool Element::IsClassSet(const String& class_name) const { return meta->style.IsClassSet(class_name); } void Element::SetClassNames(const String& class_names) { SetAttribute("class", class_names); } String Element::GetClassNames() const { return meta->style.GetClassNames(); } const StyleSheet* Element::GetStyleSheet() const { if (ElementDocument* document = GetOwnerDocument()) return document->GetStyleSheet(); return nullptr; } String Element::GetAddress(bool include_pseudo_classes, bool include_parents) const { // Add the tag name onto the address. String address(tag); // Add the ID if we have one. if (!id.empty()) { address += "#"; address += id; } String classes = meta->style.GetClassNames(); if (!classes.empty()) { classes = StringUtilities::Replace(classes, ' ', '.'); address += "."; address += classes; } if (include_pseudo_classes) { const PseudoClassMap& pseudo_classes = meta->style.GetActivePseudoClasses(); for (auto& pseudo_class : pseudo_classes) { address += ":"; address += pseudo_class.first; } } if (include_parents && GetParentElement()) { address += " < "; return address + GetParentElement()->GetAddress(include_pseudo_classes, true); } else return address; } void Element::SetOffset(Vector2f offset, Element* _offset_parent, bool _offset_fixed) { _offset_fixed |= GetPosition() == Style::Position::Fixed; // If our offset has definitely changed, or any of our parenting has, then these are set and // updated based on our left / right / top / bottom properties. if (relative_offset_base != offset || offset_parent != _offset_parent || offset_fixed != _offset_fixed) { relative_offset_base = offset; offset_fixed = _offset_fixed; offset_parent = _offset_parent; UpdateOffset(); DirtyAbsoluteOffset(); } // Otherwise, our offset is updated in case left / right / top / bottom will have an impact on // our final position, and our children are dirtied if they do. else { const Vector2f old_base = relative_offset_base; const Vector2f old_position = relative_offset_position; UpdateOffset(); if (old_base != relative_offset_base || old_position != relative_offset_position) DirtyAbsoluteOffset(); } } Vector2f Element::GetRelativeOffset(BoxArea area) { return relative_offset_base + relative_offset_position + GetBox().GetPosition(area); } Vector2f Element::GetAbsoluteOffset(BoxArea area) { UpdateAbsoluteOffsetAndRenderBoxData(); return area == BoxArea::Border ? absolute_offset : absolute_offset + GetBox().GetPosition(area); } void Element::UpdateAbsoluteOffsetAndRenderBoxData() { if (absolute_offset_dirty || rounded_main_padding_size_dirty) { absolute_offset_dirty = false; rounded_main_padding_size_dirty = false; Vector2f offset_from_ancestors; if (offset_parent) offset_from_ancestors = offset_parent->GetAbsoluteOffset(BoxArea::Border); if (!offset_fixed) { // Add any parent scrolling onto our position as well. if (offset_parent) offset_from_ancestors -= offset_parent->scroll_offset; // Finally, there may be relatively positioned elements between ourself and our containing block, add their relative offsets as well. for (Node* ancestor = GetParentNode(); ancestor && ancestor != offset_parent; ancestor = ancestor->GetParentNode()) { if (Element* ancestor_element = AsIf(ancestor)) offset_from_ancestors += ancestor_element->relative_offset_position; } } const Vector2f relative_offset = relative_offset_base + relative_offset_position; absolute_offset = relative_offset + offset_from_ancestors; // Next, we find the rounded size of the box so that elements can be placed border-to-border next to each other // without any gaps. To achieve this, we have to adjust their rounded/rendered sizes based on their position, in // such a way that the bottom-right of this element exactly matches the top-left of the next element. The order // of floating-point operations matter here, we want to replicate the operations in the layout engine as close // as possible to avoid any gaps. const Vector2f main_padding_size = main_box.GetSize(BoxArea::Padding); const Vector2f bottom_right_absolute_offset = (relative_offset + main_padding_size) + offset_from_ancestors; const Vector2f new_rounded_main_padding_size = bottom_right_absolute_offset.Round() - absolute_offset.Round(); if (new_rounded_main_padding_size != rounded_main_padding_size) { rounded_main_padding_size = new_rounded_main_padding_size; meta->background_border.DirtyBackground(); meta->background_border.DirtyBorder(); meta->effects.DirtyEffectsData(); } } } void Element::SetClipArea(BoxArea _clip_area) { clip_area = _clip_area; } BoxArea Element::GetClipArea() const { return clip_area; } void Element::SetScrollableOverflowRectangle(Vector2f _scrollable_overflow_rectangle, bool clamp_scroll_offset) { if (scrollable_overflow_rectangle != _scrollable_overflow_rectangle) { scrollable_overflow_rectangle = _scrollable_overflow_rectangle; if (clamp_scroll_offset) ClampScrollOffset(); } } void Element::SetBox(const Box& box) { if (box != main_box || additional_boxes.size() > 0) { #ifdef RMLUI_DEBUG for (const BoxEdge edge : {BoxEdge::Top, BoxEdge::Right, BoxEdge::Bottom, BoxEdge::Left}) { const float border_width = box.GetEdge(BoxArea::Border, edge); if (border_width != Math::Round(border_width)) Log::Message(Log::LT_WARNING, "Expected integer border width but got %g px on element: %s", border_width, GetAddress().c_str()); } #endif main_box = box; additional_boxes.clear(); OnResize(); rounded_main_padding_size_dirty = true; meta->background_border.DirtyBackground(); meta->background_border.DirtyBorder(); meta->effects.DirtyEffectsData(); } } void Element::AddBox(const Box& box, Vector2f offset) { additional_boxes.emplace_back(PositionedBox{box, offset}); OnResize(); meta->background_border.DirtyBackground(); meta->background_border.DirtyBorder(); meta->effects.DirtyEffectsData(); } const Box& Element::GetBox() { return main_box; } const Box& Element::GetBox(int index, Vector2f& offset) { offset = Vector2f(0); const int additional_box_index = index - 1; if (index < 1 || additional_box_index >= (int)additional_boxes.size()) return main_box; offset = additional_boxes[additional_box_index].offset; return additional_boxes[additional_box_index].box; } RenderBox Element::GetRenderBox(BoxArea fill_area, int index) { RMLUI_ASSERTMSG(fill_area >= BoxArea::Border && fill_area <= BoxArea::Content, "Render box can only be generated with fill area of border, padding or content."); UpdateAbsoluteOffsetAndRenderBoxData(); struct BoxReference { const Box& box; Vector2f padding_size; Vector2f offset; }; auto GetBoxAndOffset = [this, index]() { const int additional_box_index = index - 1; if (index < 1 || additional_box_index >= (int)additional_boxes.size()) return BoxReference{main_box, rounded_main_padding_size, {}}; const PositionedBox& positioned_box = additional_boxes[additional_box_index]; return BoxReference{positioned_box.box, positioned_box.box.GetSize(BoxArea::Padding), positioned_box.offset.Round()}; }; BoxReference box = GetBoxAndOffset(); EdgeSizes edge_sizes = {}; for (int area = (int)BoxArea::Border; area < (int)fill_area; area++) { edge_sizes[0] += box.box.GetEdge(BoxArea(area), BoxEdge::Top); edge_sizes[1] += box.box.GetEdge(BoxArea(area), BoxEdge::Right); edge_sizes[2] += box.box.GetEdge(BoxArea(area), BoxEdge::Bottom); edge_sizes[3] += box.box.GetEdge(BoxArea(area), BoxEdge::Left); } Vector2f inner_size; switch (fill_area) { case BoxArea::Border: inner_size = box.padding_size + box.box.GetFrameSize(BoxArea::Border); break; case BoxArea::Padding: inner_size = box.padding_size; break; case BoxArea::Content: inner_size = box.padding_size - box.box.GetFrameSize(BoxArea::Padding); break; case BoxArea::Margin: case BoxArea::Auto: RMLUI_ERROR; } return RenderBox{inner_size, box.offset, edge_sizes, meta->computed_values.border_radius()}; } int Element::GetNumBoxes() { return 1 + (int)additional_boxes.size(); } float Element::GetBaseline() const { return baseline; } bool Element::GetIntrinsicDimensions(Vector2f& /*dimensions*/, float& /*ratio*/) { return false; } bool Element::IsReplaced() { Vector2f unused_dimensions; float unused_ratio = 0.f; return GetIntrinsicDimensions(unused_dimensions, unused_ratio); } bool Element::IsPointWithinElement(const Vector2f point) { const Vector2f position = GetAbsoluteOffset(BoxArea::Border); for (int i = 0; i < GetNumBoxes(); ++i) { Vector2f box_offset; const Box& box = GetBox(i, box_offset); const Vector2f box_position = position + box_offset; const Vector2f box_dimensions = box.GetSize(BoxArea::Border); if (point.x >= box_position.x && point.x <= (box_position.x + box_dimensions.x) && point.y >= box_position.y && point.y <= (box_position.y + box_dimensions.y)) { return true; } } return false; } bool Element::IsVisible(bool include_ancestors) const { if (!include_ancestors) return visible; const Element* element = this; while (element) { if (!element->visible) return false; element = element->GetParentElement(); } return true; } float Element::GetZIndex() const { return z_index; } FontFaceHandle Element::GetFontFaceHandle() const { return meta->computed_values.font_face_handle(); } bool Element::SetProperty(const String& name, const String& value) { // The name may be a shorthand giving us multiple underlying properties PropertyDictionary properties; if (!StyleSheetSpecification::ParsePropertyDeclaration(properties, name, value)) { Log::Message(Log::LT_WARNING, "Syntax error parsing inline property declaration '%s: %s;'.", name.c_str(), value.c_str()); return false; } for (auto& property : properties.GetProperties()) { if (!meta->style.SetProperty(property.first, property.second)) return false; } return true; } bool Element::SetProperty(PropertyId id, const Property& property) { return meta->style.SetProperty(id, property); } void Element::RemoveProperty(const String& name) { auto property_id = StyleSheetSpecification::GetPropertyId(name); if (property_id != PropertyId::Invalid) meta->style.RemoveProperty(property_id); else { auto shorthand_id = StyleSheetSpecification::GetShorthandId(name); if (shorthand_id != ShorthandId::Invalid) { auto property_id_set = StyleSheetSpecification::GetShorthandUnderlyingProperties(shorthand_id); for (auto it = property_id_set.begin(); it != property_id_set.end(); ++it) meta->style.RemoveProperty(*it); } } } void Element::RemoveProperty(PropertyId id) { meta->style.RemoveProperty(id); } const Property* Element::GetProperty(const String& name) { return meta->style.GetProperty(StyleSheetSpecification::GetPropertyId(name)); } const Property* Element::GetProperty(PropertyId id) { return meta->style.GetProperty(id); } const Property* Element::GetLocalProperty(const String& name) { return meta->style.GetLocalProperty(StyleSheetSpecification::GetPropertyId(name)); } const Property* Element::GetLocalProperty(PropertyId id) { return meta->style.GetLocalProperty(id); } const PropertyMap& Element::GetLocalStyleProperties() { return meta->style.GetLocalStyleProperties(); } float Element::ResolveLength(NumericValue value) { float result = 0.f; if (Any(value.unit & Unit::LENGTH)) result = meta->style.ResolveNumericValue(value, 0.f); return result; } float Element::ResolveNumericValue(NumericValue value, float base_value) { float result = 0.f; if (Any(value.unit & Unit::NUMERIC)) result = meta->style.ResolveNumericValue(value, base_value); return result; } Vector2f Element::GetContainingBlock() { Vector2f containing_block; if (offset_parent) { using namespace Style; Position position_property = GetPosition(); const Box& parent_box = offset_parent->GetBox(); if (position_property == Position::Static || position_property == Position::Relative) { containing_block = parent_box.GetSize(); containing_block.x -= meta->scroll.GetScrollbarSize(ElementScroll::VERTICAL); containing_block.y -= meta->scroll.GetScrollbarSize(ElementScroll::HORIZONTAL); } else if (position_property == Position::Absolute || position_property == Position::Fixed) { containing_block = parent_box.GetSize(BoxArea::Padding); } } else if (Context* context = GetContext()) { containing_block = Vector2f(context->GetDimensions()); } return containing_block; } Style::Position Element::GetPosition() { return meta->computed_values.position(); } Style::Float Element::GetFloat() { return meta->computed_values.float_(); } Style::Display Element::GetDisplay() { return meta->computed_values.display(); } float Element::GetLineHeight() { return meta->computed_values.line_height().value; } const TransformState* Element::GetTransformState() const noexcept { return transform_state.get(); } bool Element::Project(Vector2f& point) const noexcept { if (!transform_state || !transform_state->GetTransform()) return true; // The input point is in window coordinates. Need to find the projection of the point onto the current element plane, // taking into account the full transform applied to the element. if (const Matrix4f* inv_transform = transform_state->GetInverseTransform()) { // Pick two points forming a line segment perpendicular to the window. Vector4f window_points[2] = {{point.x, point.y, -10, 1}, {point.x, point.y, 10, 1}}; // Project them into the local element space. window_points[0] = *inv_transform * window_points[0]; window_points[1] = *inv_transform * window_points[1]; Vector3f local_points[2] = {window_points[0].PerspectiveDivide(), window_points[1].PerspectiveDivide()}; // Construct a ray from the two projected points in the local space of the current element. // Find the intersection with the z=0 plane to produce our destination point. Vector3f ray = local_points[1] - local_points[0]; // Only continue if we are not close to parallel with the plane. if (Math::Absolute(ray.z) > 1.0f) { // Solving the line equation p = p0 + t*ray for t, knowing that p.z = 0, produces the following. float t = -local_points[0].z / ray.z; Vector3f p = local_points[0] + ray * t; point = Vector2f(p.x, p.y); return true; } } // The transformation matrix is either singular, or the ray is parallel to the element's plane. return false; } PropertiesIteratorView Element::IterateLocalProperties() const { return PropertiesIteratorView(MakeUnique(meta->style.Iterate())); } void Element::SetPseudoClass(const String& pseudo_class, bool activate) { if (meta->style.SetPseudoClass(pseudo_class, activate, false)) { // Include siblings in case of RCSS presence of sibling combinators '+', '~'. DirtyDefinition(DirtyNodes::SelfAndSiblings); OnPseudoClassChange(pseudo_class, activate); } } bool Element::IsPseudoClassSet(const String& pseudo_class) const { return meta->style.IsPseudoClassSet(pseudo_class); } bool Element::ArePseudoClassesSet(const StringList& pseudo_classes) const { for (const String& pseudo_class : pseudo_classes) { if (!IsPseudoClassSet(pseudo_class)) return false; } return true; } StringList Element::GetActivePseudoClasses() const { const PseudoClassMap& pseudo_classes = meta->style.GetActivePseudoClasses(); StringList names; names.reserve(pseudo_classes.size()); for (auto& pseudo_class : pseudo_classes) { names.push_back(pseudo_class.first); } return names; } void Element::OverridePseudoClass(Element* element, const String& pseudo_class, bool activate) { RMLUI_ASSERT(element); element->GetStyle()->SetPseudoClass(pseudo_class, activate, true); } Variant* Element::GetAttribute(const String& name) { return GetIf(attributes, name); } const Variant* Element::GetAttribute(const String& name) const { return GetIf(attributes, name); } bool Element::HasAttribute(const String& name) const { return attributes.find(name) != attributes.end(); } void Element::RemoveAttribute(const String& name) { auto it = attributes.find(name); if (it != attributes.end()) { attributes.erase(it); ElementAttributes changed_attributes; changed_attributes.emplace(name, Variant()); OnAttributeChange(changed_attributes); } } Element* Element::GetFocusLeafNode() { // If there isn't a focus, then we are the leaf. if (!focus) { return this; } // Recurse down the tree until we found the leaf focus element Element* focus_element = focus; while (focus_element->focus) focus_element = focus_element->focus; return focus_element; } void Element::SetAttributes(const ElementAttributes& _attributes) { attributes.reserve(attributes.size() + _attributes.size()); for (auto& pair : _attributes) attributes[pair.first] = pair.second; OnAttributeChange(_attributes); } int Element::GetNumAttributes() const { return (int)attributes.size(); } const String& Element::GetTagName() const { return tag; } const String& Element::GetId() const { return id; } void Element::SetId(const String& _id) { SetAttribute("id", _id); } float Element::GetAbsoluteLeft() { return GetAbsoluteOffset(BoxArea::Border).x; } float Element::GetAbsoluteTop() { return GetAbsoluteOffset(BoxArea::Border).y; } float Element::GetClientLeft() { return GetBox().GetPosition(BoxArea::Padding).x; } float Element::GetClientTop() { return GetBox().GetPosition(BoxArea::Padding).y; } float Element::GetClientWidth() { return GetBox().GetSize(BoxArea::Padding).x - meta->scroll.GetScrollbarSize(ElementScroll::VERTICAL); } float Element::GetClientHeight() { return GetBox().GetSize(BoxArea::Padding).y - meta->scroll.GetScrollbarSize(ElementScroll::HORIZONTAL); } Element* Element::GetOffsetParent() { return offset_parent; } float Element::GetOffsetLeft() { return relative_offset_base.x + relative_offset_position.x; } float Element::GetOffsetTop() { return relative_offset_base.y + relative_offset_position.y; } float Element::GetOffsetWidth() { return GetBox().GetSize(BoxArea::Border).x; } float Element::GetOffsetHeight() { return GetBox().GetSize(BoxArea::Border).y; } float Element::GetScrollLeft() { return scroll_offset.x; } void Element::SetScrollLeft(float scroll_left) { const float new_offset = Math::Round(Math::Clamp(scroll_left, 0.0f, GetScrollWidth() - GetClientWidth())); if (new_offset != scroll_offset.x) { scroll_offset.x = new_offset; meta->scroll.UpdateScrollbar(ElementScroll::HORIZONTAL); DirtyAbsoluteOffset(); DispatchEvent(EventId::Scroll, Dictionary()); } } float Element::GetScrollTop() { return scroll_offset.y; } void Element::SetScrollTop(float scroll_top) { const float new_offset = Math::Round(Math::Clamp(Math::Round(scroll_top), 0.0f, GetScrollHeight() - GetClientHeight())); if (new_offset != scroll_offset.y) { scroll_offset.y = new_offset; meta->scroll.UpdateScrollbar(ElementScroll::VERTICAL); DirtyAbsoluteOffset(); DispatchEvent(EventId::Scroll, Dictionary()); } } float Element::GetScrollWidth() { return Math::Max(scrollable_overflow_rectangle.x, GetClientWidth()); } float Element::GetScrollHeight() { return Math::Max(scrollable_overflow_rectangle.y, GetClientHeight()); } ElementStyle* Element::GetStyle() const { return &meta->style; } Element* Element::Closest(const String& selectors) const { StyleSheetNode root_node; StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors); if (leaf_nodes.empty()) { Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str()); return nullptr; } Element* parent = GetParentElement(); while (parent) { for (const StyleSheetNode* node : leaf_nodes) { if (node->IsApplicable(parent, this)) { return parent; } } parent = parent->GetParentElement(); } return nullptr; } Element* Element::GetNextElementSibling() const { Element* parent = GetParentElement(); if (!parent) return nullptr; bool return_next = false; for (Element* sibling : parent->IterateChildren()) { if (return_next) return sibling; if (sibling == this) return_next = true; } return nullptr; } Element* Element::GetPreviousElementSibling() const { Element* parent = GetParentElement(); if (!parent) return nullptr; Element* previous_sibling = nullptr; for (Element* sibling : parent->IterateChildren()) { if (sibling == this) return previous_sibling; previous_sibling = sibling; } return nullptr; } Element* Element::GetFirstElementChild() const { auto range = IterateChildren(); auto it = range.begin(); if (it == range.end()) return nullptr; return *it; } Element* Element::GetLastElementChild() const { auto range = IterateChildrenReverse(); auto it = range.begin(); if (it == range.end()) return nullptr; return *it; } Element* Element::GetChild(int index) const { int i_element = 0; for (Element* child : IterateChildren(true)) { if (i_element == index) return child; i_element += 1; } return nullptr; } int Element::GetNumChildren(bool include_non_dom_elements) const { int num_elements = 0; for (Element* child : IterateChildren(include_non_dom_elements)) { num_elements += 1; (void)child; } return num_elements; } void Element::GetInnerRML(String& content) const { for (Node* child : IterateChildren()) { if (Element* element = AsIf(child)) element->GetRML(content); else if (ElementText* text = AsIf(child)) content += StringUtilities::EncodeRml(text->GetText()); } } String Element::GetInnerRML() const { String result; GetInnerRML(result); return result; } void Element::SetInnerRML(const String& rml) { RMLUI_ZoneScopedC(0x6495ED); // Remove all DOM children. while (GetNumChildNodes() > 0) RemoveChild(GetChildNode(0)); if (!rml.empty()) Factory::InstanceElementText(this, rml); } bool Element::Focus(bool focus_visible) { // Are we allowed focus? Style::Focus focus_property = meta->computed_values.focus(); if (focus_property == Style::Focus::None) return false; // Ask our context if we can switch focus. Context* context = GetContext(); if (context == nullptr) return false; if (!context->OnFocusChange(this, focus_visible)) return false; // Set this as the end of the focus chain. focus = nullptr; // Update the focus chain up the hierarchy. Element* element = this; while (Element* parent = element->GetParentElement()) { parent->focus = element; element = parent; } return true; } void Element::Blur() { if (Element* parent = GetParentElement()) { Context* context = GetContext(); if (context == nullptr) return; if (context->GetFocusElement() == this) { parent->Focus(); } else if (parent->focus == this) { parent->focus = nullptr; } } } void Element::Click() { Context* context = GetContext(); if (context == nullptr) return; context->GenerateClickEvent(this); } void Element::AddEventListener(const String& event, EventListener* listener, const bool in_capture_phase) { const EventId id = EventSpecificationInterface::GetIdOrInsert(event); meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase); } void Element::AddEventListener(const EventId id, EventListener* listener, const bool in_capture_phase) { meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase); } void Element::RemoveEventListener(const String& event, EventListener* listener, bool in_capture_phase) { EventId id = EventSpecificationInterface::GetIdOrInsert(event); meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase); } void Element::RemoveEventListener(EventId id, EventListener* listener, bool in_capture_phase) { meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase); } bool Element::DispatchEvent(const String& type, const Dictionary& parameters) { const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type); return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, specification.interruptible, specification.bubbles, specification.default_action_phase); } bool Element::DispatchEvent(const String& type, const Dictionary& parameters, bool interruptible, bool bubbles) { const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type); return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, interruptible, bubbles, specification.default_action_phase); } bool Element::DispatchEvent(EventId id, const Dictionary& parameters) { const EventSpecification& specification = EventSpecificationInterface::Get(id); return EventDispatcher::DispatchEvent(this, specification.id, specification.type, parameters, specification.interruptible, specification.bubbles, specification.default_action_phase); } void Element::ScrollIntoView(const ScrollIntoViewOptions options) { const Vector2f size = main_box.GetSize(BoxArea::Border); ScrollBehavior scroll_behavior = options.behavior; for (Element* scroll_parent = GetParentElement(); scroll_parent; scroll_parent = scroll_parent->GetParentElement()) { using Style::Overflow; const ComputedValues& computed = scroll_parent->GetComputedValues(); const bool scrollable_box_x = (computed.overflow_x() != Overflow::Visible && computed.overflow_x() != Overflow::Hidden); const bool scrollable_box_y = (computed.overflow_y() != Overflow::Visible && computed.overflow_y() != Overflow::Hidden); const Vector2f parent_scroll_size = {scroll_parent->GetScrollWidth(), scroll_parent->GetScrollHeight()}; const Vector2f parent_client_size = {scroll_parent->GetClientWidth(), scroll_parent->GetClientHeight()}; if ((scrollable_box_x && parent_scroll_size.x > parent_client_size.x) || (scrollable_box_y && parent_scroll_size.y > parent_client_size.y)) { const Vector2f relative_offset = scroll_parent->GetAbsoluteOffset(BoxArea::Border) - GetAbsoluteOffset(BoxArea::Border); const Vector2f old_scroll_offset = {scroll_parent->GetScrollLeft(), scroll_parent->GetScrollTop()}; const Vector2f parent_client_offset = {scroll_parent->GetClientLeft(), scroll_parent->GetClientTop()}; const Vector2f delta_scroll_offset_start = parent_client_offset - relative_offset; const Vector2f delta_scroll_offset_end = delta_scroll_offset_start + size - parent_client_size; Vector2f scroll_delta = { scrollable_box_x ? GetScrollOffsetDelta(options.horizontal, delta_scroll_offset_start.x, delta_scroll_offset_end.x) : 0.f, scrollable_box_y ? GetScrollOffsetDelta(options.vertical, delta_scroll_offset_start.y, delta_scroll_offset_end.y) : 0.f, }; scroll_parent->ScrollTo(old_scroll_offset + scroll_delta, scroll_behavior); // Currently, only a single scrollable parent can be smooth scrolled at a time, so any other parents must be instant scrolled. scroll_behavior = ScrollBehavior::Instant; } if ((scrollable_box_x || scrollable_box_y) && options.parentage == ScrollParentage::Closest) break; } } void Element::ScrollIntoView(bool align_with_top) { ScrollIntoViewOptions options; options.vertical = (align_with_top ? ScrollAlignment::Start : ScrollAlignment::End); options.horizontal = ScrollAlignment::Nearest; ScrollIntoView(options); } void Element::ScrollTo(Vector2f offset, ScrollBehavior behavior) { if (behavior != ScrollBehavior::Instant) { if (Context* context = GetContext()) { context->PerformSmoothscrollOnTarget(this, offset - scroll_offset, behavior); return; } } SetScrollLeft(offset.x); SetScrollTop(offset.y); } Element* Element::GetElementById(const String& id) { // Check for special-case tokens. if (id == "#self") return this; else if (id == "#document") return GetOwnerDocument(); else if (id == "#parent") return GetParentElement(); else { Element* search_root = GetOwnerDocument(); if (search_root == nullptr) search_root = this; return ElementUtilities::GetElementById(search_root, id); } } void Element::GetElementsByTagName(ElementList& elements, const String& tag) { return ElementUtilities::GetElementsByTagName(elements, this, tag); } void Element::GetElementsByClassName(ElementList& elements, const String& class_name) { return ElementUtilities::GetElementsByClassName(elements, this, class_name); } static Element* QuerySelectorMatchRecursive(const StyleSheetNodeListRaw& nodes, Element* element, Element* scope) { const int num_children = element->GetNumChildren(); for (int i = 0; i < num_children; i++) { Element* child = element->GetChild(i); if (child->GetTagName() == "#text") continue; for (const StyleSheetNode* node : nodes) { if (node->IsApplicable(child, scope)) return child; } Element* matching_element = QuerySelectorMatchRecursive(nodes, child, scope); if (matching_element) return matching_element; } return nullptr; } static void QuerySelectorAllMatchRecursive(ElementList& matching_elements, const StyleSheetNodeListRaw& nodes, Element* element, Element* scope) { const int num_children = element->GetNumChildren(); for (int i = 0; i < num_children; i++) { Element* child = element->GetChild(i); if (child->GetTagName() == "#text") continue; for (const StyleSheetNode* node : nodes) { if (node->IsApplicable(child, scope)) { matching_elements.push_back(child); break; } } QuerySelectorAllMatchRecursive(matching_elements, nodes, child, scope); } } Element* Element::QuerySelector(const String& selectors) { StyleSheetNode root_node; StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors); if (leaf_nodes.empty()) { Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str()); return nullptr; } return QuerySelectorMatchRecursive(leaf_nodes, this, this); } void Element::QuerySelectorAll(ElementList& elements, const String& selectors) { StyleSheetNode root_node; StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors); if (leaf_nodes.empty()) { Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str()); return; } QuerySelectorAllMatchRecursive(elements, leaf_nodes, this, this); } bool Element::Matches(const String& selectors) { StyleSheetNode root_node; StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors); if (leaf_nodes.empty()) { Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str()); return false; } for (const StyleSheetNode* node : leaf_nodes) { if (node->IsApplicable(this, this)) { return true; } } return false; } bool Element::Contains(Element* element) const { while (element) { if (element == this) return true; element = element->GetParentElement(); } return false; } ElementPtr Element::Remove() { if (Node* parent = GetParentNode()) { if (NodePtr self = parent->RemoveChild(this)) return As(std::move(self)); } return nullptr; } EventDispatcher* Element::GetEventDispatcher() const { return &meta->event_dispatcher; } String Element::GetEventDispatcherSummary() const { return meta->event_dispatcher.ToString(); } ElementBackgroundBorder* Element::GetElementBackgroundBorder() const { return &meta->background_border; } ElementScroll* Element::GetElementScroll() const { return &meta->scroll; } DataModel* Element::GetDataModel() const { return data_model; } void Element::ForceLocalStackingContext() { local_stacking_context_forced = true; local_stacking_context = true; DirtyStackingContext(); } void Element::OnUpdate() {} void Element::OnRender() {} void Element::OnResize() {} void Element::OnLayout() {} void Element::OnDpRatioChange() {} void Element::OnStyleSheetChange() {} void Element::OnAttributeChange(const ElementAttributes& changed_attributes) { for (const auto& element_attribute : changed_attributes) { const auto& attribute = element_attribute.first; const auto& value = element_attribute.second; if (attribute == "id") { id = value.Get(); } else if (attribute == "class") { meta->style.SetClassNames(value.Get()); } else if (((attribute == "colspan" || attribute == "rowspan") && meta->computed_values.display() == Style::Display::TableCell) || (attribute == "span" && (meta->computed_values.display() == Style::Display::TableColumn || meta->computed_values.display() == Style::Display::TableColumnGroup))) { DirtyLayout(); } else if (attribute.size() > 2 && attribute[0] == 'o' && attribute[1] == 'n') { static constexpr size_t on_length = 2; static constexpr size_t capture_length = 7; const bool in_capture_phase = StringUtilities::EndsWith(attribute, "capture"); auto& attribute_event_listeners = meta->attribute_event_listeners; auto& event_dispatcher = meta->event_dispatcher; const size_t event_name_length = attribute.size() - on_length - (in_capture_phase ? capture_length : 0); const auto event_id = EventSpecificationInterface::GetIdOrInsert(attribute.substr(on_length, event_name_length)); const auto remove_event_listener_if_exists = [&attribute_event_listeners, &event_dispatcher, event_id, in_capture_phase]() { const auto listener_it = attribute_event_listeners.find(event_id); if (listener_it != attribute_event_listeners.cend()) { event_dispatcher.DetachEvent(event_id, listener_it->second, in_capture_phase); attribute_event_listeners.erase(listener_it); } }; if (value.GetType() == Variant::Type::STRING) { remove_event_listener_if_exists(); const auto value_as_string = value.Get(); auto insertion_result = attribute_event_listeners.emplace(event_id, Factory::InstanceEventListener(value_as_string, this)); if (auto* listener = insertion_result.first->second) event_dispatcher.AttachEvent(event_id, listener, in_capture_phase); } else if (value.GetType() == Variant::Type::NONE) remove_event_listener_if_exists(); } else if (attribute == "style") { if (value.GetType() == Variant::STRING) { PropertyDictionary properties; StyleSheetParser parser; parser.ParseProperties(properties, value.GetReference()); for (const auto& name_value : properties.GetProperties()) meta->style.SetProperty(name_value.first, name_value.second); } else if (value.GetType() != Variant::NONE) Log::Message(Log::LT_WARNING, "Invalid 'style' attribute, string type required. In element: %s", GetAddress().c_str()); } else if (attribute == "lang") { if (value.GetType() == Variant::STRING) meta->style.SetProperty(PropertyId::RmlUi_Language, Property(value.GetReference(), Unit::STRING)); else if (value.GetType() != Variant::NONE) Log::Message(Log::LT_WARNING, "Invalid 'lang' attribute, string type required. In element: %s", GetAddress().c_str()); } else if (attribute == "dir") { if (value.GetType() == Variant::STRING) { const String& dir_value = value.GetReference(); if (dir_value == "auto") meta->style.SetProperty(PropertyId::RmlUi_Direction, Property(Style::Direction::Auto)); else if (dir_value == "ltr") meta->style.SetProperty(PropertyId::RmlUi_Direction, Property(Style::Direction::Ltr)); else if (dir_value == "rtl") meta->style.SetProperty(PropertyId::RmlUi_Direction, Property(Style::Direction::Rtl)); else Log::Message(Log::LT_WARNING, "Invalid 'dir' attribute '%s', value must be 'auto', 'ltr', or 'rtl'. In element: %s", dir_value.c_str(), GetAddress().c_str()); } else if (value.GetType() != Variant::NONE) Log::Message(Log::LT_WARNING, "Invalid 'dir' attribute, string type required. In element: %s", GetAddress().c_str()); } } // Any change to the attributes may affect which styles apply to the current element, in particular due to attribute selectors, ID selectors, and // class selectors. This can further affect all siblings or descendants due to sibling or descendant combinators. DirtyDefinition(DirtyNodes::SelfAndSiblings); } void Element::OnPropertyChange(const PropertyIdSet& changed_properties) { RMLUI_ZoneScoped; const bool top_right_bottom_left_changed = ( // changed_properties.Contains(PropertyId::Top) || // changed_properties.Contains(PropertyId::Right) || // changed_properties.Contains(PropertyId::Bottom) || // changed_properties.Contains(PropertyId::Left) // ); // See if the document layout needs to be updated. if (!IsLayoutDirty()) { // Force a relayout if any of the changed properties require it. const PropertyIdSet changed_properties_forcing_layout = (changed_properties & StyleSheetSpecification::GetRegisteredPropertiesForcingLayout()); if (!changed_properties_forcing_layout.Empty()) { DirtyLayout(); } else if (top_right_bottom_left_changed) { // Normally, the position properties only affect the position of the element and not the layout. Thus, these properties are not registered // as affecting layout. However, when absolutely positioned elements with both left & right, or top & bottom are set to definite values, // they affect the size of the element and thereby also the layout. This layout-dirtying condition needs to be registered manually. using namespace Style; const ComputedValues& computed = GetComputedValues(); const bool absolutely_positioned = (computed.position() == Position::Absolute || computed.position() == Position::Fixed); const bool sized_width = (computed.width().type == Width::Auto && computed.left().type != Left::Auto && computed.right().type != Right::Auto); const bool sized_height = (computed.height().type == Height::Auto && computed.top().type != Top::Auto && computed.bottom().type != Bottom::Auto); if (absolutely_positioned && (sized_width || sized_height)) DirtyLayout(); } } // Update the position. if (top_right_bottom_left_changed) { UpdateOffset(); DirtyAbsoluteOffset(); } // Update the visibility. if (changed_properties.Contains(PropertyId::Visibility) || changed_properties.Contains(PropertyId::Display)) { bool new_visibility = (meta->computed_values.display() != Style::Display::None && meta->computed_values.visibility() == Style::Visibility::Visible); if (visible != new_visibility) { visible = new_visibility; if (Element* parent = GetParentElement()) parent->DirtyStackingContext(); if (!visible) Blur(); } } const bool border_radius_changed = ( // changed_properties.Contains(PropertyId::BorderTopLeftRadius) || // changed_properties.Contains(PropertyId::BorderTopRightRadius) || // changed_properties.Contains(PropertyId::BorderBottomRightRadius) || // changed_properties.Contains(PropertyId::BorderBottomLeftRadius) // ); const bool filter_or_mask_changed = (changed_properties.Contains(PropertyId::Filter) || changed_properties.Contains(PropertyId::BackdropFilter) || changed_properties.Contains(PropertyId::MaskImage)); // Update the z-index and stacking context. if (changed_properties.Contains(PropertyId::ZIndex) || filter_or_mask_changed) { const Style::ZIndex z_index_property = meta->computed_values.z_index(); const float new_z_index = (z_index_property.type == Style::ZIndex::Auto ? 0.f : z_index_property.value); const bool enable_local_stacking_context = (z_index_property.type != Style::ZIndex::Auto || local_stacking_context_forced || meta->computed_values.has_filter() || meta->computed_values.has_backdrop_filter() || meta->computed_values.has_mask_image()); if (z_index != new_z_index || local_stacking_context != enable_local_stacking_context) { z_index = new_z_index; if (local_stacking_context != enable_local_stacking_context) { local_stacking_context = enable_local_stacking_context; // If we are no longer acting as a local stacking context, then we clear the list and are all set. Otherwise, we need to rebuild our // local stacking context. stacking_context.clear(); stacking_context_dirty = local_stacking_context; } // When our z-index or local stacking context changes, then we must dirty our parent stacking context so we are re-indexed. if (Element* parent = GetParentElement()) parent->DirtyStackingContext(); } } // Dirty the background if it's changed. if (border_radius_changed || // changed_properties.Contains(PropertyId::BackgroundColor) || // changed_properties.Contains(PropertyId::Opacity) || // changed_properties.Contains(PropertyId::ImageColor) || // changed_properties.Contains(PropertyId::BoxShadow)) // { meta->background_border.DirtyBackground(); } // Dirty the border if it's changed. if (border_radius_changed || // changed_properties.Contains(PropertyId::BorderTopWidth) || // changed_properties.Contains(PropertyId::BorderRightWidth) || // changed_properties.Contains(PropertyId::BorderBottomWidth) || // changed_properties.Contains(PropertyId::BorderLeftWidth) || // changed_properties.Contains(PropertyId::BorderTopColor) || // changed_properties.Contains(PropertyId::BorderRightColor) || // changed_properties.Contains(PropertyId::BorderBottomColor) || // changed_properties.Contains(PropertyId::BorderLeftColor) || // changed_properties.Contains(PropertyId::Opacity)) { meta->background_border.DirtyBorder(); } // Dirty the effects if they've changed. if (border_radius_changed || filter_or_mask_changed || changed_properties.Contains(PropertyId::Decorator)) { meta->effects.DirtyEffects(); } const bool font_changed = (changed_properties.Contains(PropertyId::FontFamily) || changed_properties.Contains(PropertyId::FontStyle) || changed_properties.Contains(PropertyId::FontWeight) || changed_properties.Contains(PropertyId::FontSize) || changed_properties.Contains(PropertyId::FontKerning) || changed_properties.Contains(PropertyId::LetterSpacing)); // Dirty the effects data when their visual looks may have changed. if (border_radius_changed || // font_changed || // changed_properties.Contains(PropertyId::Opacity) || // changed_properties.Contains(PropertyId::Color) || // changed_properties.Contains(PropertyId::ImageColor)) { meta->effects.DirtyEffectsData(); } // Check for `perspective' and `perspective-origin' changes if (changed_properties.Contains(PropertyId::Perspective) || // changed_properties.Contains(PropertyId::PerspectiveOriginX) || // changed_properties.Contains(PropertyId::PerspectiveOriginY)) { DirtyTransformState(true, false); } // Check for `transform' and `transform-origin' changes if (changed_properties.Contains(PropertyId::Transform) || // changed_properties.Contains(PropertyId::TransformOriginX) || // changed_properties.Contains(PropertyId::TransformOriginY) || // changed_properties.Contains(PropertyId::TransformOriginZ)) { DirtyTransformState(false, true); } // Check for `animation' changes if (changed_properties.Contains(PropertyId::Animation)) { dirty_animation = true; } // Check for `transition' changes if (changed_properties.Contains(PropertyId::Transition)) { dirty_transition = true; } for (ElementText* text : IterateChildren()) text->OnParentPropertyChange(this, changed_properties); } void Element::OnPseudoClassChange(const String& /*pseudo_class*/, bool /*activate*/) {} void Element::OnChildAdd(Element* /*child*/) {} void Element::OnChildRemove(Element* /*child*/) {} Element* Element::GetClosestScrollableContainer() { using namespace Style; Overflow overflow_x = meta->computed_values.overflow_x(); Overflow overflow_y = meta->computed_values.overflow_y(); bool scrollable_x = (overflow_x == Overflow::Auto || overflow_x == Overflow::Scroll); bool scrollable_y = (overflow_y == Overflow::Auto || overflow_y == Overflow::Scroll); scrollable_x = (scrollable_x && GetScrollWidth() > GetClientWidth()); scrollable_y = (scrollable_y && GetScrollHeight() > GetClientHeight()); if (scrollable_x || scrollable_y || meta->computed_values.overscroll_behavior() == OverscrollBehavior::Contain) return this; else if (Element* parent = GetParentElement()) return parent->GetClosestScrollableContainer(); return nullptr; } void Element::ProcessDefaultAction(Event& event) { if (event == EventId::Mousedown) { const Vector2f mouse_pos(event.GetParameter("mouse_x", 0.f), event.GetParameter("mouse_y", 0.f)); if (IsPointWithinElement(mouse_pos) && event.GetParameter("button", 0) == 0) SetPseudoClass("active", true); } if (event.GetPhase() == EventPhase::Target) { switch (event.GetId()) { case EventId::Mouseover: SetPseudoClass("hover", true); break; case EventId::Mouseout: SetPseudoClass("hover", false); break; case EventId::Focus: SetPseudoClass("focus", true); if (event.GetParameter("focus_visible", false)) SetPseudoClass("focus-visible", true); break; case EventId::Blur: SetPseudoClass("focus", false); SetPseudoClass("focus-visible", false); break; default: break; } } } const Style::ComputedValues& Element::GetComputedValues() const { return meta->computed_values; } void Element::GetRML(String& content) { // First we start the open tag, add the attributes then close the open tag. // Then comes the children in order, then we add our close tag. content += "<"; content += tag; for (auto& pair : attributes) { const String& name = pair.first; if (name == "style") continue; const Variant& variant = pair.second; String value; if (variant.GetInto(value)) { content += ' '; content += name; content += "=\""; content += value; content += "\""; } } const PropertyMap& local_properties = meta->style.GetLocalStyleProperties(); if (!local_properties.empty()) content += " style=\""; for (const auto& pair : local_properties) { const PropertyId id = pair.first; const Property& property = pair.second; content += StyleSheetSpecification::GetPropertyName(id); content += ": "; content += StringUtilities::EncodeRml(property.ToString()); content += "; "; } if (!local_properties.empty()) content.back() = '\"'; if (HasChildNodes()) { content += ">"; GetInnerRML(content); content += ""; } else { content += " />"; } } void Element::SetDataModel(DataModel* new_data_model) { RMLUI_ASSERTMSG(!data_model || !new_data_model, "We must either attach a new data model, or detach the old one."); if (data_model == new_data_model) return; // stop descent if a nested data model is encountered if (data_model && new_data_model && data_model != new_data_model) return; if (data_model) data_model->OnElementRemove(this); data_model = new_data_model; if (data_model) ElementUtilities::ApplyDataViewsControllers(this); for (Element* child : IterateChildren(true)) child->SetDataModel(new_data_model); } void Element::OnChildNodeAdd(Node* child_node, bool dom_node) { Element* child = AsIf(child_node); Element* ancestor = child; for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentElement()) ancestor->OnChildAdd(child); DirtyStackingContext(); // Not only does the element definition of the newly inserted element need to be dirtied, but also our own definition and implicitly all of our // children's. This ensures correct styles being applied in the presence of tree-structural selectors such as ':first-child'. DirtyDefinition(DirtyNodes::Self); if (dom_node) DirtyLayout(); } void Element::OnChildNodeRemove(Node* child_node, bool dom_node) { Element* child = AsIf(child_node); Element* ancestor = child; for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentElement()) ancestor->OnChildRemove(child); // Remove the child element as the focused child of this element. if (child && child == focus) { focus = nullptr; // If this child (or a descendant of this child) is the context's currently // focused element, set the focus to us instead. if (Context* context = GetContext()) { Element* focus_element = context->GetFocusElement(); while (focus_element) { if (focus_element == child) { Focus(); break; } focus_element = focus_element->GetParentElement(); } } } DirtyStackingContext(); DirtyDefinition(DirtyNodes::Self); if (dom_node) DirtyLayout(); } void Element::OnParentChange(Node* parent_node) { if (!parent_node) { if (data_model) SetDataModel(nullptr); return; } Element* parent = As(parent_node); if (!parent) { // New parent is a non-element node. return; } // We need to update our definition and make sure we inherit the properties of our new parent. DirtyDefinition(DirtyNodes::Self); meta->style.DirtyInheritedProperties(); // The transform state may require recalculation. DirtyTransformState(true, true); auto it = attributes.find("data-model"); if (it == attributes.end()) { SetDataModel(parent->data_model); } else if (Context* context = GetContext()) { String name = it->second.Get(); if (DataModel* model = context->GetDataModelPtr(name)) { model->AttachModelRootElement(this); SetDataModel(model); } else Log::Message(Log::LT_ERROR, "Could not locate data model '%s' in element %s.", name.c_str(), GetAddress().c_str()); } } void Element::DirtyAbsoluteOffset() { if (!absolute_offset_dirty) DirtyAbsoluteOffsetRecursive(); } void Element::DirtyAbsoluteOffsetRecursive() { if (!absolute_offset_dirty) { absolute_offset_dirty = true; if (transform_state) DirtyTransformState(true, true); } for (Element* child : IterateChildren(true)) child->DirtyAbsoluteOffsetRecursive(); } void Element::UpdateOffset() { using namespace Style; const auto& computed = meta->computed_values; Position position_property = computed.position(); if (position_property == Position::Absolute || position_property == Position::Fixed) { if (offset_parent != nullptr) { const Box& parent_box = offset_parent->GetBox(); Vector2f containing_block = parent_box.GetSize(BoxArea::Padding); // If the element is anchored left, then the position is offset by that resolved value. if (computed.left().type != Left::Auto) relative_offset_base.x = parent_box.GetEdge(BoxArea::Border, BoxEdge::Left) + (ResolveValue(computed.left(), containing_block.x) + GetBox().GetEdge(BoxArea::Margin, BoxEdge::Left)); // If the element is anchored right, then the position is set first so the element's right-most edge // (including margins) will render up against the containing box's right-most content edge, and then // offset by the resolved value. else if (computed.right().type != Right::Auto) { relative_offset_base.x = containing_block.x + parent_box.GetEdge(BoxArea::Border, BoxEdge::Left) - (ResolveValue(computed.right(), containing_block.x) + GetBox().GetSize(BoxArea::Border).x + GetBox().GetEdge(BoxArea::Margin, BoxEdge::Right)); } // If the element is anchored top, then the position is offset by that resolved value. if (computed.top().type != Top::Auto) { relative_offset_base.y = parent_box.GetEdge(BoxArea::Border, BoxEdge::Top) + (ResolveValue(computed.top(), containing_block.y) + GetBox().GetEdge(BoxArea::Margin, BoxEdge::Top)); } // If the element is anchored bottom, then the position is set first so the element's right-most edge // (including margins) will render up against the containing box's right-most content edge, and then // offset by the resolved value. else if (computed.bottom().type != Bottom::Auto) { relative_offset_base.y = containing_block.y + parent_box.GetEdge(BoxArea::Border, BoxEdge::Top) - (ResolveValue(computed.bottom(), containing_block.y) + GetBox().GetSize(BoxArea::Border).y + GetBox().GetEdge(BoxArea::Margin, BoxEdge::Bottom)); } } } else if (position_property == Position::Relative) { if (offset_parent != nullptr) { const Box& parent_box = offset_parent->GetBox(); Vector2f containing_block = parent_box.GetSize(); if (computed.left().type != Left::Auto) relative_offset_position.x = ResolveValue(computed.left(), containing_block.x); else if (computed.right().type != Right::Auto) relative_offset_position.x = -1 * ResolveValue(computed.right(), containing_block.x); else relative_offset_position.x = 0; if (computed.top().type != Top::Auto) relative_offset_position.y = ResolveValue(computed.top(), containing_block.y); else if (computed.bottom().type != Bottom::Auto) relative_offset_position.y = -1 * ResolveValue(computed.bottom(), containing_block.y); else relative_offset_position.y = 0; } } else { relative_offset_position.x = 0; relative_offset_position.y = 0; } } void Element::SetBaseline(float in_baseline) { baseline = in_baseline; } enum class RenderOrder { StackNegative, // Local stacking context with z < 0. Block, TableColumnGroup, TableColumn, TableRowGroup, TableRow, TableCell, Floating, Inline, Positioned, // Positioned element, or local stacking context with z == 0. StackPositive, // Local stacking context with z > 0. }; struct StackingContextChild { Element* element = nullptr; RenderOrder order = {}; }; static bool operator<(const StackingContextChild& lhs, const StackingContextChild& rhs) { if (int(lhs.order) == int(rhs.order)) return lhs.element->GetZIndex() < rhs.element->GetZIndex(); return int(lhs.order) < int(rhs.order); } // Treat all children in the range [index_begin, end) as if the parent created a new stacking context, by sorting them // separately and then assigning their parent's paint order. However, positioned and descendants which create a new // stacking context should be considered part of the parent stacking context. See CSS 2, Appendix E. static void StackingContext_MakeAtomicRange(Vector& stacking_children, size_t index_begin, RenderOrder parent_render_order) { std::stable_sort(stacking_children.begin() + index_begin, stacking_children.end()); for (auto it = stacking_children.begin() + index_begin; it != stacking_children.end(); ++it) { auto order = it->order; if (order != RenderOrder::StackNegative && order != RenderOrder::Positioned && order != RenderOrder::StackPositive) it->order = parent_render_order; } } void Element::BuildLocalStackingContext() { stacking_context_dirty = false; Vector stacking_children; AddChildrenToStackingContext(stacking_children); std::stable_sort(stacking_children.begin(), stacking_children.end()); stacking_context.resize(stacking_children.size()); for (size_t i = 0; i < stacking_children.size(); i++) stacking_context[i] = stacking_children[i].element; } void Element::AddChildrenToStackingContext(Vector& stacking_children) { bool is_flex_container = (GetDisplay() == Style::Display::Flex); const int num_children_dom = GetNumChildNodes(); const int num_children_all = GetNumChildNodes(true); for (int i = 0; i < num_children_all; ++i) { if (Element* child = AsIf(GetChildNode(i))) { const bool is_non_dom_element = (i >= num_children_dom); child->AddToStackingContext(stacking_children, is_flex_container, is_non_dom_element); } } } void Element::AddToStackingContext(Vector& stacking_children, bool is_flex_item, bool is_non_dom_element) { using Style::Display; if (!IsVisible()) return; const Display display = GetDisplay(); RenderOrder order = RenderOrder::Inline; bool include_children = true; bool render_as_atomic_unit = false; if (local_stacking_context) { if (z_index > 0.f) order = RenderOrder::StackPositive; else if (z_index < 0.f) order = RenderOrder::StackNegative; else order = RenderOrder::Positioned; include_children = false; } else if (display == Display::TableRow || display == Display::TableRowGroup || display == Display::TableColumn || display == Display::TableColumnGroup) { // Handle internal display values taking priority over position and float. switch (display) { case Display::TableRow: order = RenderOrder::TableRow; break; case Display::TableRowGroup: order = RenderOrder::TableRowGroup; break; case Display::TableColumn: order = RenderOrder::TableColumn; break; case Display::TableColumnGroup: order = RenderOrder::TableColumnGroup; break; default: break; } } else if (GetPosition() != Style::Position::Static) { order = RenderOrder::Positioned; render_as_atomic_unit = true; } else if (GetFloat() != Style::Float::None) { order = RenderOrder::Floating; render_as_atomic_unit = true; } else { switch (display) { case Display::Block: case Display::FlowRoot: case Display::Table: case Display::Flex: order = RenderOrder::Block; render_as_atomic_unit = (display == Display::Table || is_flex_item); break; case Display::Inline: case Display::InlineBlock: case Display::InlineFlex: case Display::InlineTable: order = RenderOrder::Inline; render_as_atomic_unit = (display != Display::Inline || is_flex_item); break; case Display::TableCell: order = RenderOrder::TableCell; render_as_atomic_unit = true; break; case Display::TableRow: case Display::TableRowGroup: case Display::TableColumn: case Display::TableColumnGroup: case Display::None: RMLUI_ERROR; break; // Handled above. } } if (is_non_dom_element) render_as_atomic_unit = true; stacking_children.push_back(StackingContextChild{this, order}); if (include_children && GetNumChildNodes(true) > 0) { const size_t index_child_begin = stacking_children.size(); AddChildrenToStackingContext(stacking_children); if (render_as_atomic_unit) StackingContext_MakeAtomicRange(stacking_children, index_child_begin, order); } } void Element::DirtyStackingContext() { // Find the first ancestor that has a local stacking context, that is our stacking context parent. Element* stacking_context_parent = this; while (stacking_context_parent && !stacking_context_parent->local_stacking_context) { stacking_context_parent = stacking_context_parent->GetParentElement(); } if (stacking_context_parent) stacking_context_parent->stacking_context_dirty = true; } void Element::DirtyDefinition(DirtyNodes dirty_nodes) { switch (dirty_nodes) { case DirtyNodes::Self: dirty_definition = true; break; case DirtyNodes::SelfAndSiblings: dirty_definition = true; if (Element* parent = GetParentElement()) parent->dirty_child_definitions = true; break; } } void Element::UpdateDefinition() { if (dirty_definition) { dirty_definition = false; // Dirty definition implies all our descendent elements. Anything that can change the definition of this element can also change the // definition of any descendants due to the presence of RCSS descendant or child combinators. In principle this also applies to sibling // combinators, but those are handled during the DirtyDefinition call. dirty_child_definitions = true; GetStyle()->UpdateDefinition(); } if (dirty_child_definitions) { dirty_child_definitions = false; for (Element* child : IterateChildren(true)) child->dirty_definition = true; } } bool Element::Animate(const String& property_name, const Property& target_value, float duration, Tween tween, int num_iterations, bool alternate_direction, float delay, const Property* start_value) { return Animate(StyleSheetSpecification::GetPropertyId(property_name), target_value, duration, tween, num_iterations, alternate_direction, delay, start_value); } bool Element::Animate(PropertyId id, const Property& target_value, float duration, Tween tween, int num_iterations, bool alternate_direction, float delay, const Property* start_value) { bool result = false; auto it_animation = StartAnimation(id, start_value, num_iterations, alternate_direction, delay, false); if (it_animation != animations.end()) { result = it_animation->AddKey(duration, target_value, *this, tween, true); if (!result) animations.erase(it_animation); } return result; } bool Element::AddAnimationKey(const String& property_name, const Property& target_value, float duration, Tween tween) { return AddAnimationKey(StyleSheetSpecification::GetPropertyId(property_name), target_value, duration, tween); } bool Element::AddAnimationKey(PropertyId id, const Property& target_value, float duration, Tween tween) { ElementAnimation* animation = nullptr; for (auto& existing_animation : animations) { if (existing_animation.GetPropertyId() == id) { animation = &existing_animation; break; } } if (!animation) return false; bool result = animation->AddKey(animation->GetDuration() + duration, target_value, *this, tween, true); return result; } ElementAnimationList::iterator Element::StartAnimation(PropertyId property_id, const Property* start_value, int num_iterations, bool alternate_direction, float delay, bool initiated_by_animation_property) { auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == property_id; }); if (it != animations.end()) { const bool allow_overwriting_animation = !initiated_by_animation_property; if (!allow_overwriting_animation) { Log::Message(Log::LT_WARNING, "Could not animate property '%s' on element: %s. " "Please ensure that the property does not appear in multiple animations on the same element.", StyleSheetSpecification::GetPropertyName(property_id).c_str(), GetAddress().c_str()); return it; } *it = ElementAnimation{}; } else { animations.emplace_back(); it = animations.end() - 1; } Property value; if (start_value) { value = *start_value; if (!value.definition) if (auto default_value = GetProperty(property_id)) value.definition = default_value->definition; } else if (auto default_value = GetProperty(property_id)) { value = *default_value; } if (value.definition) { ElementAnimationOrigin origin = (initiated_by_animation_property ? ElementAnimationOrigin::Animation : ElementAnimationOrigin::User); double start_time = Clock::GetElapsedTime() + (double)delay; *it = ElementAnimation{property_id, origin, value, *this, start_time, 0.0f, num_iterations, alternate_direction}; } if (!it->IsInitalized()) { animations.erase(it); it = animations.end(); } return it; } bool Element::AddAnimationKeyTime(PropertyId property_id, const Property* target_value, float time, Tween tween) { if (!target_value) target_value = meta->style.GetProperty(property_id); if (!target_value) return false; ElementAnimation* animation = nullptr; for (auto& existing_animation : animations) { if (existing_animation.GetPropertyId() == property_id) { animation = &existing_animation; break; } } if (!animation) return false; bool result = animation->AddKey(time, *target_value, *this, tween, true); return result; } bool Element::StartTransition(const Transition& transition, const Property& start_value, const Property& target_value) { auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == transition.id; }); if (it != animations.end() && !it->IsTransition()) return false; float duration = transition.duration; double start_time = Clock::GetElapsedTime() + (double)transition.delay; if (it == animations.end()) { // Add transition as new animation animations.push_back(ElementAnimation{transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false}); it = (animations.end() - 1); } else { // Compress the duration based on the progress of the current animation float f = it->GetInterpolationFactor(); f = 1.0f - (1.0f - f) * transition.reverse_adjustment_factor; duration = duration * f; // Replace old transition *it = ElementAnimation{transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false}; } bool result = it->AddKey(duration, target_value, *this, transition.tween, true); if (result) SetProperty(transition.id, start_value); else animations.erase(it); return result; } void Element::HandleTransitionProperty() { if (dirty_transition) { dirty_transition = false; // Remove all transitions that are no longer in our local list const TransitionList* keep_transitions = GetComputedValues().transition(); if (keep_transitions && keep_transitions->all) return; auto it_remove = animations.end(); if (!keep_transitions || keep_transitions->none) { // All transitions should be removed, but only touch the animations that originate from the 'transition' property. // Move all animations to be erased in a valid state at the end of the list, and erase later. it_remove = std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) -> bool { return !animation.IsTransition(); }); } else { RMLUI_ASSERT(keep_transitions); // Only remove the transitions that are not in our keep list. const auto& keep_transitions_list = keep_transitions->transitions; it_remove = std::partition(animations.begin(), animations.end(), [&keep_transitions_list](const ElementAnimation& animation) -> bool { if (!animation.IsTransition()) return true; auto it = std::find_if(keep_transitions_list.begin(), keep_transitions_list.end(), [&animation](const Transition& transition) { return animation.GetPropertyId() == transition.id; }); bool keep_animation = (it != keep_transitions_list.end()); return keep_animation; }); } // We can decide what to do with cancelled transitions here. for (auto it = it_remove; it != animations.end(); ++it) RemoveProperty(it->GetPropertyId()); animations.erase(it_remove, animations.end()); } } void Element::HandleAnimationProperty() { // Note: We are effectively restarting all animations whenever 'dirty_animation' is set. Use the dirty flag with care, // or find another approach which only updates actual "dirty" animations. if (dirty_animation) { dirty_animation = false; const AnimationList* animation_list = meta->computed_values.animation(); bool element_has_animations = ((animation_list && !animation_list->empty()) || !animations.empty()); const StyleSheet* stylesheet = nullptr; if (element_has_animations) stylesheet = GetStyleSheet(); if (stylesheet) { // Remove existing animations { // We only touch the animations that originate from the 'animation' property. auto it_remove = std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return animation.GetOrigin() != ElementAnimationOrigin::Animation; }); // We can decide what to do with cancelled animations here. for (auto it = it_remove; it != animations.end(); ++it) RemoveProperty(it->GetPropertyId()); animations.erase(it_remove, animations.end()); } // Start animations if (animation_list) { for (const auto& animation : *animation_list) { const Keyframes* keyframes_ptr = stylesheet->GetKeyframes(animation.name); if (keyframes_ptr && keyframes_ptr->blocks.size() >= 1 && !animation.paused) { auto& property_ids = keyframes_ptr->property_ids; auto& blocks = keyframes_ptr->blocks; bool has_from_key = (blocks[0].normalized_time == 0); bool has_to_key = (blocks.back().normalized_time == 1); // If the first key defines initial conditions for a given property, use those values, else, use this element's current // values. for (PropertyId id : property_ids) StartAnimation(id, (has_from_key ? blocks[0].properties.GetProperty(id) : nullptr), animation.num_iterations, animation.alternate, animation.delay, true); // Add middle keys: Need to skip the first and last keys if they set the initial and end conditions, respectively. for (int i = (has_from_key ? 1 : 0); i < (int)blocks.size() + (has_to_key ? -1 : 0); i++) { // Add properties of current key to animation float time = blocks[i].normalized_time * animation.duration; for (auto& property : blocks[i].properties.GetProperties()) AddAnimationKeyTime(property.first, &property.second, time, animation.tween); } // If the last key defines end conditions for a given property, use those values, else, use this element's current values. float time = animation.duration; for (PropertyId id : property_ids) AddAnimationKeyTime(id, (has_to_key ? blocks.back().properties.GetProperty(id) : nullptr), time, animation.tween); } } } } } } void Element::AdvanceAnimations() { if (!animations.empty()) { double time = Clock::GetElapsedTime(); for (auto& animation : animations) { Property property = animation.UpdateAndGetProperty(time, *this); if (property.unit != Unit::UNKNOWN) SetProperty(animation.GetPropertyId(), property); } // Move all completed animations to the end of the list auto it_completed = std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return !animation.IsComplete(); }); Vector dictionary_list; Vector is_transition; dictionary_list.reserve(animations.end() - it_completed); is_transition.reserve(animations.end() - it_completed); for (auto it = it_completed; it != animations.end(); ++it) { const String& property_name = StyleSheetSpecification::GetPropertyName(it->GetPropertyId()); dictionary_list.emplace_back(); dictionary_list.back().emplace("property", Variant(property_name)); is_transition.push_back(it->IsTransition()); // Remove completed transition- and animation-initiated properties. // Should behave like in HandleTransitionProperty() and HandleAnimationProperty() respectively. if (it->GetOrigin() != ElementAnimationOrigin::User) RemoveProperty(it->GetPropertyId()); } // Need to erase elements before submitting event, as iterators might be invalidated when calling external code. animations.erase(it_completed, animations.end()); for (size_t i = 0; i < dictionary_list.size(); i++) DispatchEvent(is_transition[i] ? EventId::Transitionend : EventId::Animationend, dictionary_list[i]); } } void Element::DirtyTransformState(bool perspective_dirty, bool transform_dirty) { dirty_perspective |= perspective_dirty; dirty_transform |= transform_dirty; } void Element::UpdateTransformState() { if (!dirty_perspective && !dirty_transform) return; const ComputedValues& computed = meta->computed_values; const Vector2f pos = GetAbsoluteOffset(BoxArea::Border); const Vector2f size = GetBox().GetSize(BoxArea::Border); bool perspective_or_transform_changed = false; if (dirty_perspective) { // If perspective is set on this element, then it applies to our children. We just calculate it here, // and let the children's transform update merge it with their transform. bool had_perspective = (transform_state && transform_state->GetLocalPerspective()); float distance = computed.perspective(); Vector2f vanish = Vector2f(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f); bool have_perspective = false; if (distance > 0.0f) { have_perspective = true; // Compute the vanishing point from the perspective origin if (computed.perspective_origin_x().type == Style::PerspectiveOrigin::Percentage) vanish.x = pos.x + computed.perspective_origin_x().value * 0.01f * size.x; else vanish.x = pos.x + computed.perspective_origin_x().value; if (computed.perspective_origin_y().type == Style::PerspectiveOrigin::Percentage) vanish.y = pos.y + computed.perspective_origin_y().value * 0.01f * size.y; else vanish.y = pos.y + computed.perspective_origin_y().value; } if (have_perspective) { // Equivalent to: Translate(x,y,0) * Perspective(distance) * Translate(-x,-y,0) Matrix4f perspective = Matrix4f::FromRows( // {1, 0, -vanish.x / distance, 0}, // {0, 1, -vanish.y / distance, 0}, // {0, 0, 1, 0}, // {0, 0, -1 / distance, 1} // ); if (!transform_state) transform_state = MakeUnique(); perspective_or_transform_changed |= transform_state->SetLocalPerspective(&perspective); } else if (transform_state) transform_state->SetLocalPerspective(nullptr); perspective_or_transform_changed |= (have_perspective != had_perspective); dirty_perspective = false; } if (dirty_transform) { // We want to find the accumulated transform given all our ancestors. It is assumed here that the parent transform is already updated, // so that we only need to consider our local transform and combine it with our parent's transform and perspective matrices. bool had_transform = (transform_state && transform_state->GetTransform()); bool have_transform = false; Matrix4f transform = Matrix4f::Identity(); if (TransformPtr transform_ptr = computed.transform()) { // First find the current element's transform const int n = transform_ptr->GetNumPrimitives(); for (int i = 0; i < n; ++i) { const TransformPrimitive& primitive = transform_ptr->GetPrimitive(i); Matrix4f matrix = TransformUtilities::ResolveTransform(primitive, *this); transform *= matrix; have_transform = true; } if (have_transform) { // Compute the transform origin Vector3f transform_origin(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f, 0); if (computed.transform_origin_x().type == Style::TransformOrigin::Percentage) transform_origin.x = pos.x + computed.transform_origin_x().value * size.x * 0.01f; else transform_origin.x = pos.x + computed.transform_origin_x().value; if (computed.transform_origin_y().type == Style::TransformOrigin::Percentage) transform_origin.y = pos.y + computed.transform_origin_y().value * size.y * 0.01f; else transform_origin.y = pos.y + computed.transform_origin_y().value; transform_origin.z = computed.transform_origin_z(); // Make the transformation apply relative to the transform origin transform = Matrix4f::Translate(transform_origin) * transform * Matrix4f::Translate(-transform_origin); } // We may want to include the local offsets here, as suggested by the CSS specs, so that the local transform is applied after the offset I // believe the motivation is. Then we would need to subtract the absolute zero-offsets during geometry submit whenever we have transforms. } if (Element* parent = GetParentElement(); parent && parent->transform_state) { // Apply the parent's local perspective and transform. // @performance: If we have no local transform and no parent perspective, we can effectively just point to the parent transform instead of // copying it. const TransformState& parent_state = *parent->transform_state; if (auto parent_perspective = parent_state.GetLocalPerspective()) { transform = *parent_perspective * transform; have_transform = true; } if (auto parent_transform = parent_state.GetTransform()) { transform = *parent_transform * transform; have_transform = true; } } if (have_transform) { if (!transform_state) transform_state = MakeUnique(); perspective_or_transform_changed |= transform_state->SetTransform(&transform); } else if (transform_state) transform_state->SetTransform(nullptr); perspective_or_transform_changed |= (had_transform != have_transform); } // A change in perspective or transform will require an update to children transforms as well. if (perspective_or_transform_changed) { for (Element* child : IterateChildren(true)) child->DirtyTransformState(false, true); } // No reason to keep the transform state around if transform and perspective have been removed. if (transform_state && !transform_state->GetTransform() && !transform_state->GetLocalPerspective()) { transform_state.reset(); } } void Element::OnStyleSheetChangeRecursive() { meta->effects.DirtyEffects(); OnStyleSheetChange(); // Now dirty all of our descendants. const int num_children = GetNumChildren(true); for (int i = 0; i < num_children; ++i) GetChild(i)->OnStyleSheetChangeRecursive(); } void Element::OnDpRatioChangeRecursive() { meta->effects.DirtyEffects(); GetStyle()->DirtyPropertiesWithUnits(Unit::DP_SCALABLE_LENGTH); OnDpRatioChange(); // Now dirty all of our descendants. const int num_children = GetNumChildren(true); for (int i = 0; i < num_children; ++i) GetChild(i)->OnDpRatioChangeRecursive(); } void Element::DirtyFontFaceRecursive() { // Dirty the font size to force the element to update the face handle during the next Update(), and update any existing text geometry. meta->style.DirtyProperty(PropertyId::FontSize); meta->computed_values.font_face_handle(0); const int num_children = GetNumChildren(true); for (int i = 0; i < num_children; ++i) GetChild(i)->DirtyFontFaceRecursive(); } void Element::ClampScrollOffset() { const Vector2f new_scroll_offset = { Math::Round(Math::Min(scroll_offset.x, GetScrollWidth() - GetClientWidth())), Math::Round(Math::Min(scroll_offset.y, GetScrollHeight() - GetClientHeight())), }; if (new_scroll_offset != scroll_offset) { scroll_offset = new_scroll_offset; DirtyAbsoluteOffset(); } // At this point the scrollbars have been resolved, both in terms of size and visibility. Update their properties // now so that any visibility changes in particular are reflected immediately on the next render. Otherwise we risk // that the scrollbars renders a frame late, since changes to scrollbars can happen during layouting. meta->scroll.UpdateProperties(); } void Element::ClampScrollOffsetRecursive() { ClampScrollOffset(); const int num_children = GetNumChildren(); for (int i = 0; i < num_children; ++i) GetChild(i)->ClampScrollOffsetRecursive(); } } // namespace Rml