/* * This source file is part of libRocket, the HTML/CSS Interface Middleware * * For the latest information, see http://www.librocket.com * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "precompiled.h" #include "StyleSheetNode.h" #include #include "../../Include/Rocket/Core/Element.h" #include "StyleSheetFactory.h" #include "StyleSheetNodeSelector.h" namespace Rocket { namespace Core { StyleSheetNode::StyleSheetNode(const String& name, NodeType _type, StyleSheetNode* _parent) : name(name) { type = _type; parent = _parent; specificity = CalculateSpecificity(); selector = NULL; a = 0; b = 0; is_structurally_volatile = true; } // Constructs a structural style-sheet node. StyleSheetNode::StyleSheetNode(const String& name, StyleSheetNode* _parent, StyleSheetNodeSelector* _selector, int _a, int _b) : name(name) { type = STRUCTURAL_PSEUDO_CLASS; parent = _parent; specificity = CalculateSpecificity(); selector = _selector; a = _a; b = _b; } StyleSheetNode::~StyleSheetNode() { for (int i = 0; i < NUM_NODE_TYPES; i++) { for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j) delete (*j).second; } } // Writes the style sheet node (and all ancestors) into the stream. void StyleSheetNode::Write(Stream* stream) { if (properties.GetNumProperties() > 0) { String rule; StyleSheetNode* hierarchy = this; while (hierarchy != NULL) { switch (hierarchy->type) { case TAG: rule = " " + hierarchy->name + rule; break; case CLASS: rule = "." + hierarchy->name + rule; break; case ID: rule = "#" + hierarchy->name + rule; break; case PSEUDO_CLASS: rule = ":" + hierarchy->name + rule; break; case STRUCTURAL_PSEUDO_CLASS: rule = ":" + hierarchy->name + rule; break; default: break; } hierarchy = hierarchy->parent; } stream->Write(CreateString(1024, "%s /* specificity: %d */\n", StringUtilities::StripWhitespace(rule).c_str(), specificity)); stream->Write("{\n"); const Rocket::Core::PropertyMap& property_map = properties.GetProperties(); for (Rocket::Core::PropertyMap::const_iterator i = property_map.begin(); i != property_map.end(); ++i) { const String& name = StyleSheetSpecification::GetPropertyName(i->first); const Rocket::Core::Property& property = i->second; stream->Write(CreateString(1024, "\t%s: %s; /* specificity: %d */\n", name.c_str(), property.value.Get< String >().c_str(), property.specificity)); } stream->Write("}\n\n"); } for (size_t i = 0; i < NUM_NODE_TYPES; ++i) { for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j) (*j).second->Write(stream); } } // Merges an entire tree hierarchy into our hierarchy. bool StyleSheetNode::MergeHierarchy(StyleSheetNode* node, int specificity_offset) { // Merge the other node's properties into ours. MergeProperties(node->properties, specificity_offset); selector = node->selector; a = node->a; b = node->b; for (int i = 0; i < NUM_NODE_TYPES; i++) { for (NodeMap::iterator iterator = node->children[i].begin(); iterator != node->children[i].end(); ++iterator) { StyleSheetNode* local_node = GetChildNode((*iterator).second->name, (NodeType) i); local_node->MergeHierarchy((*iterator).second, specificity_offset); } } return true; } // Builds up a style sheet's index recursively. void StyleSheetNode::BuildIndexAndOptimizeProperties(StyleSheet::NodeIndex& styled_index, StyleSheet::NodeIndex& complete_index, const StyleSheet& style_sheet) { // If this is a tag node, then we insert it into the list of all tag nodes. Makes sense, neh? if (type == TAG) { StyleSheet::NodeIndex::iterator iterator = complete_index.find(name); if (iterator == complete_index.end()) (*complete_index.insert(StyleSheet::NodeIndex::value_type(name, StyleSheet::NodeList())).first).second.insert(this); else (*iterator).second.insert(this); } // If we are a styled node (ie, have some style attributes attached), then we insert our closest parent tag node // into the list of styled tag nodes. if (properties.GetNumProperties() > 0) { StyleSheetNode* tag_node = this; while (tag_node != NULL && tag_node->type != TAG) tag_node = tag_node->parent; if (tag_node != NULL) { StyleSheet::NodeIndex::iterator iterator = styled_index.find(tag_node->name); if (iterator == styled_index.end()) (*styled_index.insert(StyleSheet::NodeIndex::value_type(tag_node->name, StyleSheet::NodeList())).first).second.insert(tag_node); else (*iterator).second.insert(tag_node); } // Turn any decorator properties from String to DecoratorList. // This is essentially an optimization, it will work fine to skip this step and let ElementStyle::ComputeValues() do all the work. // However, when we do it here, we only need to do it once. // Note, since the user may set a new decorator through its style, we still do the conversion as necessary again in ComputeValues. if (const Property* property = properties.GetProperty(PropertyId::Decorator)) { if (property->unit == Property::STRING) { const String string_value = property->Get(); DecoratorList decorator_list = style_sheet.InstanceDecoratorsFromString(string_value, property->source, property->source_line_number); Property new_property = *property; new_property.value.Reset(std::move(decorator_list)); new_property.unit = Property::DECORATOR; properties.SetProperty(PropertyId::Decorator, new_property); } } } for (int i = 0; i < NUM_NODE_TYPES; i++) { for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j) (*j).second->BuildIndexAndOptimizeProperties(styled_index, complete_index, style_sheet); } } bool StyleSheetNode::SetStructurallyVolatileRecursive(bool ancestor_is_structural_pseudo_class) { // If any ancestor or descendant is a structural pseudo class, then we are structurally volatile. bool self_is_structural_pseudo_class = (type == STRUCTURAL_PSEUDO_CLASS); // Check our children for structural pseudo-classes. bool descendant_is_structural_pseudo_class = false; for (int i = 0; i < NUM_NODE_TYPES; ++i) { for (auto& child_name_node : children[i]) { if (child_name_node.second->SetStructurallyVolatileRecursive(self_is_structural_pseudo_class || ancestor_is_structural_pseudo_class)) descendant_is_structural_pseudo_class = true; } } is_structurally_volatile = (self_is_structural_pseudo_class || ancestor_is_structural_pseudo_class || descendant_is_structural_pseudo_class); return (self_is_structural_pseudo_class || descendant_is_structural_pseudo_class); } // Returns the name of this node. const String& StyleSheetNode::GetName() const { return name; } // Returns the specificity of this node. int StyleSheetNode::GetSpecificity() const { return specificity; } // Imports properties from a single rule definition (ie, with a shared specificity) into the node's // properties. void StyleSheetNode::ImportProperties(const PropertyDictionary& _properties, int rule_specificity) { properties.Import(_properties, specificity + rule_specificity); } // Merges properties from another node (ie, with potentially differing specificities) into the // node's properties. void StyleSheetNode::MergeProperties(const PropertyDictionary& _properties, int rule_specificity_offset) { properties.Merge(_properties, rule_specificity_offset); } // Returns the node's default properties. const PropertyDictionary& StyleSheetNode::GetProperties() const { return properties; } // Builds the properties of all of the pseudo-classes of this style sheet node into a single map. void StyleSheetNode::GetPseudoClassProperties(PseudoClassPropertyMap& pseudo_class_properties) const { PseudoClassList pseudo_class_list; for (NodeMap::const_iterator i = children[PSEUDO_CLASS].begin(); i != children[PSEUDO_CLASS].end(); ++i) (*i).second->GetPseudoClassProperties(pseudo_class_properties, pseudo_class_list); } // Adds to a list the names of this node's pseudo-classes which are deemed volatile. bool StyleSheetNode::GetVolatilePseudoClasses(PseudoClassList& volatile_pseudo_classes) const { if (type == PSEUDO_CLASS) { bool self_volatile = !children[TAG].empty(); for (NodeMap::const_iterator i = children[PSEUDO_CLASS].begin(); i != children[PSEUDO_CLASS].end(); ++i) self_volatile = (*i).second->GetVolatilePseudoClasses(volatile_pseudo_classes) | self_volatile; if (self_volatile) { volatile_pseudo_classes.insert(name); } return self_volatile; } else { for (NodeMap::const_iterator i = children[PSEUDO_CLASS].begin(); i != children[PSEUDO_CLASS].end(); ++i) (*i).second->GetVolatilePseudoClasses(volatile_pseudo_classes); } return false; } // Returns a direct child node of this node of the requested type. StyleSheetNode* StyleSheetNode::GetChildNode(const String& child_name, NodeType child_type, bool create) { // Look for a node with given name. NodeMap::iterator iterator = children[child_type].find(child_name); if (iterator != children[child_type].end()) { // Traverse into node. return (*iterator).second; } else { if (create) { StyleSheetNode* new_node = NULL; // Create the node; structural pseudo-classes require a little extra leg-work. if (child_type == STRUCTURAL_PSEUDO_CLASS) new_node = CreateStructuralChild(child_name); else new_node = new StyleSheetNode(child_name, child_type, this); if (new_node != NULL) { children[child_type][child_name] = new_node; return new_node; } } return NULL; } } // Returns true if this node is applicable to the given element, given its IDs, classes and heritage. bool StyleSheetNode::IsApplicable(const Element* element) const { // This function is called with an element that matches a style node only with the tag name. We have to determine // here whether or not it also matches the required hierarchy. // We must have a parent; if not, something's amok with the style tree. if (parent == NULL) { ROCKET_ERRORMSG("Invalid RCSS hierarchy."); return false; } // If we've hit a child of the root of the style sheet tree, then we're done; no more lineage to resolve. if (parent->type == ROOT) return true; // Determine the tag (and possibly id / class as well) of the next required parent in the RCSS hierarchy. const StyleSheetNode* parent_node = parent; const String* ancestor_id = nullptr; static std::vector ancestor_classes; static std::vector ancestor_pseudo_classes; static std::vector< const StyleSheetNode* > ancestor_structural_pseudo_classes; ancestor_classes.clear(); ancestor_pseudo_classes.clear(); ancestor_structural_pseudo_classes.clear(); while (parent_node != NULL && parent_node->type != TAG) { switch (parent_node->type) { case ID: ancestor_id = &parent_node->name; break; case CLASS: ancestor_classes.push_back(&parent_node->name); break; case PSEUDO_CLASS: ancestor_pseudo_classes.push_back(&parent_node->name); break; case STRUCTURAL_PSEUDO_CLASS: ancestor_structural_pseudo_classes.push_back(parent_node); break; default: ROCKET_ERRORMSG("Invalid RCSS hierarchy."); return false; } parent_node = parent_node->parent; } // Check for an invalid RCSS hierarchy. if (parent_node == NULL) { ROCKET_ERRORMSG("Invalid RCSS hierarchy."); return false; } // Now we know the name / class / ID / pseudo-class / structural requirements for the next ancestor requirement of // the element. So we look back through the element's ancestors to find one that matches. for (const Element* ancestor_element = element->GetParentNode(); ancestor_element != NULL; ancestor_element = ancestor_element->GetParentNode()) { // Skip this ancestor if the name of the next style node doesn't match its tag name, and one was specified. if (!parent_node->name.empty() && parent_node->name != ancestor_element->GetTagName()) continue; // Skip this ancestor if the ID of the next style node doesn't match its ID, and one was specified. if (ancestor_id && *ancestor_id != ancestor_element->GetId()) continue; // Skip this ancestor if the class of the next style node don't match its classes. bool resolved_requirements = true; for (size_t i = 0; i < ancestor_classes.size(); ++i) { if (!ancestor_element->IsClassSet(*ancestor_classes[i])) { resolved_requirements = false; break; } } if (!resolved_requirements) continue; // Skip this ancestor if the required pseudo-classes of the style node aren't set on it. resolved_requirements = true; for (size_t i = 0; i < ancestor_pseudo_classes.size(); ++i) { if (!ancestor_element->IsPseudoClassSet(*ancestor_pseudo_classes[i])) { resolved_requirements = false; break; } } if (!resolved_requirements) continue; // Skip this ancestor if the required structural pseudo-classes of the style node aren't applicable to it. resolved_requirements = true; for (size_t i = 0; i < ancestor_structural_pseudo_classes.size(); ++i) { if (!ancestor_structural_pseudo_classes[i]->selector->IsApplicable(ancestor_element, ancestor_structural_pseudo_classes[i]->a, ancestor_structural_pseudo_classes[i]->b)) { resolved_requirements = false; break; } } if (!resolved_requirements) continue; return parent_node->IsApplicable(ancestor_element); } // We hit the end of the hierarchy before matching the required ancestor, so bail. return false; } // Appends all applicable non-tag descendants of this node into the given element list. void StyleSheetNode::GetApplicableDescendants(std::vector< const StyleSheetNode* >& applicable_nodes, const Element* element) const { // Check if this node matches this element. switch (type) { ROCKET_UNUSED_SWITCH_ENUM(NUM_NODE_TYPES); case ROOT: case TAG: { // These nodes always match. } break; case CLASS: { if (!element->IsClassSet(name)) return; } break; case ID: { if (name != element->GetId()) return; } break; case PSEUDO_CLASS: { if (!element->IsPseudoClassSet(name)) return; } break; case STRUCTURAL_PSEUDO_CLASS: { if (selector == NULL) return; if (!selector->IsApplicable(element, a, b)) return; } break; } if (properties.GetNumProperties() > 0) applicable_nodes.push_back(this); for (int i = CLASS; i < NUM_NODE_TYPES; i++) { for (auto& child_tag_node : children[i]) child_tag_node.second->GetApplicableDescendants(applicable_nodes, element); } } bool StyleSheetNode::IsStructurallyVolatile() const { return is_structurally_volatile; } // Constructs a structural pseudo-class child node. StyleSheetNode* StyleSheetNode::CreateStructuralChild(const String& child_name) { StyleSheetNodeSelector* child_selector = StyleSheetFactory::GetSelector(child_name); if (child_selector == NULL) return NULL; // Parse the 'a' and 'b' values. int child_a = 1; int child_b = 0; size_t parameter_start = child_name.find("("); size_t parameter_end = child_name.find(")"); if (parameter_start != String::npos && parameter_end != String::npos) { String parameters = child_name.substr(parameter_start + 1, parameter_end - (parameter_start + 1)); // Check for 'even' or 'odd' first. if (parameters == "even") { child_a = 2; child_b = 0; } else if (parameters == "odd") { child_a = 2; child_b = 1; } else { // Alrighty; we've got an equation in the form of [[+/-]an][(+/-)b]. So, foist up, we split on 'n'. size_t n_index = parameters.find('n'); if (n_index != String::npos) { // The equation is 0n + b. So a = 0, and we only have to parse b. child_a = 0; child_b = atoi(parameters.c_str()); } else { if (n_index == 0) child_a = 1; else { String a_parameter = parameters.substr(0, n_index); if (StringUtilities::StripWhitespace(a_parameter) == "-") child_a = -1; else child_a = atoi(a_parameter.c_str()); } if (n_index == parameters.size() - 1) child_b = 0; else child_b = atoi(parameters.substr(n_index + 1).c_str()); } } } return new StyleSheetNode(child_name, this, child_selector, child_a, child_b); } // Recursively builds up a list of all pseudo-classes branching from a single node. void StyleSheetNode::GetPseudoClassProperties(PseudoClassPropertyMap& pseudo_class_properties, const PseudoClassList& ancestor_pseudo_classes) { PseudoClassList pseudo_classes(ancestor_pseudo_classes); pseudo_classes.insert(name); if (properties.GetNumProperties() > 0) { ROCKET_ASSERT(pseudo_class_properties.count(pseudo_classes) == 0); pseudo_class_properties[pseudo_classes] = properties; } for (NodeMap::const_iterator i = children[PSEUDO_CLASS].begin(); i != children[PSEUDO_CLASS].end(); ++i) (*i).second->GetPseudoClassProperties(pseudo_class_properties, pseudo_classes); } int StyleSheetNode::CalculateSpecificity() { // Calculate the specificity of just this node; tags are worth 10,000, IDs 1,000,000 and other specifiers (classes // and pseudo-classes) 100,000. int specificity = 0; switch (type) { case TAG: { if (!name.empty()) specificity = 10000; } break; case CLASS: case PSEUDO_CLASS: case STRUCTURAL_PSEUDO_CLASS: { specificity = 100000; } break; case ID: { specificity = 1000000; } break; default: { specificity = 0; } break; } // Add our parent's specificity onto ours. if (parent != NULL) specificity += parent->CalculateSpecificity(); return specificity; } } }