/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "../../Include/RmlUi/Core/Math.h"
#include "../../Include/RmlUi/Core/Types.h"
#include
#include
#include
namespace Rml {
namespace Math {
const float RMLUI_PI = 3.141592653f;
static constexpr float FZERO = 0.0001f;
// Evaluates if a number is, or close to, zero.
RMLUICORE_API bool IsZero(float value)
{
return AbsoluteValue(value) < FZERO;
}
// Evaluates if two floating-point numbers are equal, or so similar that they could be considered
// so.
RMLUICORE_API bool AreEqual(float value_0, float value_1)
{
return IsZero(value_1 - value_0);
}
// Calculates the absolute value of a number.
RMLUICORE_API float AbsoluteValue(float value)
{
return fabsf(value);
}
RMLUICORE_API int AbsoluteValue(int value)
{
return abs(value);
}
RMLUICORE_API Vector2f AbsoluteValue(Vector2f value)
{
return {fabsf(value.x), fabsf(value.y)};
}
// Calculates the cosine of an angle.
RMLUICORE_API float Cos(float angle)
{
return cosf(angle);
}
// Calculates the arc-cosine of an value.
RMLUICORE_API float ACos(float value)
{
return acosf(value);
}
// Calculates the sine of an angle.
RMLUICORE_API float Sin(float angle)
{
return sinf(angle);
}
// Calculates the arc-sine of an value.
RMLUICORE_API float ASin(float angle)
{
return asinf(angle);
}
// Calculates the tangent of an angle.
RMLUICORE_API float Tan(float angle)
{
return tanf(angle);
}
// Calculates the angle of a two-dimensional line.
RMLUICORE_API float ATan2(float y, float x)
{
return atan2f(y, x);
}
// Evaluates the natural exponential function on a value.
RMLUICORE_API float Exp(float value)
{
return expf(value);
}
// Evaluates the base-2 logarithm of an integer.
RMLUICORE_API int Log2(int value)
{
int result = 0;
while (value > 1)
{
value >>= 1;
result++;
}
return result;
}
// Converts an angle from radians to degrees.
RMLUICORE_API float RadiansToDegrees(float angle)
{
return angle * (180.0f / RMLUI_PI);
}
// Converts an angle from degrees to radians.
RMLUICORE_API float DegreesToRadians(float angle)
{
return angle * (RMLUI_PI / 180.0f);
}
// Normalises an angle in radians
RMLUICORE_API float NormaliseAngle(float angle)
{
return fmodf(angle, RMLUI_PI * 2.0f);
}
// Calculates the square root of a value.
RMLUICORE_API float SquareRoot(float value)
{
return sqrtf(value);
}
// Rounds a floating-point value to the nearest integer.
RMLUICORE_API float RoundFloat(float value)
{
return roundf(value);
}
// Rounds a floating-point value to the nearest integer.
RMLUICORE_API double RoundFloat(double value)
{
return round(value);
}
RMLUICORE_API float RoundUpFloat(float value)
{
return ceilf(value);
}
RMLUICORE_API float RoundDownFloat(float value)
{
return floorf(value);
}
// Rounds a floating-point value to the nearest integer.
RMLUICORE_API int RoundToInteger(float value)
{
if (value > 0.0f)
return RealToInteger(value + 0.5f);
return RealToInteger(value - 0.5f);
}
// Rounds a floating-point value up to the nearest integer.
RMLUICORE_API int RoundUpToInteger(float value)
{
return RealToInteger(ceilf(value));
}
// Rounds a floating-point value down to the nearest integer.
RMLUICORE_API int RoundDownToInteger(float value)
{
return RealToInteger(floorf(value));
}
RMLUICORE_API float DecomposeFractionalIntegral(float value, float* integral)
{
return modff(value, integral);
}
// Efficiently truncates a floating-point value into an integer.
RMLUICORE_API int RealToInteger(float value)
{
return int(value);
}
RMLUICORE_API void SnapToPixelGrid(float& offset, float& width)
{
const float right_edge = offset + width;
offset = Math::RoundFloat(offset);
width = Math::RoundFloat(right_edge) - offset;
}
RMLUICORE_API void SnapToPixelGrid(Vector2f& position, Vector2f& size)
{
const Vector2f bottom_right = position + size;
position = position.Round();
size = bottom_right.Round() - position;
}
RMLUICORE_API void ExpandToPixelGrid(Vector2f& position, Vector2f& size)
{
const Vector2f bottom_right = position + size;
position = Vector2f(std::floor(position.x), std::floor(position.y));
size = Vector2f(std::ceil(bottom_right.x), std::ceil(bottom_right.y)) - position;
}
// Converts the given number to a power of two, rounding up if necessary.
RMLUICORE_API int ToPowerOfTwo(int number)
{
// Check if the number is already a power of two.
if ((number & (number - 1)) == 0)
return number;
// Assuming 31 useful bits in an int here ... !
for (int i = 31; i >= 0; i--)
{
if (number & (1 << i))
{
if (i == 31)
return 1 << 31;
else
return 1 << (i + 1);
}
}
return 0;
}
// Converts from a hexadecimal digit to decimal.
RMLUICORE_API int HexToDecimal(char hex_digit)
{
if (hex_digit >= '0' && hex_digit <= '9')
return hex_digit - '0';
else if (hex_digit >= 'a' && hex_digit <= 'f')
return 10 + (hex_digit - 'a');
else if (hex_digit >= 'A' && hex_digit <= 'F')
return 10 + (hex_digit - 'A');
return -1;
}
// Generates a random floating-point value between 0 and a user-specified value.
RMLUICORE_API float RandomReal(float max_value)
{
return (rand() / (float) RAND_MAX) * max_value;
}
// Generates a random integer value between 0 and a user-specified value.
RMLUICORE_API int RandomInteger(int max_value)
{
return (rand() % max_value);
}
// Generates a random boolean value, with equal chance of true or false.
RMLUICORE_API bool RandomBool()
{
return RandomInteger(2) == 1;
}
template <>
Vector2f Max(Vector2f a, Vector2f b)
{
return Vector2f(Max(a.x, b.x), Max(a.y, b.y));
}
template <>
Vector2i Max(Vector2i a, Vector2i b)
{
return Vector2i(Max(a.x, b.x), Max(a.y, b.y));
}
template <>
Vector2f Min(Vector2f a, Vector2f b)
{
return Vector2f(Min(a.x, b.x), Min(a.y, b.y));
}
template <>
Vector2i Min(Vector2i a, Vector2i b)
{
return Vector2i(Min(a.x, b.x), Min(a.y, b.y));
}
template <>
Vector2f Clamp(Vector2f value, Vector2f min, Vector2f max)
{
return Vector2f(Clamp(value.x, min.x, max.x), Clamp(value.y, min.y, max.y));
}
template <>
Vector2i Clamp(Vector2i value, Vector2i min, Vector2i max)
{
return Vector2i(Clamp(value.x, min.x, max.x), Clamp(value.y, min.y, max.y));
}
Colourb RoundedLerp(float t, Colourb v0, Colourb v1)
{
return Colourb{
static_cast(RoundToInteger(Lerp(t,
static_cast(v0[0]), static_cast(v1[0])))),
static_cast(RoundToInteger(Lerp(t,
static_cast(v0[1]), static_cast(v1[1])))),
static_cast(RoundToInteger(Lerp(t,
static_cast(v0[2]), static_cast(v1[2])))),
static_cast(RoundToInteger(Lerp(t,
static_cast(v0[3]), static_cast(v1[3]))))
};
}
}
} // namespace Rml