/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2014 Markus Schöngart * Copyright (c) 2019-2023 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "TransformUtilities.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/TransformPrimitive.h" namespace Rml { using namespace Transforms; static Vector3f Combine(const Vector3f a, const Vector3f b, float a_scale, float b_scale) { Vector3f result; result.x = a_scale * a.x + b_scale * b.x; result.y = a_scale * a.y + b_scale * b.y; result.z = a_scale * a.z + b_scale * b.z; return result; } // Interpolate two quaternions a, b with weight alpha [0, 1] static Vector4f QuaternionSlerp(const Vector4f a, const Vector4f b, float alpha) { using namespace Math; const float eps = 0.9995f; float dot = a.DotProduct(b); dot = Clamp(dot, -1.f, 1.f); if (dot > eps) return a; float theta = ACos(dot); float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot); float a_scale = Cos(alpha * theta) - dot * w; Vector4f result; for (int i = 0; i < 4; i++) { result[i] = a[i] * a_scale + b[i] * w; } return result; } // Resolve a numeric property value with the element's width as relative base value. static inline float ResolveWidth(NumericValue value, Element& e) noexcept { if (value.unit == Unit::PX || value.unit == Unit::NUMBER) return value.number; return e.ResolveNumericValue(value, e.GetBox().GetSize(BoxArea::Border).x); } // Resolve a numeric property value with the element's height as relative base value. static inline float ResolveHeight(NumericValue value, Element& e) noexcept { if (value.unit == Unit::PX || value.unit == Unit::NUMBER) return value.number; return e.ResolveNumericValue(value, e.GetBox().GetSize(BoxArea::Border).y); } // Resolve a numeric property value with the element's depth as relative base value. static inline float ResolveDepth(NumericValue value, Element& e) noexcept { if (value.unit == Unit::PX || value.unit == Unit::NUMBER) return value.number; Vector2f size = e.GetBox().GetSize(BoxArea::Border); return e.ResolveNumericValue(value, Math::Max(size.x, size.y)); } struct SetIdentityVisitor { template void operator()(Transforms::ResolvedPrimitive& p) { for (auto& value : p.values) value = 0.0f; } template void operator()(Transforms::UnresolvedPrimitive& p) { for (auto& value : p.values) value.number = 0.0f; } void operator()(Transforms::Matrix2D& p) { for (int i = 0; i < 6; i++) p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f); } void operator()(Transforms::Matrix3D& p) { for (int i = 0; i < 16; i++) p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f); } void operator()(Transforms::ScaleX& p) { p.values[0] = 1; } void operator()(Transforms::ScaleY& p) { p.values[0] = 1; } void operator()(Transforms::ScaleZ& p) { p.values[0] = 1; } void operator()(Transforms::Scale2D& p) { p.values[0] = p.values[1] = 1; } void operator()(Transforms::Scale3D& p) { p.values[0] = p.values[1] = p.values[2] = 1; } void operator()(Transforms::DecomposedMatrix4& p) { p.perspective = Vector4f(0, 0, 0, 1); p.quaternion = Vector4f(0, 0, 0, 1); p.translation = Vector3f(0, 0, 0); p.scale = Vector3f(1, 1, 1); p.skew = Vector3f(0, 0, 0); } void run(TransformPrimitive& primitive) { switch (primitive.type) { case TransformPrimitive::MATRIX2D: this->operator()(primitive.matrix_2d); break; case TransformPrimitive::MATRIX3D: this->operator()(primitive.matrix_3d); break; case TransformPrimitive::TRANSLATEX: this->operator()(primitive.translate_x); break; case TransformPrimitive::TRANSLATEY: this->operator()(primitive.translate_y); break; case TransformPrimitive::TRANSLATEZ: this->operator()(primitive.translate_z); break; case TransformPrimitive::TRANSLATE2D: this->operator()(primitive.translate_2d); break; case TransformPrimitive::TRANSLATE3D: this->operator()(primitive.translate_3d); break; case TransformPrimitive::SCALEX: this->operator()(primitive.scale_x); break; case TransformPrimitive::SCALEY: this->operator()(primitive.scale_y); break; case TransformPrimitive::SCALEZ: this->operator()(primitive.scale_z); break; case TransformPrimitive::SCALE2D: this->operator()(primitive.scale_2d); break; case TransformPrimitive::SCALE3D: this->operator()(primitive.scale_3d); break; case TransformPrimitive::ROTATEX: this->operator()(primitive.rotate_x); break; case TransformPrimitive::ROTATEY: this->operator()(primitive.rotate_y); break; case TransformPrimitive::ROTATEZ: this->operator()(primitive.rotate_z); break; case TransformPrimitive::ROTATE2D: this->operator()(primitive.rotate_2d); break; case TransformPrimitive::ROTATE3D: this->operator()(primitive.rotate_3d); break; case TransformPrimitive::SKEWX: this->operator()(primitive.skew_x); break; case TransformPrimitive::SKEWY: this->operator()(primitive.skew_y); break; case TransformPrimitive::SKEW2D: this->operator()(primitive.skew_2d); break; case TransformPrimitive::PERSPECTIVE: this->operator()(primitive.perspective); break; case TransformPrimitive::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break; } } }; void TransformUtilities::SetIdentity(TransformPrimitive& p) noexcept { SetIdentityVisitor{}.run(p); } struct ResolveTransformVisitor { Matrix4f& m; Element& e; void operator()(const Transforms::Matrix2D& p) { m = Matrix4f::FromRows(Vector4f(p.values[0], p.values[2], 0, p.values[4]), Vector4f(p.values[1], p.values[3], 0, p.values[5]), Vector4f(0, 0, 1, 0), Vector4f(0, 0, 0, 1)); } void operator()(const Transforms::Matrix3D& p) { m = Matrix4f::FromColumns(Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]), Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]), Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]), Vector4f(p.values[12], p.values[13], p.values[14], p.values[15])); } void operator()(const Transforms::TranslateX& p) { m = Matrix4f::TranslateX(ResolveWidth(p.values[0], e)); } void operator()(const Transforms::TranslateY& p) { m = Matrix4f::TranslateY(ResolveHeight(p.values[0], e)); } void operator()(const Transforms::TranslateZ& p) { m = Matrix4f::TranslateZ(ResolveDepth(p.values[0], e)); } void operator()(const Transforms::Translate2D& p) { m = Matrix4f::Translate(ResolveWidth(p.values[0], e), ResolveHeight(p.values[1], e), 0); } void operator()(const Transforms::Translate3D& p) { m = Matrix4f::Translate(ResolveWidth(p.values[0], e), ResolveHeight(p.values[1], e), ResolveDepth(p.values[2], e)); } void operator()(const Transforms::ScaleX& p) { m = Matrix4f::ScaleX(p.values[0]); } void operator()(const Transforms::ScaleY& p) { m = Matrix4f::ScaleY(p.values[0]); } void operator()(const Transforms::ScaleZ& p) { m = Matrix4f::ScaleZ(p.values[0]); } void operator()(const Transforms::Scale2D& p) { m = Matrix4f::Scale(p.values[0], p.values[1], 1); } void operator()(const Transforms::Scale3D& p) { m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]); } void operator()(const Transforms::RotateX& p) { m = Matrix4f::RotateX(p.values[0]); } void operator()(const Transforms::RotateY& p) { m = Matrix4f::RotateY(p.values[0]); } void operator()(const Transforms::RotateZ& p) { m = Matrix4f::RotateZ(p.values[0]); } void operator()(const Transforms::Rotate2D& p) { m = Matrix4f::RotateZ(p.values[0]); } void operator()(const Transforms::Rotate3D& p) { m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]); } void operator()(const Transforms::SkewX& p) { m = Matrix4f::SkewX(p.values[0]); } void operator()(const Transforms::SkewY& p) { m = Matrix4f::SkewY(p.values[0]); } void operator()(const Transforms::Skew2D& p) { m = Matrix4f::Skew(p.values[0], p.values[1]); } void operator()(const Transforms::DecomposedMatrix4& p) { m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion); } void operator()(const Transforms::Perspective& p) { m = Matrix4f::Perspective(ResolveDepth(p.values[0], e)); } void run(const TransformPrimitive& primitive) { switch (primitive.type) { case TransformPrimitive::MATRIX2D: this->operator()(primitive.matrix_2d); break; case TransformPrimitive::MATRIX3D: this->operator()(primitive.matrix_3d); break; case TransformPrimitive::TRANSLATEX: this->operator()(primitive.translate_x); break; case TransformPrimitive::TRANSLATEY: this->operator()(primitive.translate_y); break; case TransformPrimitive::TRANSLATEZ: this->operator()(primitive.translate_z); break; case TransformPrimitive::TRANSLATE2D: this->operator()(primitive.translate_2d); break; case TransformPrimitive::TRANSLATE3D: this->operator()(primitive.translate_3d); break; case TransformPrimitive::SCALEX: this->operator()(primitive.scale_x); break; case TransformPrimitive::SCALEY: this->operator()(primitive.scale_y); break; case TransformPrimitive::SCALEZ: this->operator()(primitive.scale_z); break; case TransformPrimitive::SCALE2D: this->operator()(primitive.scale_2d); break; case TransformPrimitive::SCALE3D: this->operator()(primitive.scale_3d); break; case TransformPrimitive::ROTATEX: this->operator()(primitive.rotate_x); break; case TransformPrimitive::ROTATEY: this->operator()(primitive.rotate_y); break; case TransformPrimitive::ROTATEZ: this->operator()(primitive.rotate_z); break; case TransformPrimitive::ROTATE2D: this->operator()(primitive.rotate_2d); break; case TransformPrimitive::ROTATE3D: this->operator()(primitive.rotate_3d); break; case TransformPrimitive::SKEWX: this->operator()(primitive.skew_x); break; case TransformPrimitive::SKEWY: this->operator()(primitive.skew_y); break; case TransformPrimitive::SKEW2D: this->operator()(primitive.skew_2d); break; case TransformPrimitive::PERSPECTIVE: this->operator()(primitive.perspective); break; case TransformPrimitive::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break; } } }; Matrix4f TransformUtilities::ResolveTransform(const TransformPrimitive& p, Element& e) noexcept { Matrix4f m; ResolveTransformVisitor visitor{m, e}; visitor.run(p); return m; } struct PrepareVisitor { Element& e; bool operator()(TranslateX& p) { p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Unit::PX}; return true; } bool operator()(TranslateY& p) { p.values[0] = NumericValue{ResolveHeight(p.values[0], e), Unit::PX}; return true; } bool operator()(TranslateZ& p) { p.values[0] = NumericValue{ResolveDepth(p.values[0], e), Unit::PX}; return true; } bool operator()(Translate2D& p) { p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Unit::PX}; p.values[1] = NumericValue{ResolveHeight(p.values[1], e), Unit::PX}; return true; } bool operator()(Translate3D& p) { p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Unit::PX}; p.values[1] = NumericValue{ResolveHeight(p.values[1], e), Unit::PX}; p.values[2] = NumericValue{ResolveDepth(p.values[2], e), Unit::PX}; return true; } template bool operator()(ResolvedPrimitive& /*p*/) { // No conversion needed for resolved transforms (with some exceptions below) return true; } bool operator()(DecomposedMatrix4& /*p*/) { return true; } bool operator()(Rotate3D& p) { // Rotate3D can be interpolated if and only if their rotation axes point in the same direction. // We normalize the rotation vector here for easy comparison, and return true here. Later on we make the // pair-wise check in 'TryConvertToMatchingGenericType' to see if we need to decompose. Vector3f vec = Vector3f(p.values[0], p.values[1], p.values[2]).Normalise(); p.values[0] = vec.x; p.values[1] = vec.y; p.values[2] = vec.z; return true; } bool operator()(Matrix3D& /*p*/) { // Matrices must be decomposed for interpolation return false; } bool operator()(Matrix2D& /*p*/) { // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4 return false; } bool operator()(Perspective& /*p*/) { // Perspective must be decomposed return false; } bool run(TransformPrimitive& primitive) { switch (primitive.type) { case TransformPrimitive::MATRIX2D: return this->operator()(primitive.matrix_2d); case TransformPrimitive::MATRIX3D: return this->operator()(primitive.matrix_3d); case TransformPrimitive::TRANSLATEX: return this->operator()(primitive.translate_x); case TransformPrimitive::TRANSLATEY: return this->operator()(primitive.translate_y); case TransformPrimitive::TRANSLATEZ: return this->operator()(primitive.translate_z); case TransformPrimitive::TRANSLATE2D: return this->operator()(primitive.translate_2d); case TransformPrimitive::TRANSLATE3D: return this->operator()(primitive.translate_3d); case TransformPrimitive::SCALEX: return this->operator()(primitive.scale_x); case TransformPrimitive::SCALEY: return this->operator()(primitive.scale_y); case TransformPrimitive::SCALEZ: return this->operator()(primitive.scale_z); case TransformPrimitive::SCALE2D: return this->operator()(primitive.scale_2d); case TransformPrimitive::SCALE3D: return this->operator()(primitive.scale_3d); case TransformPrimitive::ROTATEX: return this->operator()(primitive.rotate_x); case TransformPrimitive::ROTATEY: return this->operator()(primitive.rotate_y); case TransformPrimitive::ROTATEZ: return this->operator()(primitive.rotate_z); case TransformPrimitive::ROTATE2D: return this->operator()(primitive.rotate_2d); case TransformPrimitive::ROTATE3D: return this->operator()(primitive.rotate_3d); case TransformPrimitive::SKEWX: return this->operator()(primitive.skew_x); case TransformPrimitive::SKEWY: return this->operator()(primitive.skew_y); case TransformPrimitive::SKEW2D: return this->operator()(primitive.skew_2d); case TransformPrimitive::PERSPECTIVE: return this->operator()(primitive.perspective); case TransformPrimitive::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4); } RMLUI_ASSERT(false); return false; } }; bool TransformUtilities::PrepareForInterpolation(TransformPrimitive& p, Element& e) noexcept { return PrepareVisitor{e}.run(p); } enum class GenericType { None, Scale3D, Translate3D, Rotate3D }; struct GetGenericTypeVisitor { GenericType run(const TransformPrimitive& primitive) { switch (primitive.type) { case TransformPrimitive::TRANSLATEX: case TransformPrimitive::TRANSLATEY: case TransformPrimitive::TRANSLATEZ: case TransformPrimitive::TRANSLATE2D: case TransformPrimitive::TRANSLATE3D: return GenericType::Translate3D; case TransformPrimitive::SCALEX: case TransformPrimitive::SCALEY: case TransformPrimitive::SCALEZ: case TransformPrimitive::SCALE2D: case TransformPrimitive::SCALE3D: return GenericType::Scale3D; case TransformPrimitive::ROTATEX: case TransformPrimitive::ROTATEY: case TransformPrimitive::ROTATEZ: case TransformPrimitive::ROTATE2D: case TransformPrimitive::ROTATE3D: return GenericType::Rotate3D; case TransformPrimitive::MATRIX2D: case TransformPrimitive::MATRIX3D: case TransformPrimitive::SKEWX: case TransformPrimitive::SKEWY: case TransformPrimitive::SKEW2D: case TransformPrimitive::PERSPECTIVE: case TransformPrimitive::DECOMPOSEDMATRIX4: return GenericType::None; } RMLUI_ASSERT(false); return GenericType::None; } }; struct ConvertToGenericTypeVisitor { Translate3D operator()(const TranslateX& p) { return Translate3D{p.values[0], {0.0f, Unit::PX}, {0.0f, Unit::PX}}; } Translate3D operator()(const TranslateY& p) { return Translate3D{{0.0f, Unit::PX}, p.values[0], {0.0f, Unit::PX}}; } Translate3D operator()(const TranslateZ& p) { return Translate3D{{0.0f, Unit::PX}, {0.0f, Unit::PX}, p.values[0]}; } Translate3D operator()(const Translate2D& p) { return Translate3D{p.values[0], p.values[1], {0.0f, Unit::PX}}; } Scale3D operator()(const ScaleX& p) { return Scale3D{p.values[0], 1.0f, 1.0f}; } Scale3D operator()(const ScaleY& p) { return Scale3D{1.0f, p.values[0], 1.0f}; } Scale3D operator()(const ScaleZ& p) { return Scale3D{1.0f, 1.0f, p.values[0]}; } Scale3D operator()(const Scale2D& p) { return Scale3D{p.values[0], p.values[1], 1.0f}; } Rotate3D operator()(const RotateX& p) { return Rotate3D{1, 0, 0, p.values[0], Unit::RAD}; } Rotate3D operator()(const RotateY& p) { return Rotate3D{0, 1, 0, p.values[0], Unit::RAD}; } Rotate3D operator()(const RotateZ& p) { return Rotate3D{0, 0, 1, p.values[0], Unit::RAD}; } Rotate3D operator()(const Rotate2D& p) { return Rotate3D{0, 0, 1, p.values[0], Unit::RAD}; } template TransformPrimitive operator()(const T& p) { RMLUI_ERROR; return p; } TransformPrimitive run(const TransformPrimitive& primitive) { TransformPrimitive result = primitive; // clang-format off switch (primitive.type) { case TransformPrimitive::TRANSLATEX: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_x); break; case TransformPrimitive::TRANSLATEY: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_y); break; case TransformPrimitive::TRANSLATEZ: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_z); break; case TransformPrimitive::TRANSLATE2D: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_2d); break; case TransformPrimitive::TRANSLATE3D: break; case TransformPrimitive::SCALEX: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_x); break; case TransformPrimitive::SCALEY: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_y); break; case TransformPrimitive::SCALEZ: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_z); break; case TransformPrimitive::SCALE2D: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_2d); break; case TransformPrimitive::SCALE3D: break; case TransformPrimitive::ROTATEX: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_x); break; case TransformPrimitive::ROTATEY: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_y); break; case TransformPrimitive::ROTATEZ: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_z); break; case TransformPrimitive::ROTATE2D: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_2d); break; case TransformPrimitive::ROTATE3D: break; default: RMLUI_ASSERT(false); break; } // clang-format on return result; } }; static bool CanInterpolateRotate3D(const Rotate3D& p0, const Rotate3D& p1) { // Rotate3D can only be interpolated if and only if their rotation axes point in the same direction. // Assumes each rotation axis has already been normalized. auto& v0 = p0.values; auto& v1 = p1.values; return v0[0] == v1[0] && v0[1] == v1[1] && v0[2] == v1[2]; } bool TransformUtilities::TryConvertToMatchingGenericType(TransformPrimitive& p0, TransformPrimitive& p1) noexcept { if (p0.type == p1.type) { if (p0.type == TransformPrimitive::ROTATE3D && !CanInterpolateRotate3D(p0.rotate_3d, p1.rotate_3d)) return false; return true; } GenericType c0 = GetGenericTypeVisitor{}.run(p0); GenericType c1 = GetGenericTypeVisitor{}.run(p1); if (c0 == c1 && c0 != GenericType::None) { TransformPrimitive new_p0 = ConvertToGenericTypeVisitor{}.run(p0); TransformPrimitive new_p1 = ConvertToGenericTypeVisitor{}.run(p1); RMLUI_ASSERT(new_p0.type == new_p1.type); if (new_p0.type == TransformPrimitive::ROTATE3D && !CanInterpolateRotate3D(new_p0.rotate_3d, new_p1.rotate_3d)) return false; p0 = new_p0; p1 = new_p1; return true; } return false; } struct InterpolateVisitor { const TransformPrimitive& other_variant; float alpha; template bool Interpolate(ResolvedPrimitive& p0, const ResolvedPrimitive& p1) { for (size_t i = 0; i < N; i++) p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha; return true; } template bool Interpolate(UnresolvedPrimitive& p0, const UnresolvedPrimitive& p1) { // Assumes that the underlying units have been resolved (e.g. to pixels) for (size_t i = 0; i < N; i++) p0.values[i].number = p0.values[i].number * (1.0f - alpha) + p1.values[i].number * alpha; return true; } bool Interpolate(Rotate3D& p0, const Rotate3D& p1) { RMLUI_ASSERT(CanInterpolateRotate3D(p0, p1)); // We can only interpolate rotate3d if their rotation axes align. That should be the case if we get here, // otherwise the generic type matching should decompose them. Thus, we only need to interpolate // the angle value here. p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha; return true; } bool Interpolate(Matrix2D& /*p0*/, const Matrix2D& /*p1*/) { RMLUI_ERROR; return false; /* Error if we get here, see PrepareForInterpolation() */ } bool Interpolate(Matrix3D& /*p0*/, const Matrix3D& /*p1*/) { RMLUI_ERROR; return false; /* Error if we get here, see PrepareForInterpolation() */ } bool Interpolate(Perspective& /*p0*/, const Perspective& /*p1*/) { RMLUI_ERROR; return false; /* Error if we get here, see PrepareForInterpolation() */ } bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1) { p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha; p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha); p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha; p0.scale = p0.scale * (1.0f - alpha) + p1.scale * alpha; p0.skew = p0.skew * (1.0f - alpha) + p1.skew * alpha; return true; } bool run(TransformPrimitive& variant) { RMLUI_ASSERT(variant.type == other_variant.type); switch (variant.type) { case TransformPrimitive::MATRIX2D: return Interpolate(variant.matrix_2d, other_variant.matrix_2d); case TransformPrimitive::MATRIX3D: return Interpolate(variant.matrix_3d, other_variant.matrix_3d); case TransformPrimitive::TRANSLATEX: return Interpolate(variant.translate_x, other_variant.translate_x); case TransformPrimitive::TRANSLATEY: return Interpolate(variant.translate_y, other_variant.translate_y); case TransformPrimitive::TRANSLATEZ: return Interpolate(variant.translate_z, other_variant.translate_z); case TransformPrimitive::TRANSLATE2D: return Interpolate(variant.translate_2d, other_variant.translate_2d); case TransformPrimitive::TRANSLATE3D: return Interpolate(variant.translate_3d, other_variant.translate_3d); case TransformPrimitive::SCALEX: return Interpolate(variant.scale_x, other_variant.scale_x); case TransformPrimitive::SCALEY: return Interpolate(variant.scale_y, other_variant.scale_y); case TransformPrimitive::SCALEZ: return Interpolate(variant.scale_z, other_variant.scale_z); case TransformPrimitive::SCALE2D: return Interpolate(variant.scale_2d, other_variant.scale_2d); case TransformPrimitive::SCALE3D: return Interpolate(variant.scale_3d, other_variant.scale_3d); case TransformPrimitive::ROTATEX: return Interpolate(variant.rotate_x, other_variant.rotate_x); case TransformPrimitive::ROTATEY: return Interpolate(variant.rotate_y, other_variant.rotate_y); case TransformPrimitive::ROTATEZ: return Interpolate(variant.rotate_z, other_variant.rotate_z); case TransformPrimitive::ROTATE2D: return Interpolate(variant.rotate_2d, other_variant.rotate_2d); case TransformPrimitive::ROTATE3D: return Interpolate(variant.rotate_3d, other_variant.rotate_3d); case TransformPrimitive::SKEWX: return Interpolate(variant.skew_x, other_variant.skew_x); case TransformPrimitive::SKEWY: return Interpolate(variant.skew_y, other_variant.skew_y); case TransformPrimitive::SKEW2D: return Interpolate(variant.skew_2d, other_variant.skew_2d); case TransformPrimitive::PERSPECTIVE: return Interpolate(variant.perspective, other_variant.perspective); case TransformPrimitive::DECOMPOSEDMATRIX4: return Interpolate(variant.decomposed_matrix_4, other_variant.decomposed_matrix_4); } RMLUI_ASSERT(false); return false; } }; bool TransformUtilities::InterpolateWith(TransformPrimitive& target, const TransformPrimitive& other, float alpha) noexcept { if (target.type != other.type) return false; bool result = InterpolateVisitor{other, alpha}.run(target); return result; } template static String ToString(const Transforms::ResolvedPrimitive& p, const String& unit, bool rad_to_deg = false, bool only_unit_on_last_value = false) noexcept { float multiplier = 1.0f; String tmp; String result = "("; for (size_t i = 0; i < N; i++) { if (only_unit_on_last_value && i < N - 1) multiplier = 1.0f; else if (rad_to_deg) multiplier = 180.f / Math::RMLUI_PI; if (TypeConverter::Convert(p.values[i] * multiplier, tmp)) result += tmp; if (!unit.empty() && (!only_unit_on_last_value || (i == N - 1))) result += unit; if (i < N - 1) result += ", "; } result += ")"; return result; } static inline String ToString(NumericValue value) noexcept { return ToString(value.number) + ToString(value.unit); } template static inline String ToString(const Transforms::UnresolvedPrimitive& p) noexcept { String result = "("; for (size_t i = 0; i < N; i++) { result += ToString(p.values[i]); if (i != N - 1) result += ", "; } result += ")"; return result; } static inline String ToString(const Transforms::DecomposedMatrix4& p) noexcept { static const Transforms::DecomposedMatrix4 d{Vector4f(0, 0, 0, 1), Vector4f(0, 0, 0, 1), Vector3f(0, 0, 0), Vector3f(1, 1, 1), Vector3f(0, 0, 0)}; String tmp; String result; if (p.perspective != d.perspective && TypeConverter::Convert(p.perspective, tmp)) result += "perspective(" + tmp + "), "; if (p.quaternion != d.quaternion && TypeConverter::Convert(p.quaternion, tmp)) result += "quaternion(" + tmp + "), "; if (p.translation != d.translation && TypeConverter::Convert(p.translation, tmp)) result += "translation(" + tmp + "), "; if (p.scale != d.scale && TypeConverter::Convert(p.scale, tmp)) result += "scale(" + tmp + "), "; if (p.skew != d.skew && TypeConverter::Convert(p.skew, tmp)) result += "skew(" + tmp + "), "; if (result.size() > 2) result.resize(result.size() - 2); result = "decomposedMatrix3d{ " + result + " }"; return result; } // clang-format off static inline String ToString(const Transforms::Matrix2D& p) noexcept { return "matrix" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::Matrix3D& p) noexcept { return "matrix3d" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::TranslateX& p) noexcept { return "translateX" + ToString(static_cast&>(p)); } static inline String ToString(const Transforms::TranslateY& p) noexcept { return "translateY" + ToString(static_cast&>(p)); } static inline String ToString(const Transforms::TranslateZ& p) noexcept { return "translateZ" + ToString(static_cast&>(p)); } static inline String ToString(const Transforms::Translate2D& p) noexcept { return "translate" + ToString(static_cast&>(p)); } static inline String ToString(const Transforms::Translate3D& p) noexcept { return "translate3d" + ToString(static_cast&>(p)); } static inline String ToString(const Transforms::ScaleX& p) noexcept { return "scaleX" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::ScaleY& p) noexcept { return "scaleY" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::ScaleZ& p) noexcept { return "scaleZ" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::Scale2D& p) noexcept { return "scale" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::Scale3D& p) noexcept { return "scale3d" + ToString(static_cast&>(p), ""); } static inline String ToString(const Transforms::RotateX& p) noexcept { return "rotateX" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::RotateY& p) noexcept { return "rotateY" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::RotateZ& p) noexcept { return "rotateZ" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::Rotate2D& p) noexcept { return "rotate" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::Rotate3D& p) noexcept { return "rotate3d" + ToString(static_cast&>(p), "deg", true, true); } static inline String ToString(const Transforms::SkewX& p) noexcept { return "skewX" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::SkewY& p) noexcept { return "skewY" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::Skew2D& p) noexcept { return "skew" + ToString(static_cast&>(p), "deg", true); } static inline String ToString(const Transforms::Perspective& p) noexcept { return "perspective" + ToString(static_cast&>(p)); } // clang-format on struct ToStringVisitor { String run(const TransformPrimitive& variant) { switch (variant.type) { case TransformPrimitive::MATRIX2D: return ToString(variant.matrix_2d); case TransformPrimitive::MATRIX3D: return ToString(variant.matrix_3d); case TransformPrimitive::TRANSLATEX: return ToString(variant.translate_x); case TransformPrimitive::TRANSLATEY: return ToString(variant.translate_y); case TransformPrimitive::TRANSLATEZ: return ToString(variant.translate_z); case TransformPrimitive::TRANSLATE2D: return ToString(variant.translate_2d); case TransformPrimitive::TRANSLATE3D: return ToString(variant.translate_3d); case TransformPrimitive::SCALEX: return ToString(variant.scale_x); case TransformPrimitive::SCALEY: return ToString(variant.scale_y); case TransformPrimitive::SCALEZ: return ToString(variant.scale_z); case TransformPrimitive::SCALE2D: return ToString(variant.scale_2d); case TransformPrimitive::SCALE3D: return ToString(variant.scale_3d); case TransformPrimitive::ROTATEX: return ToString(variant.rotate_x); case TransformPrimitive::ROTATEY: return ToString(variant.rotate_y); case TransformPrimitive::ROTATEZ: return ToString(variant.rotate_z); case TransformPrimitive::ROTATE2D: return ToString(variant.rotate_2d); case TransformPrimitive::ROTATE3D: return ToString(variant.rotate_3d); case TransformPrimitive::SKEWX: return ToString(variant.skew_x); case TransformPrimitive::SKEWY: return ToString(variant.skew_y); case TransformPrimitive::SKEW2D: return ToString(variant.skew_2d); case TransformPrimitive::PERSPECTIVE: return ToString(variant.perspective); case TransformPrimitive::DECOMPOSEDMATRIX4: return ToString(variant.decomposed_matrix_4); } RMLUI_ASSERT(false); return String(); } }; String TransformUtilities::ToString(const TransformPrimitive& p) noexcept { String result = ToStringVisitor{}.run(p); return result; } bool TransformUtilities::Decompose(Transforms::DecomposedMatrix4& d, const Matrix4f& m) noexcept { // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices const float eps = 0.0005f; if (Math::Absolute(m[3][3]) < eps) return false; // Perspective matrix Matrix4f p = m; for (int i = 0; i < 3; i++) p[i][3] = 0; p[3][3] = 1; if (Math::Absolute(p.Determinant()) < eps) return false; if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0) { auto rhs = m.GetColumn(3); Matrix4f p_inv = p; if (!p_inv.Invert()) return false; auto& p_inv_trans = p.Transpose(); d.perspective = p_inv_trans * rhs; } else { d.perspective[0] = d.perspective[1] = d.perspective[2] = 0; d.perspective[3] = 1; } for (int i = 0; i < 3; i++) d.translation[i] = m[3][i]; Vector3f row[3]; for (int i = 0; i < 3; i++) { row[i][0] = m[i][0]; row[i][1] = m[i][1]; row[i][2] = m[i][2]; } d.scale[0] = row[0].Magnitude(); row[0] = row[0].Normalise(); d.skew[0] = row[0].DotProduct(row[1]); row[1] = Combine(row[1], row[0], 1, -d.skew[0]); d.scale[1] = row[1].Magnitude(); row[1] = row[1].Normalise(); d.skew[0] /= d.scale[1]; d.skew[1] = row[0].DotProduct(row[2]); row[2] = Combine(row[2], row[0], 1, -d.skew[1]); d.skew[2] = row[1].DotProduct(row[2]); row[2] = Combine(row[2], row[1], 1, -d.skew[2]); d.scale[2] = row[2].Magnitude(); row[2] = row[2].Normalise(); d.skew[2] /= d.scale[2]; d.skew[1] /= d.scale[2]; // Check if we need to flip coordinate system auto pdum3 = row[1].CrossProduct(row[2]); if (row[0].DotProduct(pdum3) < 0.0f) { for (int i = 0; i < 3; i++) { d.scale[i] *= -1.f; row[i] *= -1.f; } } d.quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f)); d.quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f)); d.quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f)); d.quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f)); if (row[2][1] > row[1][2]) d.quaternion[0] *= -1.f; if (row[0][2] > row[2][0]) d.quaternion[1] *= -1.f; if (row[1][0] > row[0][1]) d.quaternion[2] *= -1.f; return true; } } // namespace Rml