#include "..\..\Include\Rocket\Core\Element.h" /* * This source file is part of libRocket, the HTML/CSS Interface Middleware * * For the latest information, see http://www.librocket.com * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "precompiled.h" #include "../../Include/Rocket/Core/Element.h" #include "../../Include/Rocket/Core/Dictionary.h" #include "../../Include/Rocket/Core/TransformPrimitive.h" #include #include #include "Clock.h" #include "ElementAnimation.h" #include "ElementBackground.h" #include "ElementBorder.h" #include "ElementDefinition.h" #include "ElementStyle.h" #include "EventDispatcher.h" #include "ElementDecoration.h" #include "FontFaceHandle.h" #include "LayoutEngine.h" #include "PluginRegistry.h" #include "StyleSheetParser.h" #include "XMLParseTools.h" #include "../../Include/Rocket/Core/Core.h" namespace Rocket { namespace Core { /** STL function object for sorting elements by z-type (ie, float-types before general types, etc). @author Peter Curry */ class ElementSortZOrder { public: bool operator()(const std::pair< Element*, float >& lhs, const std::pair< Element*, float >& rhs) const { return lhs.second < rhs.second; } }; /** STL function object for sorting elements by z-index property. @author Peter Curry */ class ElementSortZIndex { public: bool operator()(const Element* lhs, const Element* rhs) const { // Check the z-index. return lhs->GetZIndex() < rhs->GetZIndex(); } }; /// Constructs a new libRocket element. Element::Element(const String& _tag) : relative_offset_base(0, 0), relative_offset_position(0, 0), absolute_offset(0, 0), scroll_offset(0, 0), boxes(1), content_offset(0, 0), content_box(0, 0), transform_state(), transform_state_perspective_dirty(true), transform_state_transform_dirty(true), transform_state_parent_transform_dirty(true), dirty_animation(false) { tag = _tag.ToLower(); parent = NULL; focus = NULL; instancer = NULL; owner_document = NULL; offset_fixed = false; offset_parent = NULL; offset_dirty = true; client_area = Box::PADDING; num_non_dom_children = 0; visible = true; z_index = 0; local_stacking_context = false; local_stacking_context_forced = false; stacking_context_dirty = false; font_face_handle = NULL; clipping_ignore_depth = 0; clipping_enabled = false; clipping_state_dirty = true; event_dispatcher = new EventDispatcher(this); style = new ElementStyle(this); background = new ElementBackground(this); border = new ElementBorder(this); decoration = new ElementDecoration(this); scroll = new ElementScroll(this); } Element::~Element() { ROCKET_ASSERT(parent == NULL); PluginRegistry::NotifyElementDestroy(this); // Delete the scroll funtionality before we delete the children! delete scroll; while (!children.empty()) { // A simplified version of RemoveChild() for destruction. Element* child = children.front(); child->OnChildRemove(child); if (num_non_dom_children > 0) num_non_dom_children--; deleted_children.push_back(child); children.erase(children.begin()); } // Release all deleted children. ReleaseElements(deleted_children); delete decoration; delete border; delete background; delete style; delete event_dispatcher; if (font_face_handle != NULL) font_face_handle->RemoveReference(); if (instancer) instancer->RemoveReference(); } void Element::Update() { ReleaseElements(deleted_children); active_children = children; for (size_t i = 0; i < active_children.size(); i++) active_children[i]->Update(); // Force a definition reload, if necessary. style->GetDefinition(); scroll->Update(); // Update and advance animations, if necessary. UpdateAnimation(); AdvanceAnimations(); // Update the transform state, if necessary. UpdateTransformState(); OnUpdate(); } void Element::Render() { // Rebuild our stacking context if necessary. if (stacking_context_dirty) BuildLocalStackingContext(); // Apply our transform ElementUtilities::ApplyTransform(*this); // Render all elements in our local stacking context that have a z-index beneath our local index of 0. size_t i = 0; for (; i < stacking_context.size() && stacking_context[i]->z_index < 0; ++i) stacking_context[i]->Render(); // Set up the clipping region for this element. if (ElementUtilities::SetClippingRegion(this)) { background->RenderBackground(); border->RenderBorder(); decoration->RenderDecorators(); OnRender(); } // Render the rest of the elements in the stacking context. for (; i < stacking_context.size(); ++i) stacking_context[i]->Render(); // Unapply our transform ElementUtilities::UnapplyTransform(*this); } // Clones this element, returning a new, unparented element. Element* Element::Clone() const { Element* clone = NULL; if (instancer != NULL) { clone = instancer->InstanceElement(NULL, GetTagName(), attributes); if (clone != NULL) clone->SetInstancer(instancer); } else clone = Factory::InstanceElement(NULL, GetTagName(), GetTagName(), attributes); if (clone != NULL) { String inner_rml; GetInnerRML(inner_rml); clone->SetInnerRML(inner_rml); } return clone; } // Sets or removes a class on the element. void Element::SetClass(const String& class_name, bool activate) { style->SetClass(class_name, activate); } // Checks if a class is set on the element. bool Element::IsClassSet(const String& class_name) const { return style->IsClassSet(class_name); } // Specifies the entire list of classes for this element. This will replace any others specified. void Element::SetClassNames(const String& class_names) { SetAttribute("class", class_names); } /// Return the active class list String Element::GetClassNames() const { return style->GetClassNames(); } // Returns the active style sheet for this element. This may be NULL. StyleSheet* Element::GetStyleSheet() const { return style->GetStyleSheet(); } // Returns the element's definition, updating if necessary. const ElementDefinition* Element::GetDefinition() { return style->GetDefinition(); } // Fills an String with the full address of this element. String Element::GetAddress(bool include_pseudo_classes) const { // Add the tag name onto the address. String address(tag); // Add the ID if we have one. if (!id.Empty()) { address += "#"; address += id; } String classes = style->GetClassNames(); if (!classes.Empty()) { classes = classes.Replace(".", " "); address += "."; address += classes; } if (include_pseudo_classes) { const PseudoClassList& pseudo_classes = style->GetActivePseudoClasses(); for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i) { address += ":"; address += (*i); } } if (parent) { address.Append(" < "); return address + parent->GetAddress(true); } else return address; } // Sets the position of this element, as a two-dimensional offset from another element. void Element::SetOffset(const Vector2f& offset, Element* _offset_parent, bool _offset_fixed) { _offset_fixed |= GetPosition() == POSITION_FIXED; // If our offset has definitely changed, or any of our parenting has, then these are set and // updated based on our left / right / top / bottom properties. if (relative_offset_base != offset || offset_parent != _offset_parent || offset_fixed != _offset_fixed) { relative_offset_base = offset; offset_fixed = _offset_fixed; offset_parent = _offset_parent; UpdateOffset(); DirtyOffset(); } // Otherwise, our offset is updated in case left / right / top / bottom will have an impact on // our final position, and our children are dirtied if they do. else { Vector2f& old_base = relative_offset_base; Vector2f& old_position = relative_offset_position; UpdateOffset(); if (old_base != relative_offset_base || old_position != relative_offset_position) DirtyOffset(); } } // Returns the position of the top-left corner of one of the areas of this element's primary box. Vector2f Element::GetRelativeOffset(Box::Area area) { UpdateLayout(); return relative_offset_base + relative_offset_position + GetBox().GetPosition(area); } // Returns the position of the top-left corner of one of the areas of this element's primary box. Vector2f Element::GetAbsoluteOffset(Box::Area area) { UpdateLayout(); if (offset_dirty) { offset_dirty = false; if (offset_parent != NULL) absolute_offset = offset_parent->GetAbsoluteOffset(Box::BORDER) + relative_offset_base + relative_offset_position; else absolute_offset = relative_offset_base + relative_offset_position; // Add any parent scrolling onto our position as well. Could cache this if required. if (!offset_fixed) { Element* scroll_parent = parent; while (scroll_parent != NULL) { absolute_offset -= (scroll_parent->scroll_offset + scroll_parent->content_offset); if (scroll_parent == offset_parent) break; else scroll_parent = scroll_parent->parent; } } } return absolute_offset + GetBox().GetPosition(area); } // Sets an alternate area to use as the client area. void Element::SetClientArea(Box::Area _client_area) { client_area = _client_area; } // Returns the area the element uses as its client area. Box::Area Element::GetClientArea() const { return client_area; } // Sets the dimensions of the element's internal content. void Element::SetContentBox(const Vector2f& _content_offset, const Vector2f& _content_box) { if (content_offset != _content_offset || content_box != _content_box) { // Seems to be jittering a wee bit; might need to be looked at. scroll_offset.x += (content_offset.x - _content_offset.x); scroll_offset.y += (content_offset.y - _content_offset.y); content_offset = _content_offset; content_box = _content_box; scroll_offset.x = Math::Min(scroll_offset.x, GetScrollWidth() - GetClientWidth()); scroll_offset.y = Math::Min(scroll_offset.y, GetScrollHeight() - GetClientHeight()); DirtyOffset(); } } // Sets the box describing the size of the element. void Element::SetBox(const Box& box) { if (box != boxes[0] || boxes.size() > 1) { boxes[0] = box; boxes.resize(1); background->DirtyBackground(); border->DirtyBorder(); decoration->ReloadDecorators(); DispatchEvent(RESIZE, Dictionary()); } } // Adds a box to the end of the list describing this element's geometry. void Element::AddBox(const Box& box) { boxes.push_back(box); DispatchEvent(RESIZE, Dictionary()); background->DirtyBackground(); border->DirtyBorder(); decoration->ReloadDecorators(); } // Returns one of the boxes describing the size of the element. const Box& Element::GetBox(int index) { UpdateLayout(); if (index < 0) return boxes[0]; else if (index >= GetNumBoxes()) return boxes.back(); return boxes[index]; } // Returns the number of boxes making up this element's geometry. int Element::GetNumBoxes() { UpdateLayout(); return (int) boxes.size(); } // Returns the baseline of the element, in pixels offset from the bottom of the element's content area. float Element::GetBaseline() const { return 0; } // Gets the intrinsic dimensions of this element, if it is of a type that has an inherent size. bool Element::GetIntrinsicDimensions(Vector2f& ROCKET_UNUSED_PARAMETER(dimensions)) { ROCKET_UNUSED(dimensions); return false; } // Checks if a given point in screen coordinates lies within the bordered area of this element. bool Element::IsPointWithinElement(const Vector2f& point) { Vector2f position = GetAbsoluteOffset(Box::BORDER); for (int i = 0; i < GetNumBoxes(); ++i) { const Box& box = GetBox(i); Vector2f box_position = position + box.GetOffset(); Vector2f box_dimensions = box.GetSize(Box::BORDER); if (point.x >= box_position.x && point.x <= (box_position.x + box_dimensions.x) && point.y >= box_position.y && point.y <= (box_position.y + box_dimensions.y)) { return true; } } return false; } // Returns the visibility of the element. bool Element::IsVisible() const { return visible; } // Returns the z-index of the element. float Element::GetZIndex() const { return z_index; } // Returns the element's font face handle. FontFaceHandle* Element::GetFontFaceHandle() const { return font_face_handle; } // Sets a local property override on the element. bool Element::SetProperty(const String& name, const String& value) { return style->SetProperty(name, value); } // Removes a local property override on the element. void Element::RemoveProperty(const String& name) { style->RemoveProperty(name); } // Sets a local property override on the element to a pre-parsed value. bool Element::SetProperty(const String& name, const Property& property) { return style->SetProperty(name, property); } // Returns one of this element's properties. const Property* Element::GetProperty(const String& name) { return style->GetProperty(name); } // Returns one of this element's properties. const Property* Element::GetLocalProperty(const String& name) { return style->GetLocalProperty(name); } const PropertyMap * Element::GetLocalProperties() { return style->GetLocalProperties(); } // Resolves one of this element's style. float Element::ResolveProperty(const String& name, float base_value) { return style->ResolveProperty(name, base_value); } // Resolves one of this element's style. float Element::ResolveProperty(const Property *property, float base_value) { return style->ResolveProperty(property, base_value); } void Element::GetOffsetProperties(const Property **top, const Property **bottom, const Property **left, const Property **right ) { style->GetOffsetProperties(top, bottom, left, right); } void Element::GetBorderWidthProperties(const Property **border_top, const Property **border_bottom, const Property **border_left, const Property **bottom_right) { style->GetBorderWidthProperties(border_top, border_bottom, border_left, bottom_right); } void Element::GetMarginProperties(const Property **margin_top, const Property **margin_bottom, const Property **margin_left, const Property **margin_right) { style->GetMarginProperties(margin_top, margin_bottom, margin_left, margin_right); } void Element::GetPaddingProperties(const Property **padding_top, const Property **padding_bottom, const Property **padding_left, const Property **padding_right) { style->GetPaddingProperties(padding_top, padding_bottom, padding_left, padding_right); } void Element::GetDimensionProperties(const Property **width, const Property **height) { style->GetDimensionProperties(width, height); } void Element::GetLocalDimensionProperties(const Property **width, const Property **height) { style->GetLocalDimensionProperties(width, height); } Vector2f Element::GetContainingBlock() { Vector2f containing_block(0, 0); if (offset_parent != NULL) { int position_property = GetPosition(); const Box& parent_box = offset_parent->GetBox(); if (position_property == POSITION_STATIC || position_property == POSITION_RELATIVE) { containing_block = parent_box.GetSize(); } else if(position_property == POSITION_ABSOLUTE || position_property == POSITION_FIXED) { containing_block = parent_box.GetSize(Box::PADDING); } } return containing_block; } void Element::GetOverflow(int *overflow_x, int *overflow_y) { style->GetOverflow(overflow_x, overflow_y); } int Element::GetPosition() { return style->GetPosition(); } int Element::GetFloat() { return style->GetFloat(); } int Element::GetDisplay() { return style->GetDisplay(); } int Element::GetWhitespace() { return style->GetWhitespace(); } int Element::GetPointerEvents() { return style->GetPointerEvents(); } const Property *Element::GetLineHeightProperty() { return style->GetLineHeightProperty(); } int Element::GetTextAlign() { return style->GetTextAlign(); } int Element::GetTextTransform() { return style->GetTextTransform(); } const Property *Element::GetVerticalAlignProperty() { return style->GetVerticalAlignProperty(); } // Returns 'perspective' property value from element's style or local cache. const Property *Element::GetPerspective() { return style->GetPerspective(); } // Returns 'perspective-origin-x' property value from element's style or local cache. const Property *Element::GetPerspectiveOriginX() { return style->GetPerspectiveOriginX(); } // Returns 'perspective-origin-y' property value from element's style or local cache. const Property *Element::GetPerspectiveOriginY() { return style->GetPerspectiveOriginY(); } // Returns 'transform' property value from element's style or local cache. const Property *Element::GetTransform() { return style->GetTransform(); } // Returns 'transform-origin-x' property value from element's style or local cache. const Property *Element::GetTransformOriginX() { return style->GetTransformOriginX(); } // Returns 'transform-origin-y' property value from element's style or local cache. const Property *Element::GetTransformOriginY() { return style->GetTransformOriginY(); } // Returns 'transform-origin-z' property value from element's style or local cache. const Property *Element::GetTransformOriginZ() { return style->GetTransformOriginZ(); } // Returns this element's TransformState const TransformState *Element::GetTransformState() const noexcept { return transform_state.get(); } // Returns the TransformStates that are effective for this element. void Element::GetEffectiveTransformState( const TransformState **local_perspective, const TransformState **perspective, const TransformState **transform ) noexcept { UpdateTransformState(); if (local_perspective) { *local_perspective = 0; } if (perspective) { *perspective = 0; } if (transform) { *transform = 0; } Element *perspective_node = 0, *transform_node = 0; // Find the TransformState to use for unprojecting. if (transform_state.get() && transform_state->GetLocalPerspective(0)) { if (local_perspective) { *local_perspective = transform_state.get(); } } else { Element *node = 0; for (node = parent; node; node = node->parent) { if (node->transform_state.get() && node->transform_state->GetPerspective(0)) { if (perspective) { *perspective = node->transform_state.get(); } perspective_node = node; break; } } } // Find the TransformState to use for transforming. Element *node = 0; for (node = this; node; node = node->parent) { if (node->transform_state.get() && node->transform_state->GetRecursiveTransform(0)) { if (transform) { *transform = node->transform_state.get(); } transform_node = node; break; } } } // Project a 2D point in pixel coordinates onto the element's plane. const Vector2f Element::Project(const Vector2f& point) noexcept { UpdateTransformState(); Context *context = GetContext(); if (!context) { return point; } const TransformState *local_perspective, *perspective, *transform; GetEffectiveTransformState(&local_perspective, &perspective, &transform); Vector2i view_pos(0, 0); Vector2i view_size = context->GetDimensions(); // Compute the line segment for ray picking, one point on the near and one on the far plane. // These need to be in clip space coordinates ([-1; 1]³) so that we an unproject them. Vector3f line_segment[2] = { // When unprojected, the intersection point on the near plane Vector3f( (point.x - view_pos.x) / (0.5f * view_size.x) - 1.0f, (view_size.y - point.y - view_pos.y) / (0.5f * view_size.y) - 1.0f, -1 ), // When unprojected, the intersection point on the far plane Vector3f( (point.x - view_pos.x) / (0.5f * view_size.x) - 1.0f, (view_size.y - point.y - view_pos.y) / (0.5f * view_size.y) - 1.0f, 1 ) }; // Find the TransformState to use for unprojecting. if (local_perspective) { TransformState::LocalPerspective the_local_perspective; local_perspective->GetLocalPerspective(&the_local_perspective); line_segment[0] = the_local_perspective.Unproject(line_segment[0]); line_segment[1] = the_local_perspective.Unproject(line_segment[1]); } else if (perspective) { TransformState::Perspective the_perspective; perspective->GetPerspective(&the_perspective); line_segment[0] = the_perspective.Unproject(line_segment[0]); line_segment[1] = the_perspective.Unproject(line_segment[1]); } else { line_segment[0] = context->GetViewState().Unproject(line_segment[0]); line_segment[1] = context->GetViewState().Unproject(line_segment[1]); } // Compute three points on the context's corners to define the element's plane. // It may seem elegant to base this computation on the element's size, but // there are elements with zero length or height. Vector3f element_rect[3] = { // Top-left corner Vector3f(0, 0, 0), // Top-right corner Vector3f((float)view_size.x, 0, 0), // Bottom-left corner Vector3f(0, (float)view_size.y, 0) }; // Transform by the correct matrix if (transform) { element_rect[0] = transform->Transform(element_rect[0]); element_rect[1] = transform->Transform(element_rect[1]); element_rect[2] = transform->Transform(element_rect[2]); } Vector3f u = line_segment[0] - line_segment[1]; Vector3f v = element_rect[1] - element_rect[0]; Vector3f w = element_rect[2] - element_rect[0]; // Now compute the intersection point of the line segment and the element's rectangle. // This is based on the algorithm discussed at Wikipedia // (http://en.wikipedia.org/wiki/Line-plane_intersection). Matrix4f A = Matrix4f::FromColumns( Vector4f(u, 0), Vector4f(v, 0), Vector4f(w, 0), Vector4f(0, 0, 0, 1) ); if (A.Invert()) { Vector3f factors = A * (line_segment[0] - element_rect[0]); Vector3f intersection3d = element_rect[0] + v * factors[1] + w * factors[2]; Vector3f projected; if (transform) { projected = transform->Untransform(intersection3d); //ROCKET_ASSERT(fabs(projected.z) < 0.0001); } else { // FIXME: Is this correct? projected = intersection3d; } return Vector2f(projected.x, projected.y); } else { // The line segment is parallel to the element's plane. // Although, mathematically, it could also lie within the plane // (yielding infinitely many intersection points), we still // return a value that's pretty sure to not match anything, // since this case has nothing to do with the user `picking' // anything. float inf = std::numeric_limits< float >::infinity(); return Vector2f(-inf, -inf); } } // Iterates over the properties defined on this element. bool Element::IterateProperties(int& index, PseudoClassList& pseudo_classes, String& name, const Property*& property) const { return style->IterateProperties(index, pseudo_classes, name, property); } // Sets or removes a pseudo-class on the element. void Element::SetPseudoClass(const String& pseudo_class, bool activate) { style->SetPseudoClass(pseudo_class, activate); } // Checks if a specific pseudo-class has been set on the element. bool Element::IsPseudoClassSet(const String& pseudo_class) const { return style->IsPseudoClassSet(pseudo_class); } // Checks if a complete set of pseudo-classes are set on the element. bool Element::ArePseudoClassesSet(const PseudoClassList& pseudo_classes) const { for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i) { if (!IsPseudoClassSet(*i)) return false; } return true; } // Gets a list of the current active pseudo classes const PseudoClassList& Element::GetActivePseudoClasses() const { return style->GetActivePseudoClasses(); } /// Get the named attribute Variant* Element::GetAttribute(const String& name) const { return attributes.Get(name); } // Checks if the element has a certain attribute. bool Element::HasAttribute(const String& name) { return attributes.Get(name) != NULL; } // Removes an attribute from the element void Element::RemoveAttribute(const String& name) { if (attributes.Remove(name)) { AttributeNameList changed_attributes; changed_attributes.insert(name); OnAttributeChange(changed_attributes); } } // Gets the outer most focus element down the tree from this node Element* Element::GetFocusLeafNode() { // If there isn't a focus, then we are the leaf. if (!focus) { return this; } // Recurse down the tree until we found the leaf focus element Element* focus_element = focus; while (focus_element->focus) focus_element = focus_element->focus; return focus_element; } // Returns the element's context. Context* Element::GetContext() { ElementDocument* document = GetOwnerDocument(); if (document != NULL) return document->GetContext(); return NULL; } // Set a group of attributes void Element::SetAttributes(const ElementAttributes* _attributes) { int index = 0; String key; Variant* value; AttributeNameList changed_attributes; while (_attributes->Iterate(index, key, value)) { changed_attributes.insert(key); attributes.Set(key, *value); } OnAttributeChange(changed_attributes); } // Returns the number of attributes on the element. int Element::GetNumAttributes() const { return attributes.Size(); } // Iterates over all decorators attached to the element. bool Element::IterateDecorators(int& index, PseudoClassList& pseudo_classes, String& name, Decorator*& decorator, DecoratorDataHandle& decorator_data) { return decoration->IterateDecorators(index, pseudo_classes, name, decorator, decorator_data); } // Gets the name of the element. const String& Element::GetTagName() const { return tag; } // Gets the ID of the element. const String& Element::GetId() const { return id; } // Sets the ID of the element. void Element::SetId(const String& _id) { SetAttribute("id", _id); } // Gets the horizontal offset from the context's left edge to element's left border edge. float Element::GetAbsoluteLeft() { return GetAbsoluteOffset(Box::BORDER).x; } // Gets the vertical offset from the context's top edge to element's top border edge. float Element::GetAbsoluteTop() { return GetAbsoluteOffset(Box::BORDER).y; } // Gets the width of the left border of an element. float Element::GetClientLeft() { UpdateLayout(); return GetBox().GetPosition(client_area).x; } // Gets the height of the top border of an element. float Element::GetClientTop() { UpdateLayout(); return GetBox().GetPosition(client_area).y; } // Gets the inner width of the element. float Element::GetClientWidth() { UpdateLayout(); return GetBox().GetSize(client_area).x - scroll->GetScrollbarSize(ElementScroll::VERTICAL); } // Gets the inner height of the element. float Element::GetClientHeight() { UpdateLayout(); return GetBox().GetSize(client_area).y - scroll->GetScrollbarSize(ElementScroll::HORIZONTAL); } // Returns the element from which all offset calculations are currently computed. Element* Element::GetOffsetParent() { return offset_parent; } // Gets the distance from this element's left border to its offset parent's left border. float Element::GetOffsetLeft() { UpdateLayout(); return relative_offset_base.x + relative_offset_position.x; } // Gets the distance from this element's top border to its offset parent's top border. float Element::GetOffsetTop() { UpdateLayout(); return relative_offset_base.y + relative_offset_position.y; } // Gets the width of the element, including the client area, padding, borders and scrollbars, but not margins. float Element::GetOffsetWidth() { UpdateLayout(); return GetBox().GetSize(Box::BORDER).x; } // Gets the height of the element, including the client area, padding, borders and scrollbars, but not margins. float Element::GetOffsetHeight() { UpdateLayout(); return GetBox().GetSize(Box::BORDER).y; } // Gets the left scroll offset of the element. float Element::GetScrollLeft() { UpdateLayout(); return scroll_offset.x; } // Sets the left scroll offset of the element. void Element::SetScrollLeft(float scroll_left) { scroll_offset.x = Math::Clamp(scroll_left, 0.0f, GetScrollWidth() - GetClientWidth()); scroll->UpdateScrollbar(ElementScroll::HORIZONTAL); DirtyOffset(); DispatchEvent("scroll", Dictionary()); } // Gets the top scroll offset of the element. float Element::GetScrollTop() { UpdateLayout(); return scroll_offset.y; } // Sets the top scroll offset of the element. void Element::SetScrollTop(float scroll_top) { scroll_offset.y = Math::Clamp(scroll_top, 0.0f, GetScrollHeight() - GetClientHeight()); scroll->UpdateScrollbar(ElementScroll::VERTICAL); DirtyOffset(); DispatchEvent("scroll", Dictionary()); } // Gets the width of the scrollable content of the element; it includes the element padding but not its margin. float Element::GetScrollWidth() { return Math::Max(content_box.x, GetClientWidth()); } // Gets the height of the scrollable content of the element; it includes the element padding but not its margin. float Element::GetScrollHeight() { return Math::Max(content_box.y, GetClientHeight()); } // Gets the object representing the declarations of an element's style attributes. ElementStyle* Element::GetStyle() { return style; } // Gets the document this element belongs to. ElementDocument* Element::GetOwnerDocument() { if (parent == NULL) return NULL; if (!owner_document) { owner_document = parent->GetOwnerDocument(); } return owner_document; } // Gets this element's parent node. Element* Element::GetParentNode() const { return parent; } // Gets the element immediately following this one in the tree. Element* Element::GetNextSibling() const { if (parent == NULL) return NULL; for (size_t i = 0; i < parent->children.size() - (parent->num_non_dom_children + 1); i++) { if (parent->children[i] == this) return parent->children[i + 1]; } return NULL; } // Gets the element immediately preceding this one in the tree. Element* Element::GetPreviousSibling() const { if (parent == NULL) return NULL; for (size_t i = 1; i < parent->children.size() - parent->num_non_dom_children; i++) { if (parent->children[i] == this) return parent->children[i - 1]; } return NULL; } // Returns the first child of this element. Element* Element::GetFirstChild() const { if (GetNumChildren() > 0) return children[0]; return NULL; } // Gets the last child of this element. Element* Element::GetLastChild() const { if (GetNumChildren() > 0) return *(children.end() - (num_non_dom_children + 1)); return NULL; } Element* Element::GetChild(int index) const { if (index < 0 || index >= (int) children.size()) return NULL; return children[index]; } int Element::GetNumChildren(bool include_non_dom_elements) const { return (int) children.size() - (include_non_dom_elements ? 0 : num_non_dom_children); } // Gets the markup and content of the element. void Element::GetInnerRML(String& content) const { for (int i = 0; i < GetNumChildren(); i++) { children[i]->GetRML(content); } } // Gets the markup and content of the element. String Element::GetInnerRML() const { String result; GetInnerRML(result); return result; } // Sets the markup and content of the element. All existing children will be replaced. void Element::SetInnerRML(const String& rml) { // Remove all DOM children. while ((int) children.size() > num_non_dom_children) RemoveChild(children.front()); Factory::InstanceElementText(this, rml); } // Sets the current element as the focus object. bool Element::Focus() { // Are we allowed focus? int focus_property = GetProperty< int >(FOCUS); if (focus_property == FOCUS_NONE) return false; // Ask our context if we can switch focus. Context* context = GetContext(); if (context == NULL) return false; if (!context->OnFocusChange(this)) return false; // Set this as the end of the focus chain. focus = NULL; // Update the focus chain up the hierarchy. Element* element = this; while (element->GetParentNode()) { element->GetParentNode()->focus = element; element = element->GetParentNode(); } return true; } // Removes focus from from this element. void Element::Blur() { if (parent) { Context* context = GetContext(); if (context == NULL) return; if (context->GetFocusElement() == this) { parent->Focus(); } else if (parent->focus == this) { parent->focus = NULL; } } } // Fakes a mouse click on this element. void Element::Click() { Context* context = GetContext(); if (context == NULL) return; context->GenerateClickEvent(this); } // Adds an event listener void Element::AddEventListener(const String& event, EventListener* listener, bool in_capture_phase) { event_dispatcher->AttachEvent(event, listener, in_capture_phase); } // Removes an event listener from this element. void Element::RemoveEventListener(const String& event, EventListener* listener, bool in_capture_phase) { event_dispatcher->DetachEvent(event, listener, in_capture_phase); } // Dispatches the specified event bool Element::DispatchEvent(const String& event, const Dictionary& parameters, bool interruptible) { return event_dispatcher->DispatchEvent(this, event, parameters, interruptible); } // Scrolls the parent element's contents so that this element is visible. void Element::ScrollIntoView(bool align_with_top) { Vector2f size(0, 0); if (!align_with_top && !boxes.empty()) { size.y = boxes.back().GetOffset().y + boxes.back().GetSize(Box::BORDER).y; } Element* scroll_parent = parent; while (scroll_parent != NULL) { int overflow_x_property = scroll_parent->GetProperty< int >(OVERFLOW_X); int overflow_y_property = scroll_parent->GetProperty< int >(OVERFLOW_Y); if ((overflow_x_property != OVERFLOW_VISIBLE && scroll_parent->GetScrollWidth() > scroll_parent->GetClientWidth()) || (overflow_y_property != OVERFLOW_VISIBLE && scroll_parent->GetScrollHeight() > scroll_parent->GetClientHeight())) { Vector2f offset = scroll_parent->GetAbsoluteOffset(Box::BORDER) - GetAbsoluteOffset(Box::BORDER); Vector2f scroll_offset(scroll_parent->GetScrollLeft(), scroll_parent->GetScrollTop()); scroll_offset -= offset; scroll_offset.x += scroll_parent->GetClientLeft(); scroll_offset.y += scroll_parent->GetClientTop(); if (!align_with_top) scroll_offset.y -= (scroll_parent->GetClientHeight() - size.y); if (overflow_x_property != OVERFLOW_VISIBLE) scroll_parent->SetScrollLeft(scroll_offset.x); if (overflow_y_property != OVERFLOW_VISIBLE) scroll_parent->SetScrollTop(scroll_offset.y); } scroll_parent = scroll_parent->GetParentNode(); } } // Appends a child to this element void Element::AppendChild(Element* child, bool dom_element) { LockLayout(true); child->AddReference(); child->SetParent(this); if (dom_element) children.insert(children.end() - num_non_dom_children, child); else { children.push_back(child); num_non_dom_children++; } child->GetStyle()->DirtyDefinition(); child->GetStyle()->DirtyProperties(); child->OnChildAdd(child); DirtyStackingContext(); DirtyStructure(); if (dom_element) DirtyLayout(); LockLayout(false); } // Adds a child to this element, directly after the adjacent element. Inherits // the dom/non-dom status from the adjacent element. void Element::InsertBefore(Element* child, Element* adjacent_element) { // Find the position in the list of children of the adjacent element. If // it's NULL or we can't find it, then we insert it at the end of the dom // children, as a dom element. size_t child_index = 0; bool found_child = false; if (adjacent_element) { for (child_index = 0; child_index < children.size(); child_index++) { if (children[child_index] == adjacent_element) { found_child = true; break; } } } if (found_child) { LockLayout(true); child->AddReference(); child->SetParent(this); if ((int) child_index >= GetNumChildren()) num_non_dom_children++; else DirtyLayout(); children.insert(children.begin() + child_index, child); child->GetStyle()->DirtyDefinition(); child->GetStyle()->DirtyProperties(); child->OnChildAdd(child); DirtyStackingContext(); DirtyStructure(); LockLayout(false); } else { AppendChild(child); } } // Replaces the second node with the first node. bool Element::ReplaceChild(Element* inserted_element, Element* replaced_element) { inserted_element->AddReference(); inserted_element->SetParent(this); ElementList::iterator insertion_point = children.begin(); while (insertion_point != children.end() && *insertion_point != replaced_element) { ++insertion_point; } if (insertion_point == children.end()) { AppendChild(inserted_element); return false; } LockLayout(true); children.insert(insertion_point, inserted_element); RemoveChild(replaced_element); inserted_element->GetStyle()->DirtyDefinition(); inserted_element->GetStyle()->DirtyProperties(); inserted_element->OnChildAdd(inserted_element); LockLayout(false); return true; } // Removes the specified child bool Element::RemoveChild(Element* child) { size_t child_index = 0; for (ElementList::iterator itr = children.begin(); itr != children.end(); ++itr) { // Add the element to the delete list if ((*itr) == child) { LockLayout(true); // Inform the context of the element's pending removal (if we have a valid context). Context* context = GetContext(); if (context) context->OnElementRemove(child); child->OnChildRemove(child); if (child_index >= children.size() - num_non_dom_children) num_non_dom_children--; deleted_children.push_back(child); children.erase(itr); // Remove the child element as the focussed child of this element. if (child == focus) { focus = NULL; // If this child (or a descendant of this child) is the context's currently // focussed element, set the focus to us instead. Context* context = GetContext(); if (context != NULL) { Element* focus_element = context->GetFocusElement(); while (focus_element != NULL) { if (focus_element == child) { Focus(); break; } focus_element = focus_element->GetParentNode(); } } } DirtyLayout(); DirtyStackingContext(); DirtyStructure(); LockLayout(false); return true; } child_index++; } return false; } bool Element::HasChildNodes() const { return (int) children.size() > num_non_dom_children; } Element* Element::GetElementById(const String& id) { // Check for special-case tokens. if (id == "#self") return this; else if (id == "#document") return GetOwnerDocument(); else if (id == "#parent") return this->parent; else { Element* search_root = GetOwnerDocument(); if (search_root == NULL) search_root = this; return ElementUtilities::GetElementById(search_root, id); } } // Get all elements with the given tag. void Element::GetElementsByTagName(ElementList& elements, const String& tag) { return ElementUtilities::GetElementsByTagName(elements, this, tag); } // Get all elements with the given class set on them. void Element::GetElementsByClassName(ElementList& elements, const String& class_name) { return ElementUtilities::GetElementsByClassName(elements, this, class_name); } // Access the event dispatcher EventDispatcher* Element::GetEventDispatcher() const { return event_dispatcher; } String Element::GetEventDispatcherSummary() const { return event_dispatcher->ToString(); } // Access the element background. ElementBackground* Element::GetElementBackground() const { return background; } // Access the element border. ElementBorder* Element::GetElementBorder() const { return border; } // Access the element decorators ElementDecoration* Element::GetElementDecoration() const { return decoration; } // Returns the element's scrollbar functionality. ElementScroll* Element::GetElementScroll() const { return scroll; } int Element::GetClippingIgnoreDepth() { if (clipping_state_dirty) { IsClippingEnabled(); } return clipping_ignore_depth; } bool Element::IsClippingEnabled() { if (clipping_state_dirty) { // Is clipping enabled for this element, yes unless both overlow properties are set to visible clipping_enabled = style->GetProperty(OVERFLOW_X)->Get< int >() != OVERFLOW_VISIBLE || style->GetProperty(OVERFLOW_Y)->Get< int >() != OVERFLOW_VISIBLE; // Get the clipping ignore depth from the clip property clipping_ignore_depth = 0; const Property* clip_property = GetProperty(CLIP); if (clip_property->unit == Property::NUMBER) clipping_ignore_depth = clip_property->Get< int >(); else if (clip_property->Get< int >() == CLIP_NONE) clipping_ignore_depth = -1; clipping_state_dirty = false; } return clipping_enabled; } // Gets the render interface owned by this element's context. RenderInterface* Element::GetRenderInterface() { Context* context = GetContext(); if (context != NULL) return context->GetRenderInterface(); return Rocket::Core::GetRenderInterface(); } void Element::SetInstancer(ElementInstancer* _instancer) { // Only record the first instancer being set as some instancers call other instancers to do their dirty work, in // which case we don't want to update the lowest level instancer. if (instancer == NULL) { instancer = _instancer; instancer->AddReference(); } } // Forces the element to generate a local stacking context, regardless of the value of its z-index property. void Element::ForceLocalStackingContext() { local_stacking_context_forced = true; local_stacking_context = true; DirtyStackingContext(); } // Called during the update loop after children are rendered. void Element::OnUpdate() { } // Called during render after backgrounds, borders, decorators, but before children, are rendered. void Element::OnRender() { } // Called during a layout operation, when the element is being positioned and sized. void Element::OnLayout() { } // Called when attributes on the element are changed. void Element::OnAttributeChange(const AttributeNameList& changed_attributes) { if (changed_attributes.find("id") != changed_attributes.end()) { id = GetAttribute< String >("id", ""); style->DirtyDefinition(); } if (changed_attributes.find("class") != changed_attributes.end()) { style->SetClassNames(GetAttribute< String >("class", "")); } // Add any inline style declarations. if (changed_attributes.find("style") != changed_attributes.end()) { PropertyDictionary properties; StyleSheetParser parser; parser.ParseProperties(properties, GetAttribute< String >("style", "")); Rocket::Core::PropertyMap property_map = properties.GetProperties(); for (Rocket::Core::PropertyMap::iterator i = property_map.begin(); i != property_map.end(); ++i) { SetProperty((*i).first, (*i).second); } } } // Called when properties on the element are changed. void Element::OnPropertyChange(const PropertyNameList& changed_properties) { bool all_dirty = StyleSheetSpecification::GetRegisteredProperties() == changed_properties; if (!IsLayoutDirty()) { if (all_dirty) { DirtyLayout(); } else { // Force a relayout if any of the changed properties require it. for (PropertyNameList::const_iterator i = changed_properties.begin(); i != changed_properties.end(); ++i) { const PropertyDefinition* property_definition = StyleSheetSpecification::GetProperty(*i); if (property_definition) { if (property_definition->IsLayoutForced()) { DirtyLayout(); break; } } } } } // Update the visibility. if (all_dirty || changed_properties.find(VISIBILITY) != changed_properties.end() || changed_properties.find(DISPLAY) != changed_properties.end()) { bool new_visibility = GetDisplay() != DISPLAY_NONE && GetProperty< int >(VISIBILITY) == VISIBILITY_VISIBLE; if (visible != new_visibility) { visible = new_visibility; if (parent != NULL) parent->DirtyStackingContext(); } if (all_dirty || changed_properties.find(DISPLAY) != changed_properties.end()) { if (parent != NULL) parent->DirtyStructure(); } } // Update the position. if (all_dirty || changed_properties.find(LEFT) != changed_properties.end() || changed_properties.find(RIGHT) != changed_properties.end() || changed_properties.find(TOP) != changed_properties.end() || changed_properties.find(BOTTOM) != changed_properties.end()) { UpdateOffset(); DirtyOffset(); } // Update the z-index. if (all_dirty || changed_properties.find(Z_INDEX) != changed_properties.end()) { const Property* z_index_property = GetProperty(Z_INDEX); if (z_index_property->unit == Property::KEYWORD && z_index_property->value.Get< int >() == Z_INDEX_AUTO) { if (local_stacking_context && !local_stacking_context_forced) { // We're no longer acting as a stacking context. local_stacking_context = false; stacking_context_dirty = false; stacking_context.clear(); } // If our old z-index was not zero, then we must dirty our stacking context so we'll be re-indexed. if (z_index != 0) { z_index = 0; DirtyStackingContext(); } } else { float new_z_index; if (z_index_property->unit == Property::KEYWORD) { if (z_index_property->value.Get< int >() == Z_INDEX_TOP) new_z_index = FLT_MAX; else new_z_index = -FLT_MAX; } else new_z_index = z_index_property->value.Get< float >(); if (new_z_index != z_index) { z_index = new_z_index; if (parent != NULL) parent->DirtyStackingContext(); } if (!local_stacking_context) { local_stacking_context = true; stacking_context_dirty = true; } } } // Dirty the background if it's changed. if (all_dirty || changed_properties.find(BACKGROUND_COLOR) != changed_properties.end() || changed_properties.find(OPACITY) != changed_properties.end() || changed_properties.find(IMAGE_COLOR) != changed_properties.end()) { background->DirtyBackground(); decoration->ReloadDecorators(); } // Dirty the border if it's changed. if (all_dirty || changed_properties.find(BORDER_TOP_WIDTH) != changed_properties.end() || changed_properties.find(BORDER_RIGHT_WIDTH) != changed_properties.end() || changed_properties.find(BORDER_BOTTOM_WIDTH) != changed_properties.end() || changed_properties.find(BORDER_LEFT_WIDTH) != changed_properties.end() || changed_properties.find(BORDER_TOP_COLOR) != changed_properties.end() || changed_properties.find(BORDER_RIGHT_COLOR) != changed_properties.end() || changed_properties.find(BORDER_BOTTOM_COLOR) != changed_properties.end() || changed_properties.find(BORDER_LEFT_COLOR) != changed_properties.end() || changed_properties.find(OPACITY) != changed_properties.end()) border->DirtyBorder(); // Fetch a new font face if it has been changed. if (all_dirty || changed_properties.find(FONT_FAMILY) != changed_properties.end() || changed_properties.find(FONT_CHARSET) != changed_properties.end() || changed_properties.find(FONT_WEIGHT) != changed_properties.end() || changed_properties.find(FONT_STYLE) != changed_properties.end() || changed_properties.find(FONT_SIZE) != changed_properties.end()) { // Store the old em; if it changes, then we need to dirty all em-relative properties. int old_em = -1; if (font_face_handle != NULL) old_em = font_face_handle->GetLineHeight(); // Fetch the new font face. FontFaceHandle* new_font_face_handle = ElementUtilities::GetFontFaceHandle(this); // If this is different from our current font face, then we've got to nuke // all our characters and tell our parent that we have to be re-laid out. if (new_font_face_handle != font_face_handle) { if (font_face_handle) font_face_handle->RemoveReference(); font_face_handle = new_font_face_handle; // Our font face has changed; odds are, so has our em. All of our em-relative values // have therefore probably changed as well, so we'll need to dirty them. int new_em = -1; if (font_face_handle != NULL) new_em = font_face_handle->GetLineHeight(); if (old_em != new_em) { style->DirtyEmProperties(); } } else if (new_font_face_handle != NULL) new_font_face_handle->RemoveReference(); } // Check for clipping state changes if (all_dirty || changed_properties.find(CLIP) != changed_properties.end() || changed_properties.find(OVERFLOW_X) != changed_properties.end() || changed_properties.find(OVERFLOW_Y) != changed_properties.end()) { clipping_state_dirty = true; } // Check for `perspective' and `perspective-origin' changes if (all_dirty || changed_properties.find(PERSPECTIVE) != changed_properties.end() || changed_properties.find(PERSPECTIVE_ORIGIN_X) != changed_properties.end() || changed_properties.find(PERSPECTIVE_ORIGIN_Y) != changed_properties.end()) { DirtyTransformState(true, false, false); } // Check for `transform' and `transform-origin' changes if (all_dirty || changed_properties.find(TRANSFORM) != changed_properties.end() || changed_properties.find(TRANSFORM_ORIGIN_X) != changed_properties.end() || changed_properties.find(TRANSFORM_ORIGIN_Y) != changed_properties.end() || changed_properties.find(TRANSFORM_ORIGIN_Z) != changed_properties.end()) { DirtyTransformState(false, true, false); } // Check for `animation' changes if (all_dirty || changed_properties.find(ANIMATION) != changed_properties.end()) { DirtyAnimation(); } } // Called when a child node has been added somewhere in the hierarchy void Element::OnChildAdd(Element* child) { if (parent) parent->OnChildAdd(child); } // Called when a child node has been removed somewhere in the hierarchy void Element::OnChildRemove(Element* child) { if (parent) parent->OnChildRemove(child); } // Update the element's layout if required. void Element::UpdateLayout() { ElementDocument* document = GetOwnerDocument(); if (document != NULL) document->UpdateLayout(); } // Forces a re-layout of this element, and any other children required. void Element::DirtyLayout() { Element* document = GetOwnerDocument(); if (document != NULL) document->DirtyLayout(); } /// Increment/Decrement the layout lock void Element::LockLayout(bool lock) { Element* document = GetOwnerDocument(); if (document != NULL) document->LockLayout(lock); } // Forces a re-layout of this element, and any other children required. bool Element::IsLayoutDirty() { Element* document = GetOwnerDocument(); if (document != NULL) return document->IsLayoutDirty(); return false; } // Forces a reevaluation of applicable font effects. void Element::DirtyFont() { for (size_t i = 0; i < children.size(); ++i) children[i]->DirtyFont(); } void Element::OnReferenceDeactivate() { if (instancer) { instancer->ReleaseElement(this); } else { // Hopefully we can just delete ourselves. //delete this; Log::Message(Log::LT_WARNING, "Leak detected: element %s not instanced via Rocket Factory. Unable to release.", GetAddress().CString()); } } void Element::ProcessEvent(Event& event) { if (event == MOUSEDOWN && IsPointWithinElement(Vector2f(event.GetParameter< float >("mouse_x", 0), event.GetParameter< float >("mouse_y", 0))) && event.GetParameter< int >("button", 0) == 0) SetPseudoClass("active", true); if (event == MOUSESCROLL) { int wheel_delta = event.GetParameter< int >("wheel_delta", 0); if ((wheel_delta < 0 && GetScrollTop() > 0) || (wheel_delta > 0 && GetScrollHeight() > GetScrollTop() + GetClientHeight())) { int overflow_property = GetProperty< int >(OVERFLOW_Y); if (overflow_property == OVERFLOW_AUTO || overflow_property == OVERFLOW_SCROLL) { SetScrollTop(GetScrollTop() + wheel_delta * (GetFontFaceHandle() ? ElementUtilities::GetLineHeight(this) : (GetProperty(SCROLL_DEFAULT_STEP_SIZE) ? GetProperty< int >(SCROLL_DEFAULT_STEP_SIZE) : 0 ))); event.StopPropagation(); } } return; } if (event.GetTargetElement() == this) { if (event == MOUSEOVER) SetPseudoClass("hover", true); else if (event == MOUSEOUT) SetPseudoClass("hover", false); else if (event == FOCUS) SetPseudoClass(FOCUS, true); else if (event == BLUR) SetPseudoClass(FOCUS, false); } } void Element::GetRML(String& content) { // First we start the open tag, add the attributes then close the open tag. // Then comes the children in order, then we add our close tag. content.Append("<"); content.Append(tag); int index = 0; String name; String value; while (IterateAttributes(index, name, value)) { size_t length = name.Length() + value.Length() + 8; String attribute(length, " %s=\"%s\"", name.CString(), value.CString()); content.Append(attribute); } if (HasChildNodes()) { content.Append(">"); GetInnerRML(content); content.Append(""); } else { content.Append(" />"); } } void Element::SetParent(Element* _parent) { // If there's an old parent, detach from it first. if (parent && parent != _parent) parent->RemoveChild(this); // Save our parent parent = _parent; } void Element::ReleaseDeletedElements() { for (size_t i = 0; i < active_children.size(); i++) { active_children[i]->ReleaseDeletedElements(); } ReleaseElements(deleted_children); active_children = children; } void Element::ReleaseElements(ElementList& released_elements) { // Remove deleted children from this element. while (!released_elements.empty()) { Element* element = released_elements.back(); released_elements.pop_back(); // If this element has been added back into our list, then we remove our previous oustanding reference on it // and continue. if (std::find(children.begin(), children.end(), element) != children.end()) { element->RemoveReference(); continue; } // Set the parent to NULL unless it's been reparented already. if (element->GetParentNode() == this) element->parent = NULL; element->RemoveReference(); } } void Element::DirtyOffset() { offset_dirty = true; if(transform_state) DirtyTransformState(true, true, false); // Not strictly true ... ? for (size_t i = 0; i < children.size(); i++) children[i]->DirtyOffset(); } void Element::UpdateOffset() { int position_property = GetPosition(); if (position_property == POSITION_ABSOLUTE || position_property == POSITION_FIXED) { if (offset_parent != NULL) { const Box& parent_box = offset_parent->GetBox(); Vector2f containing_block = parent_box.GetSize(Box::PADDING); const Property *left = GetLocalProperty(LEFT); const Property *right = GetLocalProperty(RIGHT); // If the element is anchored left, then the position is offset by that resolved value. if (left != NULL && left->unit != Property::KEYWORD) relative_offset_base.x = parent_box.GetEdge(Box::BORDER, Box::LEFT) + (ResolveProperty(LEFT, containing_block.x) + GetBox().GetEdge(Box::MARGIN, Box::LEFT)); // If the element is anchored right, then the position is set first so the element's right-most edge // (including margins) will render up against the containing box's right-most content edge, and then // offset by the resolved value. else if (right != NULL && right->unit != Property::KEYWORD) relative_offset_base.x = containing_block.x + parent_box.GetEdge(Box::BORDER, Box::LEFT) - (ResolveProperty(RIGHT, containing_block.x) + GetBox().GetSize(Box::BORDER).x + GetBox().GetEdge(Box::MARGIN, Box::RIGHT)); const Property *top = GetLocalProperty(TOP); const Property *bottom = GetLocalProperty(BOTTOM); // If the element is anchored top, then the position is offset by that resolved value. if (top != NULL && top->unit != Property::KEYWORD) relative_offset_base.y = parent_box.GetEdge(Box::BORDER, Box::TOP) + (ResolveProperty(TOP, containing_block.y) + GetBox().GetEdge(Box::MARGIN, Box::TOP)); // If the element is anchored bottom, then the position is set first so the element's right-most edge // (including margins) will render up against the containing box's right-most content edge, and then // offset by the resolved value. else if (bottom != NULL && bottom->unit != Property::KEYWORD) relative_offset_base.y = containing_block.y + parent_box.GetEdge(Box::BORDER, Box::TOP) - (ResolveProperty(BOTTOM, containing_block.y) + GetBox().GetSize(Box::BORDER).y + GetBox().GetEdge(Box::MARGIN, Box::BOTTOM)); } } else if (position_property == POSITION_RELATIVE) { if (offset_parent != NULL) { const Box& parent_box = offset_parent->GetBox(); Vector2f containing_block = parent_box.GetSize(); const Property *left = GetLocalProperty(LEFT); const Property *right = GetLocalProperty(RIGHT); if (left != NULL && left->unit != Property::KEYWORD) relative_offset_position.x = ResolveProperty(LEFT, containing_block.x); else if (right != NULL && right->unit != Property::KEYWORD) relative_offset_position.x = -1 * ResolveProperty(RIGHT, containing_block.x); else relative_offset_position.x = 0; const Property *top = GetLocalProperty(TOP); const Property *bottom = GetLocalProperty(BOTTOM); if (top != NULL && top->unit != Property::KEYWORD) relative_offset_position.y = ResolveProperty(TOP, containing_block.y); else if (bottom != NULL && bottom->unit != Property::KEYWORD) relative_offset_position.y = -1 * ResolveProperty(BOTTOM, containing_block.y); else relative_offset_position.y = 0; } } else { relative_offset_position.x = 0; relative_offset_position.y = 0; } } void Element::BuildLocalStackingContext() { stacking_context_dirty = false; stacking_context.clear(); BuildStackingContext(&stacking_context); std::stable_sort(stacking_context.begin(), stacking_context.end(), ElementSortZIndex()); } void Element::BuildStackingContext(ElementList* new_stacking_context) { // Build the list of ordered children. Our child list is sorted within the stacking context so stacked elements // will render in the right order; ie, positioned elements will render on top of inline elements, which will render // on top of floated elements, which will render on top of block elements. std::vector< std::pair< Element*, float > > ordered_children; for (size_t i = 0; i < children.size(); ++i) { Element* child = children[i]; if (!child->IsVisible()) continue; std::pair< Element*, float > ordered_child; ordered_child.first = child; if (child->GetPosition() != POSITION_STATIC) ordered_child.second = 3; else if (child->GetFloat() != FLOAT_NONE) ordered_child.second = 1; else if (child->GetDisplay() == DISPLAY_BLOCK) ordered_child.second = 0; else ordered_child.second = 2; ordered_children.push_back(ordered_child); } // Sort the list! std::stable_sort(ordered_children.begin(), ordered_children.end(), ElementSortZOrder()); // Add the list of ordered children into the stacking context in order. for (size_t i = 0; i < ordered_children.size(); ++i) { new_stacking_context->push_back(ordered_children[i].first); if (!ordered_children[i].first->local_stacking_context) ordered_children[i].first->BuildStackingContext(new_stacking_context); } } void Element::DirtyStackingContext() { // The first ancestor of ours that doesn't have an automatic z-index is the ancestor that is establishing our local // stacking context. Element* stacking_context_parent = this; while (stacking_context_parent != NULL && !stacking_context_parent->local_stacking_context) stacking_context_parent = stacking_context_parent->GetParentNode(); if (stacking_context_parent != NULL) stacking_context_parent->stacking_context_dirty = true; } void Element::DirtyStructure() { // Clear the cached owner document owner_document = NULL; // Inform all children that the structure is drity for (size_t i = 0; i < children.size(); ++i) { const ElementDefinition* element_definition = children[i]->GetStyle()->GetDefinition(); if (element_definition != NULL && element_definition->IsStructurallyVolatile()) { children[i]->GetStyle()->DirtyDefinition(); } children[i]->DirtyStructure(); } } bool Element::Animate(const String & property_name, const Property & target_value, float duration, Tween tween, int num_iterations, bool alternate_direction, float delay, const Property* start_value) { bool result = false; if (auto it_animation = StartAnimation(property_name, start_value, num_iterations, alternate_direction, delay); it_animation != animations.end()) { result = it_animation->AddKey(duration, target_value, *this, tween, true); if (!result) animations.erase(it_animation); } return result; } bool Element::AddAnimationKey(const String & property_name, const Property & target_value, float duration, Tween tween) { ElementAnimation* animation = nullptr; for (auto& existing_animation : animations) { if (existing_animation.GetPropertyName() == property_name) { animation = &existing_animation; break; } } if (!animation) return false; bool result = animation->AddKey(animation->GetDuration() + duration, target_value, *this, tween, true); return result; } ElementAnimationList::iterator Element::StartAnimation(const String & property_name, const Property* start_value, int num_iterations, bool alternate_direction, float delay) { auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyName() == property_name; }); if (it == animations.end()) { animations.emplace_back(); it = animations.end() - 1; } Property value; if (start_value) { value = *start_value; if (!value.definition) if(auto default_value = GetProperty(property_name)) value.definition = default_value->definition; } else if (auto default_value = GetProperty(property_name)) { value = *default_value; } if (value.definition) { double start_time = Clock::GetElapsedTime() + (double)delay; *it = ElementAnimation{ property_name, value, start_time, 0.0f, num_iterations, alternate_direction, false }; } else { animations.erase(it); it = animations.end(); } return it; } bool Element::AddAnimationKeyTime(const String & property_name, const Property* target_value, float time, Tween tween) { if (!target_value) target_value = GetProperty(property_name); if (!target_value) return false; ElementAnimation* animation = nullptr; for (auto& existing_animation : animations) { if (existing_animation.GetPropertyName() == property_name) { animation = &existing_animation; break; } } if (!animation) return false; bool result = animation->AddKey(time, *target_value, *this, tween, true); return result; } bool Element::StartTransition(const Transition & transition, const Property& start_value, const Property & target_value) { auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyName() == transition.name; }); if (it != animations.end() && !it->IsTransition()) return false; float duration = transition.duration; double start_time = Clock::GetElapsedTime() + (double)transition.delay; if (it == animations.end()) { // Add transition as new animation animations.push_back( ElementAnimation{ transition.name, start_value, start_time, 0.0f, 1, false, true } ); it = (animations.end() - 1); } else { // Compress the duration based on the progress of the current animation float f = it->GetInterpolationFactor(); f = 1.0f - (1.0f - f)*transition.reverse_adjustment_factor; duration = duration * f; // Replace old transition *it = ElementAnimation{ transition.name, start_value, start_time, 0.0f, 1, false, true }; } bool result = it->AddKey(duration, target_value, *this, transition.tween, true); if (result) SetProperty(transition.name, start_value); else animations.erase(it); return result; } void Element::DirtyAnimation() { dirty_animation = true; } void Element::UpdateAnimation() { if (dirty_animation) { const Property* property = style->GetLocalProperty(ANIMATION); StyleSheet* stylesheet = nullptr; if (property && (stylesheet = GetStyleSheet())) { auto animation_list = property->Get(); for (auto& animation : animation_list) { Keyframes* keyframes_ptr = stylesheet->GetKeyframes(animation.name); if (keyframes_ptr && keyframes_ptr->blocks.size() >= 1 && !animation.paused) { auto& property_names = keyframes_ptr->property_names; auto& blocks = keyframes_ptr->blocks; bool has_from_key = (blocks[0].normalized_time == 0); bool has_to_key = (blocks.back().normalized_time == 1); // If the first key defines initial conditions for a given property, use those values, else, use this element's current values. for (auto& property : property_names) StartAnimation(property, (has_from_key ? blocks[0].properties.GetProperty(property) : nullptr), animation.num_iterations, animation.alternate, animation.delay); // Need to skip the first and last keys if they set the initial and end conditions, respectively. for (int i = (has_from_key ? 1 : 0); i < (int)blocks.size() + (has_to_key ? -1 : 0); i++) { // Add properties of current key to animation float time = blocks[i].normalized_time * animation.duration; for (auto& property : blocks[i].properties.GetProperties()) AddAnimationKeyTime(property.first, &property.second, time, animation.tween); } // If the last key defines end conditions for a given property, use those values, else, use this element's current values. float time = animation.duration; for (auto& property : property_names) AddAnimationKeyTime(property, (has_to_key ? blocks.back().properties.GetProperty(property) : nullptr), time, animation.tween); } } } dirty_animation = false; } } void Element::AdvanceAnimations() { if (!animations.empty()) { double time = Clock::GetElapsedTime(); for (auto& animation : animations) { Property property = animation.UpdateAndGetProperty(time, *this); if (property.unit != Property::UNKNOWN) SetProperty(animation.GetPropertyName(), property); } auto it_completed = std::remove_if(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return animation.IsComplete(); }); std::vector dictionary_list; std::vector is_transition; dictionary_list.reserve(animations.end() - it_completed); is_transition.reserve(animations.end() - it_completed); for (auto it = it_completed; it != animations.end(); ++it) { dictionary_list.emplace_back().Set("property", it->GetPropertyName()); is_transition.push_back(it->IsTransition()); } // Need to erase elements before submitting event, as iterators might be invalidated when calling external code. animations.erase(it_completed, animations.end()); for (size_t i = 0; i < dictionary_list.size(); i++) DispatchEvent(is_transition[i] ? TRANSITIONEND : ANIMATIONEND, dictionary_list[i]); } } void Element::DirtyTransformState(bool perspective_changed, bool transform_changed, bool parent_transform_changed) { for (size_t i = 0; i < children.size(); ++i) { children[i]->DirtyTransformState(false, false, transform_changed || parent_transform_changed); } if (perspective_changed) { this->transform_state_perspective_dirty = true; } if (transform_changed) { this->transform_state_transform_dirty = true; } if (parent_transform_changed) { this->transform_state_parent_transform_dirty = true; } } void Element::UpdateTransformState() { if (!(transform_state_perspective_dirty || transform_state_transform_dirty || transform_state_parent_transform_dirty)) { return; } if (!transform_state.get()) { transform_state.reset(new TransformState()); } if(transform_state_perspective_dirty || transform_state_transform_dirty) { Context *context = GetContext(); Vector2f pos = GetAbsoluteOffset(Box::BORDER); Vector2f size = GetBox().GetSize(Box::BORDER); if (transform_state_perspective_dirty) { bool have_perspective = false; TransformState::Perspective perspective_value; perspective_value.vanish = Vector2f(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f); const Property *perspective = GetPerspective(); if (perspective && (perspective->unit != Property::KEYWORD || perspective->value.Get< int >() != PERSPECTIVE_NONE)) { have_perspective = true; // Compute the perspective value perspective_value.distance = ResolveProperty(perspective, Math::Max(size.x, size.y)); // Compute the perspective origin, if necessary if (perspective_value.distance > 0) { const Property *perspective_origin_x = GetPerspectiveOriginX(); if (perspective_origin_x) { if (perspective_origin_x->unit == Property::KEYWORD) { switch (perspective_origin_x->value.Get< int >()) { case PERSPECTIVE_ORIGIN_X_LEFT: perspective_value.vanish.x = pos.x; break; case PERSPECTIVE_ORIGIN_X_CENTER: perspective_value.vanish.x = pos.x + size.x * 0.5f; break; case PERSPECTIVE_ORIGIN_X_RIGHT: perspective_value.vanish.x = pos.x + size.x; break; } } else { perspective_value.vanish.x = pos.x + ResolveProperty(perspective_origin_x, size.x); } } const Property *perspective_origin_y = GetPerspectiveOriginY(); if (perspective_origin_y) { if (perspective_origin_y->unit == Property::KEYWORD) { switch (perspective_origin_y->value.Get< int >()) { case PERSPECTIVE_ORIGIN_Y_TOP: perspective_value.vanish.y = pos.y; break; case PERSPECTIVE_ORIGIN_Y_CENTER: perspective_value.vanish.y = pos.y + size.y * 0.5f; break; case PERSPECTIVE_ORIGIN_Y_BOTTOM: perspective_value.vanish.y = pos.y + size.y; break; } } else { perspective_value.vanish.y = pos.y + ResolveProperty(perspective_origin_y, size.y); } } } } if (have_perspective && context) { perspective_value.view_size = context->GetDimensions(); transform_state->SetPerspective(&perspective_value); } else { transform_state->SetPerspective(0); } transform_state_perspective_dirty = false; } if (transform_state_transform_dirty) { bool have_local_perspective = false; TransformState::LocalPerspective local_perspective; bool have_transform = false; Matrix4f transform_value = Matrix4f::Identity(); Vector3f transform_origin(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f, 0); const Property *transform = GetTransform(); if (transform && (transform->unit != Property::KEYWORD || transform->value.Get< int >() != TRANSFORM_NONE)) { TransformRef transforms = transform->value.Get< TransformRef >(); int n = transforms->GetNumPrimitives(); for (int i = 0; i < n; ++i) { const Transforms::Primitive &primitive = transforms->GetPrimitive(i); if (primitive.ResolvePerspective(local_perspective.distance, *this)) { have_local_perspective = true; } Matrix4f matrix; if (primitive.ResolveTransform(matrix, *this)) { transform_value *= matrix; have_transform = true; } } // Compute the transform origin const Property *transform_origin_x = GetTransformOriginX(); if (transform_origin_x) { if (transform_origin_x->unit == Property::KEYWORD) { switch (transform_origin_x->value.Get< int >()) { case TRANSFORM_ORIGIN_X_LEFT: transform_origin.x = pos.x; break; case TRANSFORM_ORIGIN_X_CENTER: transform_origin.x = pos.x + size.x * 0.5f; break; case TRANSFORM_ORIGIN_X_RIGHT: transform_origin.x = pos.x + size.x; break; } } else { transform_origin.x = pos.x + ResolveProperty(transform_origin_x, size.x); } } const Property *transform_origin_y = GetTransformOriginY(); if (transform_origin_y) { if (transform_origin_y->unit == Property::KEYWORD) { switch (transform_origin_y->value.Get< int >()) { case TRANSFORM_ORIGIN_Y_TOP: transform_origin.y = pos.y; break; case TRANSFORM_ORIGIN_Y_CENTER: transform_origin.y = pos.y + size.y * 0.5f; break; case TRANSFORM_ORIGIN_Y_BOTTOM: transform_origin.y = pos.y + size.y; break; } } else { transform_origin.y = pos.y + ResolveProperty(transform_origin_y, size.y); } } const Property *transform_origin_z = GetTransformOriginZ(); if (transform_origin_z) { transform_origin.z = ResolveProperty(transform_origin_z, Math::Max(size.x, size.y)); } } if (have_local_perspective && context) { local_perspective.view_size = context->GetDimensions(); transform_state->SetLocalPerspective(&local_perspective); } else { transform_state->SetLocalPerspective(0); } if (have_transform) { // TODO: If we're using the global projection matrix // (perspective < 0), then scale the coordinates from // pixel space to 3D unit space. // Transform the Rocket context so that the computed `transform_origin' // lies at the coordinate system origin. transform_value = Matrix4f::Translate(transform_origin) * transform_value * Matrix4f::Translate(-transform_origin); } transform_state->SetTransform(have_transform ? &transform_value : 0); transform_state_transform_dirty = false; } } if (transform_state_parent_transform_dirty) { // We need to clean up from the top-most to the bottom-most dirt. if (parent) { parent->UpdateTransformState(); } if (transform_state.get()) { // Store the parent's new full transform as our parent transform Element *node = 0; Matrix4f parent_transform; for (node = parent; node; node = node->parent) { if (node->GetTransformState() && node->GetTransformState()->GetRecursiveTransform(&parent_transform)) { transform_state->SetParentRecursiveTransform(&parent_transform); break; } } if (!node) { transform_state->SetParentRecursiveTransform(0); } } transform_state_parent_transform_dirty = false; } // If we neither have a local perspective, nor a perspective nor a // transform, we don't need to keep the large TransformState object // around. GetEffectiveTransformState() will then recursively visit // parents in order to find a non-trivial TransformState. if (transform_state.get() && !transform_state->GetLocalPerspective(0) && !transform_state->GetPerspective(0) && !transform_state->GetTransform(0)) { transform_state.reset(0); } } } }