/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "precompiled.h"
#include "StyleSheetNode.h"
#include
#include "../../Include/RmlUi/Core/Element.h"
#include "StyleSheetFactory.h"
#include "StyleSheetNodeSelector.h"
namespace Rml {
namespace Core {
StyleSheetNode::StyleSheetNode(const String& name, NodeType _type, StyleSheetNode* _parent) : name(name)
{
type = _type;
parent = _parent;
specificity = CalculateSpecificity();
selector = nullptr;
a = 0;
b = 0;
is_structurally_volatile = true;
}
// Constructs a structural style-sheet node.
StyleSheetNode::StyleSheetNode(const String& name, StyleSheetNode* _parent, StyleSheetNodeSelector* _selector, int _a, int _b) : name(name)
{
type = STRUCTURAL_PSEUDO_CLASS;
parent = _parent;
specificity = CalculateSpecificity();
selector = _selector;
a = _a;
b = _b;
}
StyleSheetNode::~StyleSheetNode()
{
for (int i = 0; i < NUM_NODE_TYPES; i++)
{
for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j)
delete (*j).second;
}
}
// Writes the style sheet node (and all ancestors) into the stream.
void StyleSheetNode::Write(Stream* stream)
{
if (properties.GetNumProperties() > 0)
{
String rule;
StyleSheetNode* hierarchy = this;
while (hierarchy != nullptr)
{
switch (hierarchy->type)
{
case TAG:
rule = " " + hierarchy->name + rule;
break;
case CLASS:
rule = "." + hierarchy->name + rule;
break;
case ID:
rule = "#" + hierarchy->name + rule;
break;
case PSEUDO_CLASS:
rule = ":" + hierarchy->name + rule;
break;
case STRUCTURAL_PSEUDO_CLASS:
rule = ":" + hierarchy->name + rule;
break;
default:
break;
}
hierarchy = hierarchy->parent;
}
stream->Write(CreateString(1024, "%s /* specificity: %d */\n", StringUtilities::StripWhitespace(rule).c_str(), specificity));
stream->Write("{\n");
const Rml::Core::PropertyMap& property_map = properties.GetProperties();
for (Rml::Core::PropertyMap::const_iterator i = property_map.begin(); i != property_map.end(); ++i)
{
const String& name = StyleSheetSpecification::GetPropertyName(i->first);
const Rml::Core::Property& property = i->second;
stream->Write(CreateString(1024, "\t%s: %s; /* specificity: %d */\n", name.c_str(), property.value.Get< String >().c_str(), property.specificity));
}
stream->Write("}\n\n");
}
for (size_t i = 0; i < NUM_NODE_TYPES; ++i)
{
for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j)
(*j).second->Write(stream);
}
}
// Merges an entire tree hierarchy into our hierarchy.
bool StyleSheetNode::MergeHierarchy(StyleSheetNode* node, int specificity_offset)
{
// Merge the other node's properties into ours.
MergeProperties(node->properties, specificity_offset);
selector = node->selector;
a = node->a;
b = node->b;
for (int i = 0; i < NUM_NODE_TYPES; i++)
{
for (NodeMap::iterator iterator = node->children[i].begin(); iterator != node->children[i].end(); ++iterator)
{
StyleSheetNode* local_node = GetChildNode((*iterator).second->name, (NodeType) i);
local_node->MergeHierarchy((*iterator).second, specificity_offset);
}
}
return true;
}
// Builds up a style sheet's index recursively.
void StyleSheetNode::BuildIndexAndOptimizeProperties(StyleSheet::NodeIndex& styled_index, StyleSheet::NodeIndex& complete_index, const StyleSheet& style_sheet)
{
// If this is a tag node, then we insert it into the list of all tag nodes. Makes sense, neh?
if (type == TAG)
{
StyleSheet::NodeIndex::iterator iterator = complete_index.find(name);
if (iterator == complete_index.end())
(*complete_index.insert(StyleSheet::NodeIndex::value_type(name, StyleSheet::NodeList())).first).second.insert(this);
else
(*iterator).second.insert(this);
}
// If we are a styled node (ie, have some style attributes attached), then we insert our closest parent tag node
// into the list of styled tag nodes.
if (properties.GetNumProperties() > 0)
{
StyleSheetNode* tag_node = this;
while (tag_node != nullptr &&
tag_node->type != TAG)
tag_node = tag_node->parent;
if (tag_node != nullptr)
{
StyleSheet::NodeIndex::iterator iterator = styled_index.find(tag_node->name);
if (iterator == styled_index.end())
(*styled_index.insert(StyleSheet::NodeIndex::value_type(tag_node->name, StyleSheet::NodeList())).first).second.insert(tag_node);
else
(*iterator).second.insert(tag_node);
}
// Turn any decorator properties from String to DecoratorList.
// This is essentially an optimization, it will work fine to skip this step and let ElementStyle::ComputeValues() do all the work.
// However, when we do it here, we only need to do it once.
// Note, since the user may set a new decorator through its style, we still do the conversion as necessary again in ComputeValues.
if (const Property* property = properties.GetProperty(PropertyId::Decorator))
{
if (property->unit == Property::STRING)
{
const String string_value = property->Get();
DecoratorList decorator_list = style_sheet.InstanceDecoratorsFromString(string_value, property->source);
Property new_property = *property;
new_property.value = std::move(decorator_list);
new_property.unit = Property::DECORATOR;
properties.SetProperty(PropertyId::Decorator, new_property);
}
}
// Turn any font-effect properties from String to FontEffectListPtr. See comments for decorator, they apply here as well.
if (const Property * property = properties.GetProperty(PropertyId::FontEffect))
{
if (property->unit == Property::STRING)
{
const String string_value = property->Get();
FontEffectListPtr font_effects = style_sheet.InstanceFontEffectsFromString(string_value, property->source);
Property new_property = *property;
new_property.value = std::move(font_effects);
new_property.unit = Property::FONTEFFECT;
properties.SetProperty(PropertyId::FontEffect, new_property);
}
}
}
for (int i = 0; i < NUM_NODE_TYPES; i++)
{
for (NodeMap::iterator j = children[i].begin(); j != children[i].end(); ++j)
(*j).second->BuildIndexAndOptimizeProperties(styled_index, complete_index, style_sheet);
}
}
bool StyleSheetNode::SetStructurallyVolatileRecursive(bool ancestor_is_structural_pseudo_class)
{
// If any ancestor or descendant is a structural pseudo class, then we are structurally volatile.
bool self_is_structural_pseudo_class = (type == STRUCTURAL_PSEUDO_CLASS);
// Check our children for structural pseudo-classes.
bool descendant_is_structural_pseudo_class = false;
for (int i = 0; i < NUM_NODE_TYPES; ++i)
{
for (auto& child_name_node : children[i])
{
if (child_name_node.second->SetStructurallyVolatileRecursive(self_is_structural_pseudo_class || ancestor_is_structural_pseudo_class))
descendant_is_structural_pseudo_class = true;
}
}
is_structurally_volatile = (self_is_structural_pseudo_class || ancestor_is_structural_pseudo_class || descendant_is_structural_pseudo_class);
return (self_is_structural_pseudo_class || descendant_is_structural_pseudo_class);
}
// Returns the name of this node.
const String& StyleSheetNode::GetName() const
{
return name;
}
// Returns the specificity of this node.
int StyleSheetNode::GetSpecificity() const
{
return specificity;
}
// Imports properties from a single rule definition (ie, with a shared specificity) into the node's
// properties.
void StyleSheetNode::ImportProperties(const PropertyDictionary& _properties, int rule_specificity)
{
properties.Import(_properties, specificity + rule_specificity);
}
// Merges properties from another node (ie, with potentially differing specificities) into the
// node's properties.
void StyleSheetNode::MergeProperties(const PropertyDictionary& _properties, int rule_specificity_offset)
{
properties.Merge(_properties, rule_specificity_offset);
}
// Returns the node's default properties.
const PropertyDictionary& StyleSheetNode::GetProperties() const
{
return properties;
}
// Adds to a list the names of this node's pseudo-classes which are deemed volatile.
bool StyleSheetNode::GetVolatilePseudoClasses(PseudoClassList& volatile_pseudo_classes) const
{
if (type == PSEUDO_CLASS)
{
bool self_volatile = !children[TAG].empty();
for (NodeMap::const_iterator i = children[PSEUDO_CLASS].begin(); i != children[PSEUDO_CLASS].end(); ++i)
self_volatile = (*i).second->GetVolatilePseudoClasses(volatile_pseudo_classes) | self_volatile;
if (self_volatile)
{
volatile_pseudo_classes.insert(name);
}
return self_volatile;
}
else
{
for (NodeMap::const_iterator i = children[PSEUDO_CLASS].begin(); i != children[PSEUDO_CLASS].end(); ++i)
(*i).second->GetVolatilePseudoClasses(volatile_pseudo_classes);
}
return false;
}
// Returns a direct child node of this node of the requested type.
StyleSheetNode* StyleSheetNode::GetChildNode(const String& child_name, NodeType child_type, bool create)
{
// Look for a node with given name.
NodeMap::iterator iterator = children[child_type].find(child_name);
if (iterator != children[child_type].end())
{
// Traverse into node.
return (*iterator).second;
}
else
{
if (create)
{
StyleSheetNode* new_node = nullptr;
// Create the node; structural pseudo-classes require a little extra leg-work.
if (child_type == STRUCTURAL_PSEUDO_CLASS)
new_node = CreateStructuralChild(child_name);
else
new_node = new StyleSheetNode(child_name, child_type, this);
if (new_node != nullptr)
{
children[child_type][child_name] = new_node;
return new_node;
}
}
return nullptr;
}
}
// Returns true if this node is applicable to the given element, given its IDs, classes and heritage.
bool StyleSheetNode::IsApplicable(const Element* element) const
{
// This function is called with an element that matches a style node only with the tag name. We have to determine
// here whether or not it also matches the required hierarchy.
// We must have a parent; if not, something's amok with the style tree.
if (parent == nullptr)
{
RMLUI_ERRORMSG("Invalid RCSS hierarchy.");
return false;
}
// If we've hit a child of the root of the style sheet tree, then we're done; no more lineage to resolve.
if (parent->type == ROOT)
return true;
// Determine the tag (and possibly id / class as well) of the next required parent in the RCSS hierarchy.
const StyleSheetNode* parent_node = parent;
const String* ancestor_id = nullptr;
static std::vector ancestor_classes;
static std::vector ancestor_pseudo_classes;
static std::vector< const StyleSheetNode* > ancestor_structural_pseudo_classes;
ancestor_classes.clear();
ancestor_pseudo_classes.clear();
ancestor_structural_pseudo_classes.clear();
while (parent_node != nullptr && parent_node->type != TAG)
{
switch (parent_node->type)
{
case ID: ancestor_id = &parent_node->name; break;
case CLASS: ancestor_classes.push_back(&parent_node->name); break;
case PSEUDO_CLASS: ancestor_pseudo_classes.push_back(&parent_node->name); break;
case STRUCTURAL_PSEUDO_CLASS: ancestor_structural_pseudo_classes.push_back(parent_node); break;
default: RMLUI_ERRORMSG("Invalid RCSS hierarchy."); return false;
}
parent_node = parent_node->parent;
}
// Check for an invalid RCSS hierarchy.
if (parent_node == nullptr)
{
RMLUI_ERRORMSG("Invalid RCSS hierarchy.");
return false;
}
// Now we know the name / class / ID / pseudo-class / structural requirements for the next ancestor requirement of
// the element. So we look back through the element's ancestors to find one that matches.
for (const Element* ancestor_element = element->GetParentNode(); ancestor_element != nullptr; ancestor_element = ancestor_element->GetParentNode())
{
// Skip this ancestor if the name of the next style node doesn't match its tag name, and one was specified.
if (!parent_node->name.empty()
&& parent_node->name != ancestor_element->GetTagName())
continue;
// Skip this ancestor if the ID of the next style node doesn't match its ID, and one was specified.
if (ancestor_id &&
*ancestor_id != ancestor_element->GetId())
continue;
// Skip this ancestor if the class of the next style node don't match its classes.
bool resolved_requirements = true;
for (size_t i = 0; i < ancestor_classes.size(); ++i)
{
if (!ancestor_element->IsClassSet(*ancestor_classes[i]))
{
resolved_requirements = false;
break;
}
}
if (!resolved_requirements)
continue;
// Skip this ancestor if the required pseudo-classes of the style node aren't set on it.
resolved_requirements = true;
for (size_t i = 0; i < ancestor_pseudo_classes.size(); ++i)
{
if (!ancestor_element->IsPseudoClassSet(*ancestor_pseudo_classes[i]))
{
resolved_requirements = false;
break;
}
}
if (!resolved_requirements)
continue;
// Skip this ancestor if the required structural pseudo-classes of the style node aren't applicable to it.
resolved_requirements = true;
for (size_t i = 0; i < ancestor_structural_pseudo_classes.size(); ++i)
{
if (!ancestor_structural_pseudo_classes[i]->selector->IsApplicable(ancestor_element, ancestor_structural_pseudo_classes[i]->a, ancestor_structural_pseudo_classes[i]->b))
{
resolved_requirements = false;
break;
}
}
if (!resolved_requirements)
continue;
return parent_node->IsApplicable(ancestor_element);
}
// We hit the end of the hierarchy before matching the required ancestor, so bail.
return false;
}
// Appends all applicable non-tag descendants of this node into the given element list.
void StyleSheetNode::GetApplicableDescendants(std::vector< const StyleSheetNode* >& applicable_nodes, const Element* element) const
{
// Check if this node matches this element.
switch (type)
{
RMLUI_UNUSED_SWITCH_ENUM(NUM_NODE_TYPES);
case ROOT:
case TAG:
{
// These nodes always match.
}
break;
case CLASS:
{
if (!element->IsClassSet(name))
return;
}
break;
case ID:
{
if (name != element->GetId())
return;
}
break;
case PSEUDO_CLASS:
{
if (!element->IsPseudoClassSet(name))
return;
}
break;
case STRUCTURAL_PSEUDO_CLASS:
{
if (selector == nullptr)
return;
if (!selector->IsApplicable(element, a, b))
return;
}
break;
}
if (properties.GetNumProperties() > 0)
applicable_nodes.push_back(this);
for (int i = CLASS; i < NUM_NODE_TYPES; i++)
{
for (auto& child_tag_node : children[i])
child_tag_node.second->GetApplicableDescendants(applicable_nodes, element);
}
}
bool StyleSheetNode::IsStructurallyVolatile() const
{
return is_structurally_volatile;
}
// Constructs a structural pseudo-class child node.
StyleSheetNode* StyleSheetNode::CreateStructuralChild(const String& child_name)
{
StyleSheetNodeSelector* child_selector = StyleSheetFactory::GetSelector(child_name);
if (child_selector == nullptr)
return nullptr;
// Parse the 'a' and 'b' values.
int child_a = 1;
int child_b = 0;
size_t parameter_start = child_name.find("(");
size_t parameter_end = child_name.find(")");
if (parameter_start != String::npos &&
parameter_end != String::npos)
{
String parameters = child_name.substr(parameter_start + 1, parameter_end - (parameter_start + 1));
// Check for 'even' or 'odd' first.
if (parameters == "even")
{
child_a = 2;
child_b = 0;
}
else if (parameters == "odd")
{
child_a = 2;
child_b = 1;
}
else
{
// Alrighty; we've got an equation in the form of [[+/-]an][(+/-)b]. So, foist up, we split on 'n'.
size_t n_index = parameters.find('n');
if (n_index != String::npos)
{
// The equation is 0n + b. So a = 0, and we only have to parse b.
child_a = 0;
child_b = atoi(parameters.c_str());
}
else
{
if (n_index == 0)
child_a = 1;
else
{
String a_parameter = parameters.substr(0, n_index);
if (StringUtilities::StripWhitespace(a_parameter) == "-")
child_a = -1;
else
child_a = atoi(a_parameter.c_str());
}
if (n_index == parameters.size() - 1)
child_b = 0;
else
child_b = atoi(parameters.substr(n_index + 1).c_str());
}
}
}
return new StyleSheetNode(child_name, this, child_selector, child_a, child_b);
}
int StyleSheetNode::CalculateSpecificity()
{
// Calculate the specificity of just this node; tags are worth 10,000, IDs 1,000,000 and other specifiers (classes
// and pseudo-classes) 100,000.
int specificity = 0;
switch (type)
{
case TAG:
{
if (!name.empty())
specificity = 10000;
}
break;
case CLASS:
case PSEUDO_CLASS:
case STRUCTURAL_PSEUDO_CLASS:
{
specificity = 100000;
}
break;
case ID:
{
specificity = 1000000;
}
break;
default:
{
specificity = 0;
}
break;
}
// Add our parent's specificity onto ours.
if (parent != nullptr)
specificity += parent->CalculateSpecificity();
return specificity;
}
}
}