/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "LayoutFlex.h" #include "../../Include/RmlUi/Core/ComputedValues.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/ElementScroll.h" #include "../../Include/RmlUi/Core/Types.h" #include "LayoutDetails.h" #include "LayoutEngine.h" #include #include #include namespace Rml { void LayoutFlex::Format(const Box& box, const Vector2f min_size, const Vector2f max_size, const Vector2f flex_containing_block, Element* element_flex, Vector2f& out_formatted_content_size, Vector2f& out_content_overflow_size, ElementList& out_absolutely_positioned_elements) { ElementScroll* element_scroll = element_flex->GetElementScroll(); const Vector2f scrollbar_size = {element_scroll->GetScrollbarSize(ElementScroll::VERTICAL), element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL)}; Vector2f flex_content_offset = box.GetPosition(); const Vector2f box_content_size = box.GetSize(); const bool auto_height = (box_content_size.y < 0.0f); Vector2f flex_available_content_size = Math::Max(box_content_size - scrollbar_size, Vector2f(0.f)); Vector2f flex_content_containing_block = flex_available_content_size; if (auto_height) { flex_available_content_size.y = -1.f; // Negative means infinite space flex_content_containing_block.y = flex_containing_block.y; } Math::SnapToPixelGrid(flex_content_offset, flex_available_content_size); // Construct the layout object and format the table. LayoutFlex layout_flex(element_flex, flex_available_content_size, flex_content_containing_block, flex_content_offset, min_size, max_size, out_absolutely_positioned_elements); layout_flex.Format(); // Output the size of the formatted flexbox. The width is determined as a normal block box so we don't need to change that. out_formatted_content_size = box_content_size; if (auto_height) out_formatted_content_size = Vector2f(box_content_size.x, layout_flex.flex_resulting_content_size.y + scrollbar_size.y); out_content_overflow_size = layout_flex.flex_content_overflow_size; } LayoutFlex::LayoutFlex(Element* element_flex, Vector2f flex_available_content_size, Vector2f flex_content_containing_block, Vector2f flex_content_offset, Vector2f flex_min_size, Vector2f flex_max_size, ElementList& absolutely_positioned_elements) : element_flex(element_flex), flex_available_content_size(flex_available_content_size), flex_content_containing_block(flex_content_containing_block), flex_content_offset(flex_content_offset), flex_min_size(flex_min_size), flex_max_size(flex_max_size), absolutely_positioned_elements(absolutely_positioned_elements) {} struct FlexItem { // In the following, suffix '_a' means flex start edge while '_b' means flex end edge. struct Size { bool auto_margin_a, auto_margin_b; bool auto_size; float margin_a, margin_b; float sum_edges_a; // Start edge: margin (non-auto) + border + padding float sum_edges; // Inner->outer size float min_size, max_size; // Inner size }; Element* element; Box box; // Filled during the build step. Size main; Size cross; float flex_shrink_factor; float flex_grow_factor; Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value float inner_flex_base_size; // Inner size float flex_base_size; // Outer size float hypothetical_main_size; // Outer size // Used for resolving flexible length enum class Violation : std::uint8_t { None = 0, Min, Max }; bool frozen; Violation violation; float target_main_size; // Outer size float used_main_size; // Outer size (without auto margins) float main_auto_margin_size_a, main_auto_margin_size_b; float main_offset; // Used for resolving cross size float hypothetical_cross_size; // Outer size float used_cross_size; // Outer size float cross_offset; // Offset within line float cross_baseline_top; // Only used for baseline cross alignment }; struct FlexLine { FlexLine(Vector&& items) : items(std::move(items)) {} Vector items; float accumulated_hypothetical_main_size = 0; float cross_size = 0; // Excludes line spacing float cross_spacing_a = 0, cross_spacing_b = 0; float cross_offset = 0; }; struct FlexContainer { Vector lines; }; static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse) { float margin_a, margin_b, padding_border_a, padding_border_b; LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value); const float padding_border = padding_border_a + padding_border_b; const float margin = margin_a + margin_b; destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto); destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto); destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto); destination.margin_a = margin_a; destination.margin_b = margin_b; destination.sum_edges = padding_border + margin; destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a); destination.min_size = ResolveValue(computed_size.min_size, base_value); destination.max_size = (computed_size.max_size.value < 0.f ? FLT_MAX : ResolveValue(computed_size.max_size, base_value)); if (computed_size.box_sizing == Style::BoxSizing::BorderBox) { destination.min_size = Math::Max(0.0f, destination.min_size - padding_border); if (destination.max_size < FLT_MAX) destination.max_size = Math::Max(0.0f, destination.max_size - padding_border); } if (direction_reverse) { std::swap(destination.auto_margin_a, destination.auto_margin_b); std::swap(destination.margin_a, destination.margin_b); } } void LayoutFlex::Format() { // The following procedure is generally based on the CSS flexible box layout algorithm. // For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm const ComputedValues& computed_flex = element_flex->GetComputedValues(); const Style::FlexDirection direction = computed_flex.flex_direction(); const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse); const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse); const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap); const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse); const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y); const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y); const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y); const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y); const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x); const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x); // For the purpose of placing items we make infinite size a big value. const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size); // For the purpose of resolving lengths, infinite main size becomes zero. const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size); const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size); // -- Build a list of all flex items with base size information -- Vector items; const int num_flex_children = element_flex->GetNumChildren(); for (int i = 0; i < num_flex_children; i++) { Element* element = element_flex->GetChild(i); const ComputedValues& computed = element->GetComputedValues(); if (computed.display() == Style::Display::None) { continue; } else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed) { absolutely_positioned_elements.push_back(element); continue; } FlexItem item = {}; item.element = element; LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BoxContext::FlexOrTable, 0.0f); Style::LengthPercentageAuto item_main_size; { const ComputedAxisSize computed_main_size = main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed); const ComputedAxisSize computed_cross_size = !main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed); GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse); GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse); item_main_size = computed_main_size.size; } item.flex_shrink_factor = computed.flex_shrink(); item.flex_grow_factor = computed.flex_grow(); item.align_self = computed.align_self(); static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 && int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1, "It is assumed below that align items is a shifted version (no auto value) of align self."); // Use the container's align-items property if align-self is auto. if (item.align_self == Style::AlignSelf::Auto) item.align_self = static_cast(static_cast(computed_flex.align_items()) + 1); const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b); // Find the flex base size (possibly negative when using border box sizing) if (computed.flex_basis().type != Style::FlexBasis::Auto) { item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value); if (computed.box_sizing() == Style::BoxSizing::BorderBox) item.inner_flex_base_size -= sum_padding_border; } else if (!item.main.auto_size) { item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value); if (computed.box_sizing() == Style::BoxSizing::BorderBox) item.inner_flex_base_size -= sum_padding_border; } else if (main_axis_horizontal) { item.inner_flex_base_size = LayoutDetails::GetShrinkToFitWidth(element, flex_content_containing_block); } else { const Vector2f initial_box_size = item.box.GetSize(); RMLUI_ASSERT(initial_box_size.y < 0.f); Box format_box = item.box; if (initial_box_size.x < 0.f) format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y)); LayoutEngine::FormatElement(element, flex_content_containing_block, &format_box); item.inner_flex_base_size = element->GetBox().GetSize().y; } // Calculate the hypothetical main size (clamped flex base size). item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges; item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges; items.push_back(std::move(item)); } if (items.empty()) { return; } // -- Collect the items into lines -- FlexContainer container; if (flex_single_line) { container.lines.emplace_back(std::move(items)); } else { float cursor = 0; Vector line_items; for (FlexItem& item : items) { cursor += item.hypothetical_main_size; if (!line_items.empty() && cursor > main_wrap_size) { // Break into new line. container.lines.emplace_back(std::move(line_items)); cursor = item.hypothetical_main_size; line_items = {std::move(item)}; } else { // Add item to current line. line_items.push_back(std::move(item)); } } if (!line_items.empty()) container.lines.emplace_back(std::move(line_items)); items.clear(); items.shrink_to_fit(); } for (FlexLine& line : container.lines) { line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f, [](float value, const FlexItem& item) { return value + item.hypothetical_main_size; }); } // If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line. const float used_main_size_unconstrained = main_available_size >= 0.f ? main_available_size : std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) { return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size; })->accumulated_hypothetical_main_size; const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size); // -- Determine main size -- // Resolve flexible lengths to find the used main size of all items. for (FlexLine& line : container.lines) { const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative const bool flex_mode_grow = (available_flex_space > 0.f); auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); }; // Initialize items and freeze inflexible items. for (FlexItem& item : line.items) { item.target_main_size = item.flex_base_size; if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) || (!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size)) { item.frozen = true; item.target_main_size = item.hypothetical_main_size; } } auto RemainingFreeSpace = [used_main_size, &line]() { return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + (item.frozen ? item.target_main_size : item.flex_base_size); }); }; const float initial_free_space = RemainingFreeSpace(); // Now iteratively distribute or shrink the size of all the items, until all the items are frozen. while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; })) { float remaining_free_space = RemainingFreeSpace(); const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f, [&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); }); if (flex_factor_sum < 1.f) { const float scaled_initial_free_space = initial_free_space * flex_factor_sum; if (Math::AbsoluteValue(scaled_initial_free_space) < Math::AbsoluteValue(remaining_free_space)) remaining_free_space = scaled_initial_free_space; } if (remaining_free_space != 0.f) { // Distribute free space proportionally to flex factors if (flex_mode_grow) { for (FlexItem& item : line.items) { if (!item.frozen) { const float distribute_ratio = item.flex_grow_factor / flex_factor_sum; item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space; } } } else { const float scaled_flex_shrink_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size); }); const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum); for (FlexItem& item : line.items) { if (!item.frozen) { const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size; const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero; item.target_main_size = item.flex_base_size - distribute_ratio * Math::AbsoluteValue(remaining_free_space); } } } } // Clamp min/max violations float total_minmax_violation = 0.f; for (FlexItem& item : line.items) { if (!item.frozen) { const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges); const float clamped_target_main_size = Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges; const float violation_diff = clamped_target_main_size - item.target_main_size; item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min : (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None)); item.target_main_size = clamped_target_main_size; total_minmax_violation += violation_diff; } } for (FlexItem& item : line.items) { if (total_minmax_violation > 0.0f) item.frozen |= (item.violation == FlexItem::Violation::Min); else if (total_minmax_violation < 0.0f) item.frozen |= (item.violation == FlexItem::Violation::Max); else item.frozen = true; } } // Now, each item's used main size is found! for (FlexItem& item : line.items) item.used_main_size = item.target_main_size; } // -- Align main axis (§9.5) -- // Main alignment is done before cross sizing. Due to rounding to the pixel grid, the main size can // change slightly after main alignment/offseting. Also, the cross sizing depends on the main sizing // so doing it in this order ensures no surprises (overflow/wrapping issues) due to pixel rounding. for (FlexLine& line : container.lines) { const float remaining_free_space = used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; }); if (remaining_free_space > 0.0f) { const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0, [](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); }); if (num_auto_margins > 0) { // Distribute the remaining space to the auto margins. const float space_per_auto_margin = remaining_free_space / float(num_auto_margins); for (FlexItem& item : line.items) { if (item.main.auto_margin_a) item.main_auto_margin_size_a = space_per_auto_margin; if (item.main.auto_margin_b) item.main_auto_margin_size_b = space_per_auto_margin; } } else { // Distribute the remaining space based on the 'justify-content' property. using Style::JustifyContent; const int num_items = int(line.items.size()); switch (computed_flex.justify_content()) { case JustifyContent::SpaceBetween: if (num_items > 1) { const float space_per_edge = remaining_free_space / float(2 * num_items - 2); for (int i = 0; i < num_items; i++) { FlexItem& item = line.items[i]; if (i > 0) item.main_auto_margin_size_a = space_per_edge; if (i < num_items - 1) item.main_auto_margin_size_b = space_per_edge; } break; } //-fallthrough case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break; case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break; case JustifyContent::Center: line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space; line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space; break; case JustifyContent::SpaceAround: { const float space_per_edge = remaining_free_space / float(2 * num_items); for (FlexItem& item : line.items) { item.main_auto_margin_size_a = space_per_edge; item.main_auto_margin_size_b = space_per_edge; } } break; } } } // Now find the offset and snap the outer edges to the pixel grid. float cursor = 0.0f; for (FlexItem& item : line.items) { if (direction_reverse) item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b); else item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a; cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b; Math::SnapToPixelGrid(item.main_offset, item.used_main_size); } } // -- Determine cross size (§9.4) -- // First, determine the cross size of each item, format it if necessary. for (FlexLine& line : container.lines) { for (FlexItem& item : line.items) { const Vector2f content_size = item.box.GetSize(); const float used_main_size_inner = item.used_main_size - item.main.sum_edges; if (main_axis_horizontal) { if (content_size.y < 0.0f) { item.box.SetContent(Vector2f(used_main_size_inner, content_size.y)); LayoutEngine::FormatElement(item.element, flex_content_containing_block, &item.box); item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges; } else { item.hypothetical_cross_size = content_size.y + item.cross.sum_edges; } } else { if (content_size.x < 0.0f || item.cross.auto_size) { item.box.SetContent(Vector2f(content_size.x, used_main_size_inner)); item.hypothetical_cross_size = LayoutDetails::GetShrinkToFitWidth(item.element, flex_content_containing_block) + item.cross.sum_edges; } else { item.hypothetical_cross_size = content_size.x + item.cross.sum_edges; } } } } // Determine cross size of each line. if (cross_available_size >= 0.f && flex_single_line && container.lines.size() == 1) { container.lines[0].cross_size = cross_available_size; } else { for (FlexLine& line : container.lines) { const float largest_hypothetical_cross_size = std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) { return a.hypothetical_cross_size < b.hypothetical_cross_size; })->hypothetical_cross_size; // Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8. line.cross_size = Math::Max(0.0f, Math::RoundFloat(largest_hypothetical_cross_size)); if (flex_single_line) line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size); } } // Stretch out the lines if we have extra space. if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch) { int remaining_space = static_cast(cross_available_size - std::accumulate(container.lines.begin(), container.lines.end(), 0.f, [](float value, const FlexLine& line) { return value + line.cross_size; })); if (remaining_space > 0) { // Here we use integer math to ensure all space is distributed to pixel boundaries. const int num_lines = (int)container.lines.size(); for (int i = 0; i < num_lines; i++) { const int add_space_to_line = remaining_space / (num_lines - i); remaining_space -= add_space_to_line; container.lines[i].cross_size += static_cast(add_space_to_line); } } } // Determine the used cross size of items. for (FlexLine& line : container.lines) { for (FlexItem& item : line.items) { const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch); if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b) { item.used_cross_size = Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges; // Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems // very slow, we skip this for now. } else { item.used_cross_size = item.hypothetical_cross_size; } } } // -- Align cross axis (§9.6) -- for (FlexLine& line : container.lines) { constexpr float UndefinedBaseline = -FLT_MAX; float max_baseline_edge_distance = UndefinedBaseline; FlexItem* max_baseline_item = nullptr; for (FlexItem& item : line.items) { const float remaining_space = line.cross_size - item.used_cross_size; item.cross_offset = item.cross.margin_a; item.cross_baseline_top = UndefinedBaseline; const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b); if (num_auto_margins > 0) { const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins); item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f); } else { using Style::AlignSelf; const AlignSelf align_self = item.align_self; switch (align_self) { case AlignSelf::Auto: // Never encountered here: should already have been replaced by container's align-items property. RMLUI_ERROR; break; case AlignSelf::FlexStart: // Do nothing, cross offset set above with this behavior. break; case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break; case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break; case AlignSelf::Baseline: { // We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation. const float baseline_heuristic = 0.5f * item.element->GetLineHeight(); const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a); item.cross_baseline_top = sum_edges_top + baseline_heuristic; const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top); if (baseline_edge_distance > max_baseline_edge_distance) { max_baseline_item = &item; max_baseline_edge_distance = baseline_edge_distance; } } break; case AlignSelf::Stretch: // Handled above break; } } if (wrap_reverse) { const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b; item.cross_offset = reverse_offset - item.cross_offset; } } if (max_baseline_item) { // Align all baseline items such that their baselines are aligned with the one with the max. baseline distance. // Cross offset for all baseline items are currently set as in 'flex-start'. const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a); const float line_top_to_baseline_distance = max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top; for (FlexItem& item : line.items) { if (item.cross_baseline_top != UndefinedBaseline) { const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a); item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top; } } } // Snap the outer item cross edges to the pixel grid. for (FlexItem& item : line.items) Math::SnapToPixelGrid(item.cross_offset, item.used_cross_size); } const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f, [](float value, const FlexLine& line) { return value + line.cross_size; }); // If the available cross size is infinite, the used cross size becomes the accumulated line cross size. const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size; const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size); // Align the lines along the cross-axis. { const float remaining_free_space = used_cross_size - accumulated_lines_cross_size; const int num_lines = int(container.lines.size()); if (remaining_free_space > 0.f) { using Style::AlignContent; switch (computed_flex.align_content()) { case AlignContent::SpaceBetween: if (num_lines > 1) { const float space_per_edge = remaining_free_space / float(2 * num_lines - 2); for (int i = 0; i < num_lines; i++) { FlexLine& line = container.lines[i]; if (i > 0) line.cross_spacing_a = space_per_edge; if (i < num_lines - 1) line.cross_spacing_b = space_per_edge; } } //-fallthrough case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break; case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break; case AlignContent::Center: container.lines.front().cross_spacing_a = 0.5f * remaining_free_space; container.lines.back().cross_spacing_b = 0.5f * remaining_free_space; break; case AlignContent::SpaceAround: { const float space_per_edge = remaining_free_space / float(2 * num_lines); for (FlexLine& line : container.lines) { line.cross_spacing_a = space_per_edge; line.cross_spacing_b = space_per_edge; } } break; case AlignContent::Stretch: // Handled above. break; } } // Now find the offset and snap the line edges to the pixel grid. float cursor = 0.f; for (FlexLine& line : container.lines) { if (wrap_reverse) line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size); else line.cross_offset = cursor + line.cross_spacing_a; cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b; Math::SnapToPixelGrid(line.cross_offset, line.cross_size); } } auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) { return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main); }; // -- Format items -- for (FlexLine& line : container.lines) { for (FlexItem& item : line.items) { const Vector2f item_size = MainCrossToVec2(item.used_main_size - item.main.sum_edges, item.used_cross_size - item.cross.sum_edges); const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset); item.box.SetContent(item_size); Vector2f cell_visible_overflow_size; LayoutEngine::FormatElement(item.element, flex_content_containing_block, &item.box, &cell_visible_overflow_size); // Set the position of the element within the the flex container item.element->SetOffset(flex_content_offset + item_offset, element_flex); // The cell contents may overflow, propagate this to the flex container. const Vector2f overflow_size = item_offset + cell_visible_overflow_size - Vector2f(item.box.GetEdge(Box::MARGIN, Box::LEFT), item.box.GetEdge(Box::MARGIN, Box::TOP)); flex_content_overflow_size.x = Math::Max(flex_content_overflow_size.x, overflow_size.x); flex_content_overflow_size.y = Math::Max(flex_content_overflow_size.y, overflow_size.y); } } flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size); } } // namespace Rml