/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019-2023 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "FlexFormattingContext.h"
#include "../../../Include/RmlUi/Core/ComputedValues.h"
#include "../../../Include/RmlUi/Core/Element.h"
#include "../../../Include/RmlUi/Core/ElementScroll.h"
#include "../../../Include/RmlUi/Core/Profiling.h"
#include "../../../Include/RmlUi/Core/Types.h"
#include "ContainerBox.h"
#include "LayoutDetails.h"
#include
#include
#include
namespace Rml {
UniquePtr FlexFormattingContext::Format(ContainerBox* parent_container, Element* element, Vector2f containing_block,
const Box& initial_box)
{
const ComputedValues& computed = element->GetComputedValues();
Vector2f flex_min_size, flex_max_size;
LayoutDetails::GetMinMaxWidth(flex_min_size.x, flex_max_size.x, computed, initial_box, containing_block.x);
LayoutDetails::GetMinMaxHeight(flex_min_size.y, flex_max_size.y, computed, initial_box, containing_block.y);
return FlexFormattingContext::FormatImpl(parent_container, element, initial_box, flex_min_size, flex_max_size);
}
UniquePtr FlexFormattingContext::DetermineMaxContentWidth(Element* element, const Box& initial_box, const FormattingMode& formatting_mode)
{
RMLUI_ASSERT(formatting_mode.constraint == FormattingMode::Constraint::MaxContent);
const Vector2f containing_block(-1.f);
RootBox root(Box(containing_block), formatting_mode);
const Vector2f min_flex_size(0.f);
const Vector2f max_flex_size(FLT_MAX);
// Return the layout box if (and only if) we can consider the layout complete, despite formatting under a
// max-content constraint. This allows us to skip a formatting step in some cases. Later we may want to make some
// formatting simplifications during max-content sizing, optimized just for retrieving its width. In this case, we
// should make sure that the full flex formatting is done at least once during layouting in the end.
return FlexFormattingContext::FormatImpl(&root, element, initial_box, min_flex_size, max_flex_size);
}
UniquePtr FlexFormattingContext::FormatImpl(ContainerBox* parent_container, Element* element, const Box& initial_box,
Vector2f flex_min_size, Vector2f flex_max_size)
{
RMLUI_ZoneScopedC(0xAFAF4F);
auto flex_container_box = MakeUnique(element, parent_container, initial_box);
ElementScroll* element_scroll = element->GetElementScroll();
Box& box = flex_container_box->GetBox();
// Start with any auto-scrollbars off.
flex_container_box->ResetScrollbars(box);
FlexFormattingContext context;
context.flex_container_box = flex_container_box.get();
context.element_flex = element;
context.flex_min_size = flex_min_size;
context.flex_max_size = flex_max_size;
const Vector2f box_content_size = box.GetSize(); // Can be negative for auto size (infinite available space).
context.flex_content_offset = box.GetPosition();
for (int layout_iteration = 0; layout_iteration < 3; layout_iteration++)
{
// One or both scrollbars can be enabled between iterations.
const Vector2f scrollbar_size = {
element_scroll->GetScrollbarSize(ElementScroll::VERTICAL),
element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL),
};
for (int i = 0; i < 2; i++)
context.flex_available_content_size[i] = (box_content_size[i] < 0.f ? -1.f : Math::Max(box_content_size[i] - scrollbar_size[i], 0.f));
context.flex_content_containing_block = context.flex_available_content_size;
// Format the flexbox and all its children.
Vector2f flex_resulting_content_size, content_overflow_size;
float flex_baseline = 0.f;
context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
// Output the size of the formatted flexbox. Any auto size is replaced by the resulting content size.
Vector2f formatted_content_size = box_content_size;
for (int i = 0; i < 2; i++)
{
if (box_content_size[i] < 0.0f)
formatted_content_size[i] = flex_resulting_content_size[i] + scrollbar_size[i];
}
Box sized_box = box;
sized_box.SetContent(formatted_content_size);
// Change the flex baseline coordinates to the element baseline, which is defined as the distance from the element's bottom margin edge.
const float element_baseline =
sized_box.GetSizeAcross(BoxDirection::Vertical, BoxArea::Border) + sized_box.GetEdge(BoxArea::Margin, BoxEdge::Bottom) - flex_baseline;
// Close the box, and break out of the loop if it did not produce any new scrollbars, otherwise continue to format the flexbox again.
if (flex_container_box->Close(content_overflow_size, sized_box, element_baseline))
{
box.SetContent(formatted_content_size);
break;
}
}
return flex_container_box;
}
struct FlexItem {
// In the following, suffix '_a' means flex start edge while '_b' means flex end edge.
struct Size {
bool auto_margin_a, auto_margin_b;
bool auto_size;
float margin_a, margin_b;
float sum_edges_a; // Start edge: margin (non-auto) + border + padding
float sum_edges; // Inner->outer size
float min_size, max_size; // Inner size
};
Element* element;
Box box;
// Filled during the build step.
Size main;
Size cross;
float flex_shrink_factor;
float flex_grow_factor;
Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value
float inner_flex_base_size; // Inner size
float flex_base_size; // Outer size
float hypothetical_main_size; // Outer size
// Used for resolving flexible length
enum class Violation : uint8_t { None = 0, Min, Max };
bool frozen;
Violation violation;
float target_main_size; // Outer size
float used_main_size; // Outer size (without auto margins)
float main_auto_margin_size_a, main_auto_margin_size_b;
float main_offset;
// Used for resolving cross size
float hypothetical_cross_size; // Outer size
float used_cross_size; // Outer size
float cross_offset; // Offset within line
float cross_baseline_top; // Only used for baseline cross alignment
};
struct FlexLine {
FlexLine(Vector&& items) : items(std::move(items)) {}
Vector items;
float accumulated_hypothetical_main_size = 0;
float cross_size = 0; // Excludes line spacing
float cross_spacing_a = 0, cross_spacing_b = 0;
float cross_offset = 0;
};
struct FlexLineContainer {
Vector lines;
};
static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse)
{
float margin_a, margin_b, padding_border_a, padding_border_b;
LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value);
const float padding_border = padding_border_a + padding_border_b;
const float margin = margin_a + margin_b;
destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto);
destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto);
destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto);
destination.margin_a = margin_a;
destination.margin_b = margin_b;
destination.sum_edges = padding_border + margin;
destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a);
destination.min_size = ResolveValue(computed_size.min_size, base_value);
destination.max_size = ResolveValue(computed_size.max_size, base_value);
if (computed_size.box_sizing == Style::BoxSizing::BorderBox)
{
destination.min_size = Math::Max(0.0f, destination.min_size - padding_border);
if (destination.max_size < FLT_MAX)
destination.max_size = Math::Max(0.0f, destination.max_size - padding_border);
}
if (direction_reverse)
{
std::swap(destination.auto_margin_a, destination.auto_margin_b);
std::swap(destination.margin_a, destination.margin_b);
}
}
static float GetInnerUsedMainSize(const FlexItem& item)
{
// Due to floating-point precision the outer size may be smaller than `sum_edges`, so clamp the result to zero.
return Math::Max(item.used_main_size - item.main.sum_edges, 0.f);
}
static float GetInnerUsedCrossSize(const FlexItem& item)
{
return Math::Max(item.used_cross_size - item.cross.sum_edges, 0.f);
}
void FlexFormattingContext::Format(Vector2f& flex_resulting_content_size, Vector2f& flex_content_overflow_size, float& flex_baseline) const
{
RMLUI_ZoneScopedC(0xAFAF7F);
// The following procedure is based on the CSS flexible box layout algorithm.
// For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm
const ComputedValues& computed_flex = element_flex->GetComputedValues();
const Style::FlexDirection direction = computed_flex.flex_direction();
const Style::LengthPercentage row_gap = computed_flex.row_gap();
const Style::LengthPercentage column_gap = computed_flex.column_gap();
const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse);
const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse);
const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap);
const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse);
const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y);
const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y);
const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x);
const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x);
// For the purpose of placing items we make infinite size a big value.
const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size);
// For the purpose of resolving lengths, infinite main size becomes zero.
const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size);
const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size);
const float main_gap_size = ResolveValue(main_axis_horizontal ? column_gap : row_gap, main_size_base_value);
const float cross_gap_size = ResolveValue(main_axis_horizontal ? row_gap : column_gap, cross_size_base_value);
// -- Build a list of all flex items with base size information --
const int num_flex_children = element_flex->GetNumChildren();
Vector items;
items.reserve(num_flex_children);
for (int i = 0; i < num_flex_children; i++)
{
Element* element = element_flex->GetChild(i);
const ComputedValues& computed = element->GetComputedValues();
if (computed.display() == Style::Display::None)
{
continue;
}
else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed)
{
flex_container_box->AddAbsoluteElement(element, {}, element_flex);
continue;
}
else if (computed.position() == Style::Position::Relative)
{
flex_container_box->AddRelativeElement(element);
}
FlexItem item = {};
item.element = element;
LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BuildBoxMode::Unaligned);
Style::LengthPercentageAuto item_main_size;
{
const ComputedAxisSize computed_main_size =
main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
const ComputedAxisSize computed_cross_size =
!main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse);
GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse);
item_main_size = computed_main_size.size;
}
item.flex_shrink_factor = computed.flex_shrink();
item.flex_grow_factor = computed.flex_grow();
item.align_self = computed.align_self();
static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 &&
int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1,
"It is assumed below that align items is a shifted version (no auto value) of align self.");
// Use the container's align-items property if align-self is auto.
if (item.align_self == Style::AlignSelf::Auto)
item.align_self = static_cast(static_cast(computed_flex.align_items()) + 1);
auto GetMainSize = [&](const Box& box) { return box.GetSize()[main_axis_horizontal ? 0 : 1]; };
const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b);
// Find the flex base size (possibly negative when using border box sizing)
if (computed.flex_basis().type != Style::FlexBasis::Auto)
{
item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value);
if (computed.box_sizing() == Style::BoxSizing::BorderBox)
item.inner_flex_base_size -= sum_padding_border;
}
else if (!item.main.auto_size)
{
item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value);
if (computed.box_sizing() == Style::BoxSizing::BorderBox)
item.inner_flex_base_size -= sum_padding_border;
}
else if (GetMainSize(item.box) >= 0.f)
{
// The element is auto-sized, and yet its box was given a definite size. This can happen e.g. due to intrinsic sizing or aspect ratios.
item.inner_flex_base_size = GetMainSize(item.box);
}
else if (main_axis_horizontal)
{
item.inner_flex_base_size = FormattingContext::FormatFitContentWidth(flex_container_box, element, flex_content_containing_block);
}
else
{
const Vector2f initial_box_size = item.box.GetSize();
RMLUI_ASSERT(initial_box_size.y < 0.f);
Box format_box = item.box;
if (initial_box_size.x < 0.f && flex_available_content_size.x >= 0.f)
format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y));
FormattingContext::FormatIndependent(flex_container_box, element, (format_box.GetSize().x >= 0 ? &format_box : nullptr),
FormattingContextType::Block);
item.inner_flex_base_size = element->GetBox().GetSize().y;
// Apply the automatic block size as minimum size (§4.5). Strictly speaking, we should also apply this to
// the other branches in column mode (and inline min-content size in row mode). However, the formatting step
// can be expensive, here we have already done that step so the value is readily accessible to us.
if (item.main.min_size == 0.f && !LayoutDetails::IsScrollContainer(computed.overflow_x(), computed.overflow_y()))
item.main.min_size = Math::Min(item.inner_flex_base_size, item.main.max_size);
}
// Calculate the hypothetical main size (clamped flex base size).
item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges;
items.push_back(std::move(item));
}
if (items.empty())
{
return;
}
// -- Collect the items into lines --
FlexLineContainer container;
if (flex_single_line)
{
container.lines.emplace_back(std::move(items));
}
else
{
float cursor = 0;
Vector line_items;
for (FlexItem& item : items)
{
cursor += item.hypothetical_main_size;
if (!line_items.empty() && cursor > main_wrap_size)
{
// Break into new line.
container.lines.emplace_back(std::move(line_items));
cursor = item.hypothetical_main_size;
line_items = {std::move(item)};
}
else
{
// Add item to current line.
line_items.push_back(std::move(item));
}
cursor += main_gap_size;
}
if (!line_items.empty())
container.lines.emplace_back(std::move(line_items));
items.clear();
items.shrink_to_fit();
}
for (FlexLine& line : container.lines)
{
// now that items are in lines, we can add the main gap size to all but the last item
if (main_gap_size > 0.f)
{
for (size_t i = 0; i < line.items.size() - 1; i++)
{
line.items[i].hypothetical_main_size += main_gap_size;
line.items[i].flex_base_size += main_gap_size;
line.items[i].main.margin_b += main_gap_size;
line.items[i].main.sum_edges += main_gap_size;
}
}
line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f,
[](float value, const FlexItem& item) { return value + item.hypothetical_main_size; });
}
// If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line.
const float used_main_size_unconstrained = main_available_size >= 0.f
? main_available_size
: std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) {
return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size;
})->accumulated_hypothetical_main_size;
const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size);
// -- Determine main size --
// Resolve flexible lengths to find the used main size of all items.
for (FlexLine& line : container.lines)
{
const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative
const bool flex_mode_grow = (available_flex_space > 0.f);
auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); };
// Initialize items and freeze inflexible items.
for (FlexItem& item : line.items)
{
item.target_main_size = item.flex_base_size;
if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) ||
(!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size))
{
item.frozen = true;
item.target_main_size = item.hypothetical_main_size;
}
}
auto RemainingFreeSpace = [used_main_size, &line]() {
return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
return value + (item.frozen ? item.target_main_size : item.flex_base_size);
});
};
const float initial_free_space = RemainingFreeSpace();
// Now iteratively distribute or shrink the size of all the items, until all the items are frozen.
while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; }))
{
float remaining_free_space = RemainingFreeSpace();
const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f,
[&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); });
if (flex_factor_sum < 1.f)
{
const float scaled_initial_free_space = initial_free_space * flex_factor_sum;
if (Math::Absolute(scaled_initial_free_space) < Math::Absolute(remaining_free_space))
remaining_free_space = scaled_initial_free_space;
}
if (remaining_free_space != 0.f)
{
// Distribute free space proportionally to flex factors
if (flex_mode_grow)
{
for (FlexItem& item : line.items)
{
if (!item.frozen)
{
const float distribute_ratio = item.flex_grow_factor / flex_factor_sum;
item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space;
}
}
}
else
{
const float scaled_flex_shrink_factor_sum =
std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size);
});
const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum);
for (FlexItem& item : line.items)
{
if (!item.frozen)
{
const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size;
const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero;
item.target_main_size = item.flex_base_size - distribute_ratio * Math::Absolute(remaining_free_space);
}
}
}
}
// Clamp min/max violations
float total_minmax_violation = 0.f;
for (FlexItem& item : line.items)
{
if (!item.frozen)
{
const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges);
const float clamped_target_main_size =
Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
const float violation_diff = clamped_target_main_size - item.target_main_size;
item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min
: (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None));
item.target_main_size = clamped_target_main_size;
total_minmax_violation += violation_diff;
}
}
for (FlexItem& item : line.items)
{
if (total_minmax_violation > 0.0f)
item.frozen |= (item.violation == FlexItem::Violation::Min);
else if (total_minmax_violation < 0.0f)
item.frozen |= (item.violation == FlexItem::Violation::Max);
else
item.frozen = true;
}
}
// Now, each item's used main size is found!
for (FlexItem& item : line.items)
item.used_main_size = item.target_main_size;
}
// -- Align main axis (§9.5) --
// Main alignment is done before cross sizing. Previously, doing it in this order was important due to pixel
// rounding, since changing the main offset could change the main size after rounding, which in turn could influence
// the cross size. However, now we no longer do pixel rounding, so we may be free to do cross sizing first if we
// want to do it in that order for some particular reason.
for (FlexLine& line : container.lines)
{
const float remaining_free_space = used_main_size -
std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; });
if (remaining_free_space > 0.0f)
{
const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0,
[](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); });
if (num_auto_margins > 0)
{
// Distribute the remaining space to the auto margins.
const float space_per_auto_margin = remaining_free_space / float(num_auto_margins);
for (FlexItem& item : line.items)
{
if (item.main.auto_margin_a)
item.main_auto_margin_size_a = space_per_auto_margin;
if (item.main.auto_margin_b)
item.main_auto_margin_size_b = space_per_auto_margin;
}
}
else
{
// Distribute the remaining space based on the 'justify-content' property.
using Style::JustifyContent;
const int num_items = int(line.items.size());
switch (computed_flex.justify_content())
{
case JustifyContent::SpaceBetween:
if (num_items > 1)
{
const float space_per_edge = remaining_free_space / float(2 * num_items - 2);
for (int i = 0; i < num_items; i++)
{
FlexItem& item = line.items[i];
if (i > 0)
item.main_auto_margin_size_a = space_per_edge;
if (i < num_items - 1)
item.main_auto_margin_size_b = space_per_edge;
}
break;
}
//-fallthrough
case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break;
case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break;
case JustifyContent::Center:
line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space;
line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space;
break;
case JustifyContent::SpaceAround:
{
const float space_per_edge = remaining_free_space / float(2 * num_items);
for (FlexItem& item : line.items)
{
item.main_auto_margin_size_a = space_per_edge;
item.main_auto_margin_size_b = space_per_edge;
}
}
break;
case JustifyContent::SpaceEvenly:
{
const float space_per_edge = remaining_free_space / float(2 * (num_items + 1));
for (int i = 0; i < num_items; i++)
{
FlexItem& item = line.items[i];
item.main_auto_margin_size_a = space_per_edge;
item.main_auto_margin_size_b = space_per_edge;
if (i == 0)
item.main_auto_margin_size_a *= 2.0f;
else if (i == num_items - 1)
item.main_auto_margin_size_b *= 2.0f;
}
}
break;
}
}
}
// Now find the offset for each item.
float cursor = 0.0f;
for (FlexItem& item : line.items)
{
if (direction_reverse)
item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b);
else
item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a;
cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b;
}
}
// Apply cross axis gaps to every item in every line except the last line.
if (cross_gap_size > 0.f)
{
for (size_t i = 0; i < container.lines.size() - 1; i++)
{
FlexLine& line = container.lines[i];
for (FlexItem& item : line.items)
{
item.cross.margin_b += cross_gap_size;
item.cross.sum_edges += cross_gap_size;
}
}
}
auto CanSkipHypotheticalCrossSize = [=](const FlexItem& item) {
// If the following conditions are met, the hypothetical cross size will never be used. This allows us to skip a
// potentially slow step with content-based sizing.
const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
const bool stretched = (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b);
const bool single_line_definite_cross_size = (cross_available_size >= 0.f && flex_single_line);
return stretched && single_line_definite_cross_size;
};
// -- Determine cross size (§9.4) --
// First, determine the cross size of each item, format it if necessary.
for (FlexLine& line : container.lines)
{
for (FlexItem& item : line.items)
{
if (CanSkipHypotheticalCrossSize(item))
continue;
const Vector2f content_size = item.box.GetSize();
if (main_axis_horizontal)
{
if (content_size.y < 0.0f)
{
item.box.SetContent(Vector2f(GetInnerUsedMainSize(item), content_size.y));
FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges;
}
else
{
item.hypothetical_cross_size = content_size.y + item.cross.sum_edges;
}
}
else
{
if (content_size.x < 0.0f)
{
item.box.SetContent(Vector2f(content_size.x, GetInnerUsedMainSize(item)));
const float fit_content_size =
FormattingContext::FormatFitContentWidth(flex_container_box, item.element, flex_content_containing_block);
item.hypothetical_cross_size = Math::Clamp(fit_content_size, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
}
else
{
item.hypothetical_cross_size = content_size.x + item.cross.sum_edges;
}
}
}
}
// Determine cross size of each line.
if (cross_available_size >= 0.f && flex_single_line)
{
RMLUI_ASSERT(container.lines.size() == 1);
container.lines[0].cross_size = cross_available_size;
}
else
{
for (FlexLine& line : container.lines)
{
RMLUI_ASSERT(std::none_of(line.items.begin(), line.items.end(), [&](const auto& item) { return CanSkipHypotheticalCrossSize(item); }));
const float largest_hypothetical_cross_size =
std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) {
return a.hypothetical_cross_size < b.hypothetical_cross_size;
})->hypothetical_cross_size;
// Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8.
line.cross_size = Math::Max(0.0f, largest_hypothetical_cross_size);
if (flex_single_line)
line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size);
}
}
// Stretch out the lines if we have extra space.
if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch)
{
int remaining_space = static_cast(cross_available_size -
std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
[](float value, const FlexLine& line) { return value + line.cross_size; }));
if (remaining_space > 0)
{
// Here we use integer math to ensure all space is distributed to pixel boundaries.
const int num_lines = (int)container.lines.size();
for (int i = 0; i < num_lines; i++)
{
const int add_space_to_line = remaining_space / (num_lines - i);
remaining_space -= add_space_to_line;
container.lines[i].cross_size += static_cast(add_space_to_line);
}
}
}
// Determine the used cross size of items.
for (FlexLine& line : container.lines)
{
for (FlexItem& item : line.items)
{
const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b)
{
item.used_cross_size =
Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
// Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems
// very slow, we skip this for now.
}
else
{
RMLUI_ASSERT(!CanSkipHypotheticalCrossSize(item));
item.used_cross_size = item.hypothetical_cross_size;
}
}
}
// -- Align cross axis (§9.6) --
for (FlexLine& line : container.lines)
{
constexpr float UndefinedBaseline = -FLT_MAX;
float max_baseline_edge_distance = UndefinedBaseline;
FlexItem* max_baseline_item = nullptr;
for (FlexItem& item : line.items)
{
const float remaining_space = line.cross_size - item.used_cross_size;
item.cross_offset = item.cross.margin_a;
item.cross_baseline_top = UndefinedBaseline;
const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b);
if (num_auto_margins > 0)
{
const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins);
item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f);
}
else
{
using Style::AlignSelf;
const AlignSelf align_self = item.align_self;
switch (align_self)
{
case AlignSelf::Auto:
// Never encountered here: should already have been replaced by container's align-items property.
RMLUI_ERROR;
break;
case AlignSelf::FlexStart:
// Do nothing, cross offset set above with this behavior.
break;
case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break;
case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break;
case AlignSelf::Baseline:
{
// We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation.
const float baseline_heuristic = 0.5f * item.element->GetLineHeight();
const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a);
item.cross_baseline_top = sum_edges_top + baseline_heuristic;
const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top);
if (baseline_edge_distance > max_baseline_edge_distance)
{
max_baseline_item = &item;
max_baseline_edge_distance = baseline_edge_distance;
}
}
break;
case AlignSelf::Stretch:
// Handled above
break;
}
}
if (wrap_reverse)
{
const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b;
item.cross_offset = reverse_offset - item.cross_offset;
}
}
if (max_baseline_item)
{
// Align all baseline items such that their baselines are aligned with the one with the max. baseline distance.
// Cross offset for all baseline items are currently set as in 'flex-start'.
const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a);
const float line_top_to_baseline_distance =
max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top;
for (FlexItem& item : line.items)
{
if (item.cross_baseline_top != UndefinedBaseline)
{
const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a);
item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top;
}
}
}
}
const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
[](float value, const FlexLine& line) { return value + line.cross_size; });
// If the available cross size is infinite, the used cross size becomes the accumulated line cross size.
const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size;
const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size);
// Align the lines along the cross-axis.
{
const float remaining_free_space = used_cross_size - accumulated_lines_cross_size;
const int num_lines = int(container.lines.size());
if (remaining_free_space > 0.f)
{
using Style::AlignContent;
switch (computed_flex.align_content())
{
case AlignContent::SpaceBetween:
if (num_lines > 1)
{
const float space_per_edge = remaining_free_space / float(2 * num_lines - 2);
for (int i = 0; i < num_lines; i++)
{
FlexLine& line = container.lines[i];
if (i > 0)
line.cross_spacing_a = space_per_edge;
if (i < num_lines - 1)
line.cross_spacing_b = space_per_edge;
}
}
//-fallthrough
case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break;
case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break;
case AlignContent::Center:
container.lines.front().cross_spacing_a = 0.5f * remaining_free_space;
container.lines.back().cross_spacing_b = 0.5f * remaining_free_space;
break;
case AlignContent::SpaceAround:
{
const float space_per_edge = remaining_free_space / float(2 * num_lines);
for (FlexLine& line : container.lines)
{
line.cross_spacing_a = space_per_edge;
line.cross_spacing_b = space_per_edge;
}
}
break;
case AlignContent::SpaceEvenly:
{
const float space_per_edge = remaining_free_space / float(2 * (num_lines + 1));
for (int i = 0; i < num_lines; i++)
{
FlexLine& line = container.lines[i];
line.cross_spacing_a = space_per_edge;
line.cross_spacing_b = space_per_edge;
if (i == 0)
line.cross_spacing_a *= 2.0f;
else if (i == num_lines - 1)
line.cross_spacing_b *= 2.0f;
}
}
break;
case AlignContent::Stretch:
// Handled above.
break;
}
}
// Now find the offset and snap the line edges to the pixel grid.
float cursor = 0.f;
for (FlexLine& line : container.lines)
{
if (wrap_reverse)
line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size);
else
line.cross_offset = cursor + line.cross_spacing_a;
cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b;
}
}
auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) {
return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main);
};
bool baseline_set = false;
// -- Format items --
for (FlexLine& line : container.lines)
{
for (FlexItem& item : line.items)
{
const Vector2f item_size = MainCrossToVec2(GetInnerUsedMainSize(item), GetInnerUsedCrossSize(item));
const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset);
item.box.SetContent(item_size);
UniquePtr item_layout_box =
FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
// Set the position of the element within the flex container
item.element->SetOffset(flex_content_offset + item_offset, element_flex);
// The flex container baseline is simply set to the first flex item that has a baseline.
if (!baseline_set && item_layout_box->GetBaselineOfLastLine(flex_baseline))
{
flex_baseline += flex_content_offset.y + item_offset.y;
baseline_set = true;
}
// The cell contents may overflow, propagate this to the flex container.
const Vector2f overflow_size = item_offset + item_layout_box->GetVisibleOverflowSize();
flex_content_overflow_size = Math::Max(flex_content_overflow_size, overflow_size);
}
}
flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size);
}
} // namespace Rml