/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "LayoutTable.h" #include "LayoutDetails.h" #include "LayoutEngine.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/Profiling.h" #include "../../Include/RmlUi/Core/Types.h" #include #include namespace Rml { static void SnapToPixelGrid(float& x, float& width) { float rounded_x = Math::RoundFloat(x); width = Math::RoundFloat(x + width) - rounded_x; x = rounded_x; } static void SnapToPixelGrid(Vector2f& position, Vector2f& size) { Vector2f rounded_position = position.Round(); size = (position + size).Round() - rounded_position; position = rounded_position; } LayoutTable::CloseResult LayoutTable::FormatTable(LayoutBlockBox* table_block_context_box, Element* element_table) { Vector2f table_content_offset = table_block_context_box->GetBox().GetPosition(); Vector2f table_initial_content_size = Vector2f(table_block_context_box->GetBox().GetSize().x, Math::Max(0.0f, table_block_context_box->GetBox().GetSize().y)); SnapToPixelGrid(table_content_offset, table_initial_content_size); const ComputedValues& computed_table = element_table->GetComputedValues(); const Vector2f table_gap = Vector2f( ResolveValue(computed_table.column_gap, table_initial_content_size.x), ResolveValue(computed_table.row_gap, table_initial_content_size.y) ).Round(); // The final size of the table will be determined by the size of its columns, rows, and spacing. Vector2f table_resulting_content_size = table_initial_content_size; Vector columns = DetermineColumnWidths(element_table, table_gap.x, table_resulting_content_size.x); // Now that we have the size of each column, we can move on to formatting the elements. // After we format and size an element, we record its height as well, and keep the maximum_height over all cells in the current row. // At the end of a row, we then know the height of the row, and we can proceed by positioning the cells. Vector2f table_content_overflow_size; Vector2f table_cursor = table_content_offset; table_cursor.y -= table_gap.y; struct Cell { Element* element_cell; int row_last; // The last row the cell spans. int column_begin, column_last; Box box; Vector2f table_offset; float rows_accumulated_height; // The height of rows this cell spans, including row spacing. }; Vector cells; cells.reserve(columns.size()); const int num_table_children = element_table->GetNumChildren(); // Iterate through the table rows. First, determine the row height, then format all cells ending at this row. for (int i = 0, row = -1; i < num_table_children; i++) { Element* element_row = element_table->GetChild(i); const ComputedValues& computed_row = element_row->GetComputedValues(); if (computed_row.display != Style::Display::TableRow) { if (row >= 0 && computed_row.display == Style::Display::TableColumn) { Log::Message(Log::LT_WARNING, "Table columns must precede any table rows. Ignoring element %s.", element_row->GetAddress().c_str()); } else if (computed_row.display != Style::Display::TableColumn) { Log::Message(Log::LT_WARNING, "Only table columns and table rows are valid children of tables. Ignoring element %s.", element_row->GetAddress().c_str()); } continue; } row += 1; table_cursor.x = table_content_offset.x; Box row_box; float row_min_height, row_max_height; LayoutDetails::BuildBox(row_box, table_initial_content_size, element_row, false, 0.f); LayoutDetails::GetMinMaxHeight(row_min_height, row_max_height, &computed_row, row_box, table_initial_content_size.y); const Vector2f row_element_offset = table_cursor + Vector2f(0.0f, table_gap.y) + Vector2f(row_box.GetEdge(Box::MARGIN, Box::LEFT), row_box.GetEdge(Box::MARGIN, Box::TOP)); { // Add the row top spacing to the cursor and row-spanning elements. const float row_top_spacing = table_gap.y + row_box.GetEdge(Box::MARGIN, Box::TOP) + row_box.GetEdge(Box::BORDER, Box::TOP) + row_box.GetEdge(Box::PADDING, Box::TOP); table_cursor.y += row_top_spacing; for (Cell& cell : cells) cell.rows_accumulated_height += row_top_spacing; } const int num_cells_spanning_this_row = (int)cells.size(); const int num_row_children = element_row->GetNumChildren(); // For all child cell elements of this row, add them to the list of cells and determine their position. for (int j = 0, column = 0; j < num_row_children; j++) { Element* element_cell = element_row->GetChild(j); const ComputedValues& computed_cell = element_cell->GetComputedValues(); if (computed_cell.display != Style::Display::TableCell) { Log::Message(Log::LT_WARNING, "Only table cells are allowed as children of table rows. %s", element_cell->GetAddress().c_str()); continue; } const int row_span = Math::Max(1, element_cell->GetAttribute("rowspan", 1)); const int col_span = Math::Max(1, element_cell->GetAttribute("colspan", 1)); // Offset the column if we have any rowspan elements from previous rows overlapping with the current column. for (bool continue_offset_column = true; continue_offset_column; ) { continue_offset_column = false; for (int k = 0; k < num_cells_spanning_this_row; k++) { if (column >= cells[k].column_begin && column <= cells[k].column_last) { column = cells[k].column_last + 1; continue_offset_column = true; break; } } } const int column_last = column + col_span - 1; if (column_last >= (int)columns.size()) { Log::Message(Log::LT_WARNING, "Too many columns in table row %d: %s\nThe number of columns is %d, as determined by the table columns or the first table row.", row + 1, element_row->GetAddress().c_str(), (int)columns.size()); break; } // Find the horizontal offset for this cell. table_cursor.x = table_content_offset.x + columns[column].cell_offset; // Add the new cell to our list. cells.emplace_back(); Cell& cell = cells.back(); cell.row_last = row + row_span - 1; cell.column_begin = column; cell.column_last = column_last; cell.element_cell = element_cell; cell.table_offset = table_cursor; cell.rows_accumulated_height = 0; // Determine the cell's box for formatting later, we may get an indefinite (-1) vertical content size. Box& box = cell.box; LayoutDetails::BuildBox(box, table_initial_content_size, element_cell, false, 0.f); // Determine the cell's content width. Include any spanning columns in the cell width. const float cell_border_width = columns[column_last].cell_width + (columns[column_last].cell_offset - columns[column].cell_offset); const float content_width = Math::Max(0.0f, cell_border_width - box.GetSizeAcross(Box::HORIZONTAL, Box::BORDER, Box::PADDING)); box.SetContent(Vector2f(content_width, box.GetSize().y)); column += col_span; } // Partition the cells to determine those who end at this row. const auto it_cells_in_row_end = std::partition(cells.begin(), cells.end(), [row](const Cell& cell) { return cell.row_last == row; }); // Determine the row height. float row_content_height = 0; if (row_box.GetSize().y >= 0) { // The row has a definite size, use that. row_content_height = row_box.GetSize().y; } else { // The row does not have a definite size, we will use the maximum height of all its cells to determine the row height. // For each cell in this row, or spanning onto this row from any previous rows, increase the row height as necessary to make the cell fit. for (auto it = cells.begin(); it != it_cells_in_row_end; ++it) { Cell& cell = *it; Element* element_cell = cell.element_cell; Box& box = cell.box; // If the cell's height is also indefinite, we need to format it to get its height. if (box.GetSize().y < 0) { LayoutEngine::FormatElement(element_cell, table_initial_content_size, &box); box.SetContent(element_cell->GetBox().GetSize()); } row_content_height = Math::Max(row_content_height, box.GetSizeAcross(Box::VERTICAL, Box::BORDER) - cell.rows_accumulated_height); } } row_content_height = Math::Clamp(row_content_height, row_min_height, row_max_height); for (Cell& cell : cells) cell.rows_accumulated_height += row_content_height; // Now we have the height of the row, position and format each cell. // Loop through every cell ending at this row. for (auto it = cells.begin(); it != it_cells_in_row_end; ++it) { Cell& cell = *it; Element* element_cell = cell.element_cell; Box& box = cell.box; Style::VerticalAlign vertical_align = cell.element_cell->GetComputedValues().vertical_align; if (box.GetSize().y < 0) { const bool is_aligned = (vertical_align.type == Style::VerticalAlign::Middle || vertical_align.type == Style::VerticalAlign::Bottom); if (is_aligned) { // The size of the cell is indefinite, we need to get the height by formatting the cell. LayoutEngine::FormatElement(element_cell, table_initial_content_size, &box); box.SetContent(element_cell->GetBox().GetSize()); } else { box.SetContent(Vector2f(box.GetSize().x, Math::Max(0.0f, cell.rows_accumulated_height - box.GetSizeAcross(Box::VERTICAL, Box::BORDER, Box::PADDING)))); } } const float available_height = cell.rows_accumulated_height - box.GetSizeAcross(Box::VERTICAL, Box::BORDER); if (available_height > 0) { // Pad the cell for vertical alignment float add_padding_top; float add_padding_bottom; switch (vertical_align.type) { case Style::VerticalAlign::Bottom: add_padding_top = available_height; add_padding_bottom = 0; break; case Style::VerticalAlign::Middle: add_padding_top = 0.5f * available_height; add_padding_bottom = 0.5f * available_height; break; case Style::VerticalAlign::Top: default: add_padding_top = 0.0f; add_padding_bottom = available_height; } box.SetEdge(Box::PADDING, Box::TOP, box.GetEdge(Box::PADDING, Box::TOP) + add_padding_top); box.SetEdge(Box::PADDING, Box::BOTTOM, box.GetEdge(Box::PADDING, Box::BOTTOM) + add_padding_bottom); } // Format the cell in a new block formatting context. // @performance: We may have already formatted the element during the above procedure without the extra padding. In that case, we may // instead set the new box and offset all descending elements whose offset parent is the cell, to account for the new padding box. // That should be faster than formatting the element again, but there may be edge-cases not accounted for. Vector2f cell_visible_overflow_size; LayoutEngine::FormatElement(element_cell, table_initial_content_size, &box, &cell_visible_overflow_size); // Set the position of the element within the the table container element_cell->SetOffset(cell.table_offset, element_table); // The cell contents may overflow, propagate this to the table. table_content_overflow_size.x = Math::Max(table_content_overflow_size.x, cell.table_offset.x - table_content_offset.x + cell_visible_overflow_size.x); table_content_overflow_size.y = Math::Max(table_content_overflow_size.y, cell.table_offset.y - table_content_offset.y + cell_visible_overflow_size.y); } // Remove the formatted cells from pending cells.erase(cells.begin(), it_cells_in_row_end); // Size and position the row element const Vector2f row_element_content_size( table_resulting_content_size.x - row_box.GetSizeAcross(Box::HORIZONTAL, Box::MARGIN, Box::PADDING), Math::Max(row_box.GetSize().y, row_content_height) ); row_box.SetContent(row_element_content_size); element_row->SetOffset(row_element_offset, element_table); element_row->SetBox(row_box); // Add the row bottom spacing to the cursor and any row-spanning cells. const float row_bottom_spacing = row_box.GetEdge(Box::MARGIN, Box::BOTTOM) + row_box.GetEdge(Box::BORDER, Box::BOTTOM) + row_box.GetEdge(Box::PADDING, Box::BOTTOM); table_cursor.y += row_content_height + row_bottom_spacing; for (Cell& cell : cells) cell.rows_accumulated_height += row_bottom_spacing; } table_resulting_content_size.y = Math::Max(table_cursor.y - table_content_offset.y, 0.0f); // Size and position the column elements. for (const Column& column : columns) { if (Element* element = column.element_column) { Box box; LayoutDetails::BuildBox(box, table_initial_content_size, element, false, 0.0f); const Vector2f content_size( column.column_width, table_resulting_content_size.y - box.GetSizeAcross(Box::VERTICAL, Box::BORDER, Box::PADDING) - box.GetEdge(Box::MARGIN, Box::TOP) - box.GetEdge(Box::MARGIN, Box::BOTTOM) ); box.SetContent(content_size); element->SetBox(box); element->SetOffset(table_content_offset + Vector2f(column.column_offset, box.GetEdge(Box::MARGIN, Box::TOP)), element_table); } } if (!cells.empty()) { Log::Message(Log::LT_WARNING, "One or more cells span below the last row in table %s. They will not be formatted. Add additional rows, or adjust the rowspan attribute.", element_table->GetAddress().c_str()); } if (table_resulting_content_size != table_initial_content_size) { table_block_context_box->GetBox().SetContent(table_resulting_content_size); } table_block_context_box->ExtendInnerContentSize(table_content_overflow_size); CloseResult result = table_block_context_box->Close(); return result; } LayoutTable::Columns LayoutTable::DetermineColumnWidths(Element* const element_table, const float column_gap, float& table_content_width) { // The column widths are determined entirely by any elements preceding the first row, and elements in the first row. // If has a fixed width, that is used. Otherwise, if has a fixed width, that is used. Otherwise the column is 'flexible' width. // All flexible widths are then sized to evenly fill the content width of the table. struct ColumnMetric { // All widths are defined in terms of the border width of cells in the column. The column element can add padding, // and borders which extends beyond the cell's border width, and is instead added to 'sum_fixed_spacing'. float fixed_width = 0; float flex_width = 0; float min_width = 0; float max_width = 0; // The following are only used for elements. Element* element_column = nullptr; bool has_fixed_size = false; int column_span = 0; float column_padding_border_left = 0; float column_padding_border_right = 0; }; Vector column_metrics; float sum_fixed_spacing = 0; // Includes column gaps and the column elements' padding, and border. const int num_table_children = element_table->GetNumChildren(); Element* element_row = nullptr; // First look for any elements preceding any elements, use them for defining the width of the respective columns. for (int i = 0; i < num_table_children; i++) { Element* element = element_table->GetChild(i); const ComputedValues& computed = element->GetComputedValues(); if (computed.display == Style::Display::TableRow) { // End of column elements. element_row = element; break; } else if (computed.display != Style::Display::TableColumn) { continue; } const float padding_border_left = Math::Max(0.0f, ResolveValue(computed.padding_left, table_content_width)) + Math::Max(0.0f, computed.border_left_width); const float padding_border_right = Math::Max(0.0f, ResolveValue(computed.padding_right, table_content_width)) + Math::Max(0.0f, computed.border_right_width); const float padding_border_sum = padding_border_left + padding_border_right; sum_fixed_spacing += padding_border_sum; ColumnMetric column_metric; // Find the min/max width. column_metric.min_width = ResolveValue(computed.min_width, table_content_width); column_metric.max_width = (computed.max_width.value < 0.f ? FLT_MAX : ResolveValue(computed.max_width, table_content_width)); if (computed.box_sizing == Style::BoxSizing::BorderBox) { column_metric.min_width = Math::Max(0.0f, column_metric.min_width - padding_border_sum); column_metric.max_width = Math::Max(0.0f, column_metric.max_width - padding_border_sum); } if (computed.width.type == Style::Width::Auto) { column_metric.flex_width = 1; } else { float width = ResolveValue(computed.width, table_content_width); if (computed.box_sizing == Style::BoxSizing::BorderBox) width = Math::Max(0.f, ResolveValue(computed.width, table_content_width) - padding_border_sum); column_metric.fixed_width = Math::Clamp(width, column_metric.min_width, column_metric.max_width); column_metric.has_fixed_size = true; } const int span = Math::Max(1, element->GetAttribute("span", 1)); if (span > 1) { // Distribute any fixed widths over the columns we are spanning. const float width_factor = 1.f / float(span); column_metric.fixed_width *= width_factor; column_metric.min_width *= width_factor; column_metric.max_width *= width_factor; } column_metric.element_column = element; column_metric.column_span = span; column_metric.column_padding_border_left = padding_border_left; for (int j = 0; j < span; j++) { if (j == 1) { column_metric.element_column = nullptr; column_metric.column_span = 0; column_metric.column_padding_border_left = 0; } if (j == span - 1) column_metric.column_padding_border_right = padding_border_right; column_metrics.emplace_back(column_metric); } } const int num_row_children = (!element_row ? 0 : element_row->GetNumChildren()); column_metrics.reserve(num_row_children); // Next, walk through the cells in the first table row. This procedure is subtly different from the -iteration above: // (1) Cells use their border width to line up the column, while use their content width. // (2a) We only add new columns here if they are not already represented by a element. // (2b) Otherwise, if the element has auto (min-/max-) width, we use the cell's (min-/max-) width if it has any. for (int i = 0, column = 0; i < num_row_children; i++) { Element* element = element_row->GetChild(i); const ComputedValues& computed = element->GetComputedValues(); if (computed.display != Style::Display::TableCell) continue; const float padding_border_sum = Math::Max(0.0f, ResolveValue(computed.padding_left, table_content_width)) + Math::Max(0.0f, ResolveValue(computed.padding_right, table_content_width)) + Math::Max(0.0f, computed.border_left_width) + Math::Max(0.0f, computed.border_right_width); ColumnMetric column_metric; // Find the min/max width. column_metric.min_width = ResolveValue(computed.min_width, table_content_width); column_metric.max_width = (computed.max_width.value < 0.f ? FLT_MAX : ResolveValue(computed.max_width, table_content_width)); if (computed.box_sizing == Style::BoxSizing::ContentBox) { if (column_metric.min_width > 0) column_metric.min_width += padding_border_sum; if (column_metric.max_width < FLT_MAX) column_metric.max_width += padding_border_sum; } if (computed.width.type == Style::Width::Auto) { column_metric.flex_width = 1; } else { float width = ResolveValue(computed.width, table_content_width); if (computed.box_sizing == Style::BoxSizing::ContentBox) width += padding_border_sum; column_metric.fixed_width = Math::Clamp(width, column_metric.min_width, column_metric.max_width); column_metric.has_fixed_size = true; } const int colspan = Math::Max(1, element->GetAttribute("colspan", 1)); if (colspan > 1) { const float width_factor = 1.f / float(colspan); column_metric.fixed_width *= width_factor; column_metric.min_width *= width_factor; column_metric.max_width *= width_factor; } for (int j = 0; j < colspan; j++) { if (j + column < (int)column_metrics.size()) { ColumnMetric& destination = column_metrics[j + column]; if (!destination.has_fixed_size && column_metric.has_fixed_size) { destination.fixed_width = column_metric.fixed_width; destination.has_fixed_size = true; } if (destination.min_width == 0) destination.min_width = column_metric.min_width; if (destination.max_width == FLT_MAX) destination.max_width = column_metric.max_width; } else { column_metrics.emplace_back(column_metric); } } column += colspan; } if (column_metrics.empty()) { // No columns found in this table. return Columns(); } sum_fixed_spacing += column_gap * float((int)column_metrics.size() - 1); // Now all the widths are determined in terms of fixed or flexible widths. // Next, convert any flexible widths to fixed widths by filling up the table width. for (bool continue_iteration = true; continue_iteration; ) { continue_iteration = false; float table_available_width = 0.0f; float fr_to_px_ratio = 0; // Calculate the fr/px-ratio. { float sum_fixed_width = sum_fixed_spacing; // [px] float sum_flex_width = 0; // [fr] for (const ColumnMetric& metric : column_metrics) { sum_flex_width += metric.flex_width; sum_fixed_width += (metric.flex_width == 0.f ? metric.fixed_width : 0.0f); } sum_flex_width = Math::Max(1.f, sum_flex_width); table_available_width = table_content_width - sum_fixed_width; fr_to_px_ratio = Math::Max(0.0f, table_available_width) / sum_flex_width; } // Iterate through the columns and convert flexible widths to fixed widths. for (auto& metric : column_metrics) { if (metric.flex_width > 0) { const float fixed_flex_width = metric.flex_width * fr_to_px_ratio; metric.fixed_width = Math::Clamp(fixed_flex_width, metric.min_width, metric.max_width); table_available_width -= metric.fixed_width; if (metric.fixed_width != fixed_flex_width) { // We met a min/max-constraint, fix the size of this column. Start over with the procedure once we are done with all the columns. metric.flex_width = 0.0f; continue_iteration = true; } } } // If we have distributed all the flexible space, and there is still space available, then distribute the available space over the column widths while respecting max-widths. if (!continue_iteration && table_available_width > 0.5f) { const int num_columns = (int)column_metrics.size(); struct ColumnAvailableWidth { int column; float available_width; }; Vector col_available_widths(num_columns); for (int i = 0; i < num_columns; i++) { col_available_widths[i].column = i; col_available_widths[i].available_width = column_metrics[i].max_width - column_metrics[i].fixed_width; } // Sort the columns by available width, smallest to largest. This lets us "fill up" the most constrained columns first. std::sort(col_available_widths.begin(), col_available_widths.end(), [](const ColumnAvailableWidth& c1, const ColumnAvailableWidth& c2) { return c1.available_width < c2.available_width; }); for (int i = 0; i < num_columns; i++) { const int column = col_available_widths[i].column; const int num_columns_remaining = num_columns - i; const float ideal_add_column_width = table_available_width / float(num_columns_remaining); const float add_column_width = Math::Min(ideal_add_column_width, col_available_widths[i].available_width); if (add_column_width > 0) { column_metrics[column].fixed_width += add_column_width; table_available_width = Math::Max(0.0f, table_available_width - add_column_width); } } } } // Fill in the resulting columns. Columns columns; columns.resize(column_metrics.size()); float cursor_x = 0; for (size_t i = 0; i < column_metrics.size(); i++) { Column& col = columns[i]; const ColumnMetric& metric = column_metrics[i]; col.element_column = metric.element_column; col.cell_width = metric.fixed_width; col.cell_offset = cursor_x + metric.column_padding_border_left; col.column_width = col.cell_width; // Column content width is the cell border width, unless there is a spanning column element (see next loop). col.column_offset = cursor_x; SnapToPixelGrid(col.cell_offset, col.cell_width); SnapToPixelGrid(col.column_offset, col.column_width); cursor_x += metric.fixed_width + metric.column_padding_border_left + metric.column_padding_border_right; if (i != column_metrics.size() - 1) cursor_x += column_gap; } // Extend the table content width if the summed column widths and spacing is larger. Include some margin for floating-point imprecision. if (Math::AbsoluteValue(cursor_x - table_content_width) > 0.5f) table_content_width = cursor_x; // Extend column widths to cover multiple columns for spanning column elements. for (size_t i = 0; i < column_metrics.size(); i++) { const ColumnMetric& metric = column_metrics[i]; if (metric.column_span > 1 && metric.element_column && i + metric.column_span - 1 < column_metrics.size()) { Column& col = columns[i]; Column& col_last_span = columns[i + metric.column_span - 1]; col.column_width = col_last_span.cell_width + (col_last_span.cell_offset - col.cell_offset); } } return columns; } } // namespace Rml