/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "../../Include/RmlUi/Core/Element.h"
#include "../../Include/RmlUi/Core/Context.h"
#include "../../Include/RmlUi/Core/Core.h"
#include "../../Include/RmlUi/Core/DataModel.h"
#include "../../Include/RmlUi/Core/ElementDocument.h"
#include "../../Include/RmlUi/Core/ElementInstancer.h"
#include "../../Include/RmlUi/Core/ElementScroll.h"
#include "../../Include/RmlUi/Core/ElementUtilities.h"
#include "../../Include/RmlUi/Core/Factory.h"
#include "../../Include/RmlUi/Core/Dictionary.h"
#include "../../Include/RmlUi/Core/Profiling.h"
#include "../../Include/RmlUi/Core/PropertyIdSet.h"
#include "../../Include/RmlUi/Core/PropertiesIteratorView.h"
#include "../../Include/RmlUi/Core/PropertyDefinition.h"
#include "../../Include/RmlUi/Core/StyleSheetSpecification.h"
#include "../../Include/RmlUi/Core/TransformPrimitive.h"
#include "Clock.h"
#include "ComputeProperty.h"
#include "ElementAnimation.h"
#include "ElementBackgroundBorder.h"
#include "ElementDefinition.h"
#include "ElementStyle.h"
#include "EventDispatcher.h"
#include "EventSpecification.h"
#include "ElementDecoration.h"
#include "LayoutEngine.h"
#include "PluginRegistry.h"
#include "PropertiesIterator.h"
#include "Pool.h"
#include "StyleSheetParser.h"
#include "StyleSheetNode.h"
#include "TransformState.h"
#include "TransformUtilities.h"
#include "XMLParseTools.h"
#include
#include
namespace Rml {
/**
STL function object for sorting elements by z-type (ie, float-types before general types, etc).
@author Peter Curry
*/
class ElementSortZOrder
{
public:
bool operator()(const Pair< Element*, float >& lhs, const Pair< Element*, float >& rhs) const
{
return lhs.second < rhs.second;
}
};
/**
STL function object for sorting elements by z-index property.
@author Peter Curry
*/
class ElementSortZIndex
{
public:
bool operator()(const Element* lhs, const Element* rhs) const
{
// Check the z-index.
return lhs->GetZIndex() < rhs->GetZIndex();
}
};
// Determines how many levels up in the hierarchy the OnChildAdd and OnChildRemove are called (starting at the child itself)
static constexpr int ChildNotifyLevels = 2;
// Meta objects for element collected in a single struct to reduce memory allocations
struct ElementMeta
{
ElementMeta(Element* el) : event_dispatcher(el), style(el), background_border(el), decoration(el), scroll(el) {}
EventDispatcher event_dispatcher;
ElementStyle style;
ElementBackgroundBorder background_border;
ElementDecoration decoration;
ElementScroll scroll;
Style::ComputedValues computed_values;
};
static Pool< ElementMeta > element_meta_chunk_pool(200, true);
/// Constructs a new RmlUi element.
Element::Element(const String& tag) : tag(tag), relative_offset_base(0, 0), relative_offset_position(0, 0), absolute_offset(0, 0), scroll_offset(0, 0), content_offset(0, 0), content_box(0, 0),
transform_state(), dirty_transform(false), dirty_perspective(false), dirty_animation(false), dirty_transition(false)
{
RMLUI_ASSERT(tag == StringUtilities::ToLower(tag));
parent = nullptr;
focus = nullptr;
instancer = nullptr;
owner_document = nullptr;
offset_fixed = false;
offset_parent = nullptr;
offset_dirty = true;
client_area = Box::PADDING;
baseline = 0.0f;
num_non_dom_children = 0;
visible = true;
z_index = 0;
local_stacking_context = false;
local_stacking_context_forced = false;
stacking_context_dirty = false;
structure_dirty = false;
computed_values_are_default_initialized = true;
clipping_ignore_depth = 0;
clipping_enabled = false;
clipping_state_dirty = true;
meta = element_meta_chunk_pool.AllocateAndConstruct(this);
data_model = nullptr;
}
Element::~Element()
{
RMLUI_ASSERT(parent == nullptr);
PluginRegistry::NotifyElementDestroy(this);
// A simplified version of RemoveChild() for destruction.
for (ElementPtr& child : children)
{
Element* child_ancestor = child.get();
for (int i = 0; i <= ChildNotifyLevels && child_ancestor; i++, child_ancestor = child_ancestor->GetParentNode())
child_ancestor->OnChildRemove(child.get());
child->SetParent(nullptr);
}
children.clear();
num_non_dom_children = 0;
element_meta_chunk_pool.DestroyAndDeallocate(meta);
}
void Element::Update(float dp_ratio)
{
#ifdef RMLUI_ENABLE_PROFILING
auto name = GetAddress(false, false);
RMLUI_ZoneScoped;
RMLUI_ZoneText(name.c_str(), name.size());
#endif
OnUpdate();
UpdateStructure();
HandleTransitionProperty();
HandleAnimationProperty();
AdvanceAnimations();
meta->scroll.Update();
UpdateProperties();
// Do en extra pass over the animations and properties if the 'animation' property was just changed.
if (dirty_animation)
{
HandleAnimationProperty();
AdvanceAnimations();
UpdateProperties();
}
for (size_t i = 0; i < children.size(); i++)
children[i]->Update(dp_ratio);
}
void Element::UpdateProperties()
{
meta->style.UpdateDefinition();
if (meta->style.AnyPropertiesDirty())
{
const ComputedValues* parent_values = nullptr;
if (parent)
parent_values = &parent->GetComputedValues();
const ComputedValues* document_values = nullptr;
float dp_ratio = 1.0f;
if (auto doc = GetOwnerDocument())
{
document_values = &doc->GetComputedValues();
if (Context * context = doc->GetContext())
dp_ratio = context->GetDensityIndependentPixelRatio();
}
// Compute values and clear dirty properties
PropertyIdSet dirty_properties = meta->style.ComputeValues(meta->computed_values, parent_values, document_values, computed_values_are_default_initialized, dp_ratio);
computed_values_are_default_initialized = false;
// Computed values are just calculated and can safely be used in OnPropertyChange.
// However, new properties set during this call will not be available until the next update loop.
if (!dirty_properties.Empty())
OnPropertyChange(dirty_properties);
}
}
void Element::Render()
{
#ifdef RMLUI_ENABLE_PROFILING
auto name = GetAddress(false, false);
RMLUI_ZoneScoped;
RMLUI_ZoneText(name.c_str(), name.size());
#endif
// TODO: This is a work-around for the dirty offset not being properly updated when used by (stacking context?) children. This results
// in scrolling not working properly. We don't care about the return value, the call is only used to force the absolute offset to update.
if (offset_dirty)
GetAbsoluteOffset(Box::BORDER);
// Rebuild our stacking context if necessary.
if (stacking_context_dirty)
BuildLocalStackingContext();
UpdateTransformState();
// Render all elements in our local stacking context that have a z-index beneath our local index of 0.
size_t i = 0;
for (; i < stacking_context.size() && stacking_context[i]->z_index < 0; ++i)
stacking_context[i]->Render();
// Apply our transform
ElementUtilities::ApplyTransform(*this);
// Set up the clipping region for this element.
if (ElementUtilities::SetClippingRegion(this))
{
meta->background_border.Render(this);
meta->decoration.RenderDecorators();
{
RMLUI_ZoneScopedNC("OnRender", 0x228B22);
OnRender();
}
}
// Render the rest of the elements in the stacking context.
for (; i < stacking_context.size(); ++i)
stacking_context[i]->Render();
}
// Clones this element, returning a new, unparented element.
ElementPtr Element::Clone() const
{
ElementPtr clone;
if (instancer)
{
clone = instancer->InstanceElement(nullptr, GetTagName(), attributes);
if (clone)
clone->SetInstancer(instancer);
}
else
clone = Factory::InstanceElement(nullptr, GetTagName(), GetTagName(), attributes);
if (clone != nullptr)
{
String inner_rml;
GetInnerRML(inner_rml);
clone->SetInnerRML(inner_rml);
}
return clone;
}
// Sets or removes a class on the element.
void Element::SetClass(const String& class_name, bool activate)
{
meta->style.SetClass(class_name, activate);
}
// Checks if a class is set on the element.
bool Element::IsClassSet(const String& class_name) const
{
return meta->style.IsClassSet(class_name);
}
// Specifies the entire list of classes for this element. This will replace any others specified.
void Element::SetClassNames(const String& class_names)
{
SetAttribute("class", class_names);
}
/// Return the active class list
String Element::GetClassNames() const
{
return meta->style.GetClassNames();
}
// Returns the active style sheet for this element. This may be nullptr.
const SharedPtr& Element::GetStyleSheet() const
{
if (ElementDocument * document = GetOwnerDocument())
return document->GetStyleSheet();
static SharedPtr null_style_sheet;
return null_style_sheet;
}
// Returns the element's definition.
const ElementDefinition* Element::GetDefinition()
{
return meta->style.GetDefinition();
}
// Fills an String with the full address of this element.
String Element::GetAddress(bool include_pseudo_classes, bool include_parents) const
{
// Add the tag name onto the address.
String address(tag);
// Add the ID if we have one.
if (!id.empty())
{
address += "#";
address += id;
}
String classes = meta->style.GetClassNames();
if (!classes.empty())
{
classes = StringUtilities::Replace(classes, ' ', '.');
address += ".";
address += classes;
}
if (include_pseudo_classes)
{
const PseudoClassList& pseudo_classes = meta->style.GetActivePseudoClasses();
for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i)
{
address += ":";
address += (*i);
}
}
if (include_parents && parent)
{
address += " < ";
return address + parent->GetAddress(include_pseudo_classes, true);
}
else
return address;
}
// Sets the position of this element, as a two-dimensional offset from another element.
void Element::SetOffset(Vector2f offset, Element* _offset_parent, bool _offset_fixed)
{
_offset_fixed |= GetPosition() == Style::Position::Fixed;
// If our offset has definitely changed, or any of our parenting has, then these are set and
// updated based on our left / right / top / bottom properties.
if (relative_offset_base != offset ||
offset_parent != _offset_parent ||
offset_fixed != _offset_fixed)
{
relative_offset_base = offset;
offset_fixed = _offset_fixed;
offset_parent = _offset_parent;
UpdateOffset();
DirtyOffset();
}
// Otherwise, our offset is updated in case left / right / top / bottom will have an impact on
// our final position, and our children are dirtied if they do.
else
{
Vector2f& old_base = relative_offset_base;
Vector2f& old_position = relative_offset_position;
UpdateOffset();
if (old_base != relative_offset_base ||
old_position != relative_offset_position)
DirtyOffset();
}
}
// Returns the position of the top-left corner of one of the areas of this element's primary box.
Vector2f Element::GetRelativeOffset(Box::Area area)
{
return relative_offset_base + relative_offset_position + GetBox().GetPosition(area);
}
// Returns the position of the top-left corner of one of the areas of this element's primary box.
Vector2f Element::GetAbsoluteOffset(Box::Area area)
{
if (offset_dirty)
{
offset_dirty = false;
if (offset_parent != nullptr)
absolute_offset = offset_parent->GetAbsoluteOffset(Box::BORDER) + relative_offset_base + relative_offset_position;
else
absolute_offset = relative_offset_base + relative_offset_position;
// Add any parent scrolling onto our position as well. Could cache this if required.
if (!offset_fixed)
{
Element* scroll_parent = parent;
while (scroll_parent != nullptr)
{
absolute_offset -= (scroll_parent->scroll_offset + scroll_parent->content_offset);
if (scroll_parent == offset_parent)
break;
else
scroll_parent = scroll_parent->parent;
}
}
}
return absolute_offset + GetBox().GetPosition(area);
}
// Sets an alternate area to use as the client area.
void Element::SetClientArea(Box::Area _client_area)
{
client_area = _client_area;
}
// Returns the area the element uses as its client area.
Box::Area Element::GetClientArea() const
{
return client_area;
}
// Sets the dimensions of the element's internal content.
void Element::SetContentBox(const Vector2f& _content_offset, const Vector2f& _content_box)
{
if (content_offset != _content_offset ||
content_box != _content_box)
{
// Seems to be jittering a wee bit; might need to be looked at.
scroll_offset.x += (content_offset.x - _content_offset.x);
scroll_offset.y += (content_offset.y - _content_offset.y);
content_offset = _content_offset;
content_box = _content_box;
scroll_offset.x = Math::Min(scroll_offset.x, GetScrollWidth() - GetClientWidth());
scroll_offset.y = Math::Min(scroll_offset.y, GetScrollHeight() - GetClientHeight());
DirtyOffset();
}
}
// Sets the box describing the size of the element.
void Element::SetBox(const Box& box)
{
if (box != main_box || additional_boxes.size() > 0)
{
main_box = box;
additional_boxes.clear();
OnResize();
meta->background_border.DirtyBackground();
meta->background_border.DirtyBorder();
meta->decoration.DirtyDecorators();
}
}
// Adds a box to the end of the list describing this element's geometry.
void Element::AddBox(const Box& box, Vector2f offset)
{
additional_boxes.emplace_back(PositionedBox{ box, offset });
OnResize();
meta->background_border.DirtyBackground();
meta->background_border.DirtyBorder();
meta->decoration.DirtyDecorators();
}
// Returns one of the boxes describing the size of the element.
const Box& Element::GetBox()
{
return main_box;
}
// Returns one of the boxes describing the size of the element.
const Box& Element::GetBox(int index, Vector2f& offset)
{
offset = Vector2f(0);
if (index < 1)
return main_box;
const int additional_box_index = index - 1;
if (additional_box_index >= (int)additional_boxes.size())
return main_box;
offset = additional_boxes[additional_box_index].offset;
return additional_boxes[additional_box_index].box;
}
// Returns the number of boxes making up this element's geometry.
int Element::GetNumBoxes()
{
return 1 + (int)additional_boxes.size();
}
// Returns the baseline of the element, in pixels offset from the bottom of the element's content area.
float Element::GetBaseline() const
{
return baseline;
}
// Gets the intrinsic dimensions of this element, if it is of a type that has an inherent size.
bool Element::GetIntrinsicDimensions(Vector2f& RMLUI_UNUSED_PARAMETER(dimensions), float& RMLUI_UNUSED_PARAMETER(ratio))
{
RMLUI_UNUSED(dimensions);
RMLUI_UNUSED(ratio);
return false;
}
// Checks if a given point in screen coordinates lies within the bordered area of this element.
bool Element::IsPointWithinElement(const Vector2f& point)
{
Vector2f position = GetAbsoluteOffset(Box::BORDER);
for (int i = 0; i < GetNumBoxes(); ++i)
{
Vector2f box_offset;
const Box& box = GetBox(i, box_offset);
const Vector2f box_position = position + box_offset;
const Vector2f box_dimensions = box.GetSize(Box::BORDER);
if (point.x >= box_position.x &&
point.x <= (box_position.x + box_dimensions.x) &&
point.y >= box_position.y &&
point.y <= (box_position.y + box_dimensions.y))
{
return true;
}
}
return false;
}
// Returns the visibility of the element.
bool Element::IsVisible() const
{
return visible;
}
// Returns the z-index of the element.
float Element::GetZIndex() const
{
return z_index;
}
// Returns the element's font face handle.
FontFaceHandle Element::GetFontFaceHandle() const
{
return meta->computed_values.font_face_handle;
}
// Sets a local property override on the element.
bool Element::SetProperty(const String& name, const String& value)
{
// The name may be a shorthand giving us multiple underlying properties
PropertyDictionary properties;
if (!StyleSheetSpecification::ParsePropertyDeclaration(properties, name, value))
{
Log::Message(Log::LT_WARNING, "Syntax error parsing inline property declaration '%s: %s;'.", name.c_str(), value.c_str());
return false;
}
for (auto& property : properties.GetProperties())
{
if (!meta->style.SetProperty(property.first, property.second))
return false;
}
return true;
}
// Sets a local property override on the element to a pre-parsed value.
bool Element::SetProperty(PropertyId id, const Property& property)
{
return meta->style.SetProperty(id, property);
}
// Removes a local property override on the element.
void Element::RemoveProperty(const String& name)
{
meta->style.RemoveProperty(StyleSheetSpecification::GetPropertyId(name));
}
// Removes a local property override on the element.
void Element::RemoveProperty(PropertyId id)
{
meta->style.RemoveProperty(id);
}
// Returns one of this element's properties.
const Property* Element::GetProperty(const String& name)
{
return meta->style.GetProperty(StyleSheetSpecification::GetPropertyId(name));
}
// Returns one of this element's properties.
const Property* Element::GetProperty(PropertyId id)
{
return meta->style.GetProperty(id);
}
// Returns one of this element's properties.
const Property* Element::GetLocalProperty(const String& name)
{
return meta->style.GetLocalProperty(StyleSheetSpecification::GetPropertyId(name));
}
const Property* Element::GetLocalProperty(PropertyId id)
{
return meta->style.GetLocalProperty(id);
}
const PropertyMap& Element::GetLocalStyleProperties()
{
return meta->style.GetLocalStyleProperties();
}
float Element::ResolveNumericProperty(const Property *property, float base_value)
{
return meta->style.ResolveNumericProperty(property, base_value);
}
float Element::ResolveNumericProperty(const String& property_name)
{
auto property = meta->style.GetProperty(StyleSheetSpecification::GetPropertyId(property_name));
if (!property)
return 0.0f;
if (property->unit & Property::ANGLE)
return ComputeAngle(*property);
RelativeTarget relative_target = RelativeTarget::None;
if (property->definition)
relative_target = property->definition->GetRelativeTarget();
float result = meta->style.ResolveLength(property, relative_target);
return result;
}
Vector2f Element::GetContainingBlock()
{
Vector2f containing_block(0, 0);
if (offset_parent != nullptr)
{
using namespace Style;
Position position_property = GetPosition();
const Box& parent_box = offset_parent->GetBox();
if (position_property == Position::Static || position_property == Position::Relative)
{
containing_block = parent_box.GetSize();
}
else if(position_property == Position::Absolute || position_property == Position::Fixed)
{
containing_block = parent_box.GetSize(Box::PADDING);
}
}
return containing_block;
}
Style::Position Element::GetPosition()
{
return meta->computed_values.position;
}
Style::Float Element::GetFloat()
{
return meta->computed_values.float_;
}
Style::Display Element::GetDisplay()
{
return meta->computed_values.display;
}
float Element::GetLineHeight()
{
return meta->computed_values.line_height.value;
}
// Returns this element's TransformState
const TransformState *Element::GetTransformState() const noexcept
{
return transform_state.get();
}
// Project a 2D point in pixel coordinates onto the element's plane.
bool Element::Project(Vector2f& point) const noexcept
{
if(!transform_state || !transform_state->GetTransform())
return true;
// The input point is in window coordinates. Need to find the projection of the point onto the current element plane,
// taking into account the full transform applied to the element.
if (const Matrix4f* inv_transform = transform_state->GetInverseTransform())
{
// Pick two points forming a line segment perpendicular to the window.
Vector4f window_points[2] = {{ point.x, point.y, -10, 1}, { point.x, point.y, 10, 1 }};
// Project them into the local element space.
window_points[0] = *inv_transform * window_points[0];
window_points[1] = *inv_transform * window_points[1];
Vector3f local_points[2] = {
window_points[0].PerspectiveDivide(),
window_points[1].PerspectiveDivide()
};
// Construct a ray from the two projected points in the local space of the current element.
// Find the intersection with the z=0 plane to produce our destination point.
Vector3f ray = local_points[1] - local_points[0];
// Only continue if we are not close to parallel with the plane.
if(std::fabs(ray.z) > 1.0f)
{
// Solving the line equation p = p0 + t*ray for t, knowing that p.z = 0, produces the following.
float t = -local_points[0].z / ray.z;
Vector3f p = local_points[0] + ray * t;
point = Vector2f(p.x, p.y);
return true;
}
}
// The transformation matrix is either singular, or the ray is parallel to the element's plane.
return false;
}
PropertiesIteratorView Element::IterateLocalProperties() const
{
return PropertiesIteratorView(MakeUnique(meta->style.Iterate()));
}
// Sets or removes a pseudo-class on the element.
void Element::SetPseudoClass(const String& pseudo_class, bool activate)
{
meta->style.SetPseudoClass(pseudo_class, activate);
}
// Checks if a specific pseudo-class has been set on the element.
bool Element::IsPseudoClassSet(const String& pseudo_class) const
{
return meta->style.IsPseudoClassSet(pseudo_class);
}
// Checks if a complete set of pseudo-classes are set on the element.
bool Element::ArePseudoClassesSet(const PseudoClassList& pseudo_classes) const
{
for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i)
{
if (!IsPseudoClassSet(*i))
return false;
}
return true;
}
// Gets a list of the current active pseudo classes
const PseudoClassList& Element::GetActivePseudoClasses() const
{
return meta->style.GetActivePseudoClasses();
}
/// Get the named attribute
Variant* Element::GetAttribute(const String& name)
{
return GetIf(attributes, name);
}
// Checks if the element has a certain attribute.
bool Element::HasAttribute(const String& name) const
{
return attributes.find(name) != attributes.end();
}
// Removes an attribute from the element
void Element::RemoveAttribute(const String& name)
{
auto it = attributes.find(name);
if (it != attributes.end())
{
attributes.erase(it);
ElementAttributes changed_attributes;
changed_attributes.emplace(name, Variant());
OnAttributeChange(changed_attributes);
}
}
// Gets the outer most focus element down the tree from this node
Element* Element::GetFocusLeafNode()
{
// If there isn't a focus, then we are the leaf.
if (!focus)
{
return this;
}
// Recurse down the tree until we found the leaf focus element
Element* focus_element = focus;
while (focus_element->focus)
focus_element = focus_element->focus;
return focus_element;
}
// Returns the element's context.
Context* Element::GetContext() const
{
ElementDocument* document = GetOwnerDocument();
if (document != nullptr)
return document->GetContext();
return nullptr;
}
// Set a group of attributes
void Element::SetAttributes(const ElementAttributes& _attributes)
{
attributes.reserve(attributes.size() + _attributes.size());
for (auto& pair : _attributes)
attributes[pair.first] = pair.second;
OnAttributeChange(_attributes);
}
// Returns the number of attributes on the element.
int Element::GetNumAttributes() const
{
return (int)attributes.size();
}
// Gets the name of the element.
const String& Element::GetTagName() const
{
return tag;
}
// Gets the ID of the element.
const String& Element::GetId() const
{
return id;
}
// Sets the ID of the element.
void Element::SetId(const String& _id)
{
SetAttribute("id", _id);
}
// Gets the horizontal offset from the context's left edge to element's left border edge.
float Element::GetAbsoluteLeft()
{
return GetAbsoluteOffset(Box::BORDER).x;
}
// Gets the vertical offset from the context's top edge to element's top border edge.
float Element::GetAbsoluteTop()
{
return GetAbsoluteOffset(Box::BORDER).y;
}
// Gets the width of the left border of an element.
float Element::GetClientLeft()
{
return GetBox().GetPosition(client_area).x;
}
// Gets the height of the top border of an element.
float Element::GetClientTop()
{
return GetBox().GetPosition(client_area).y;
}
// Gets the inner width of the element.
float Element::GetClientWidth()
{
return GetBox().GetSize(client_area).x - meta->scroll.GetScrollbarSize(ElementScroll::VERTICAL);
}
// Gets the inner height of the element.
float Element::GetClientHeight()
{
return GetBox().GetSize(client_area).y - meta->scroll.GetScrollbarSize(ElementScroll::HORIZONTAL);
}
// Returns the element from which all offset calculations are currently computed.
Element* Element::GetOffsetParent()
{
return offset_parent;
}
// Gets the distance from this element's left border to its offset parent's left border.
float Element::GetOffsetLeft()
{
return relative_offset_base.x + relative_offset_position.x;
}
// Gets the distance from this element's top border to its offset parent's top border.
float Element::GetOffsetTop()
{
return relative_offset_base.y + relative_offset_position.y;
}
// Gets the width of the element, including the client area, padding, borders and scrollbars, but not margins.
float Element::GetOffsetWidth()
{
return GetBox().GetSize(Box::BORDER).x;
}
// Gets the height of the element, including the client area, padding, borders and scrollbars, but not margins.
float Element::GetOffsetHeight()
{
return GetBox().GetSize(Box::BORDER).y;
}
// Gets the left scroll offset of the element.
float Element::GetScrollLeft()
{
return scroll_offset.x;
}
// Sets the left scroll offset of the element.
void Element::SetScrollLeft(float scroll_left)
{
const float new_offset = Math::Clamp(Math::RoundFloat(scroll_left), 0.0f, GetScrollWidth() - GetClientWidth());
if (new_offset != scroll_offset.x)
{
scroll_offset.x = new_offset;
meta->scroll.UpdateScrollbar(ElementScroll::HORIZONTAL);
DirtyOffset();
DispatchEvent(EventId::Scroll, Dictionary());
}
}
// Gets the top scroll offset of the element.
float Element::GetScrollTop()
{
return scroll_offset.y;
}
// Sets the top scroll offset of the element.
void Element::SetScrollTop(float scroll_top)
{
const float new_offset = Math::Clamp(Math::RoundFloat(scroll_top), 0.0f, GetScrollHeight() - GetClientHeight());
if(new_offset != scroll_offset.y)
{
scroll_offset.y = new_offset;
meta->scroll.UpdateScrollbar(ElementScroll::VERTICAL);
DirtyOffset();
DispatchEvent(EventId::Scroll, Dictionary());
}
}
// Gets the width of the scrollable content of the element; it includes the element padding but not its margin.
float Element::GetScrollWidth()
{
return Math::Max(content_box.x, GetClientWidth());
}
// Gets the height of the scrollable content of the element; it includes the element padding but not its margin.
float Element::GetScrollHeight()
{
return Math::Max(content_box.y, GetClientHeight());
}
// Gets the object representing the declarations of an element's style attributes.
ElementStyle* Element::GetStyle() const
{
return &meta->style;
}
// Gets the document this element belongs to.
ElementDocument* Element::GetOwnerDocument() const
{
#ifdef RMLUI_DEBUG
if (parent && !owner_document)
{
// Since we have a parent but no owner_document, then we must be a 'loose' element -- that is, constructed
// outside of a document and not attached to a child of any element in the hierarchy of a document.
// This check ensures that we didn't just forget to set the owner document.
RMLUI_ASSERT(!parent->GetOwnerDocument());
}
#endif
return owner_document;
}
// Gets this element's parent node.
Element* Element::GetParentNode() const
{
return parent;
}
// Gets the element immediately following this one in the tree.
Element* Element::GetNextSibling() const
{
if (parent == nullptr)
return nullptr;
for (size_t i = 0; i < parent->children.size() - (parent->num_non_dom_children + 1); i++)
{
if (parent->children[i].get() == this)
return parent->children[i + 1].get();
}
return nullptr;
}
// Gets the element immediately preceding this one in the tree.
Element* Element::GetPreviousSibling() const
{
if (parent == nullptr)
return nullptr;
for (size_t i = 1; i < parent->children.size() - parent->num_non_dom_children; i++)
{
if (parent->children[i].get() == this)
return parent->children[i - 1].get();
}
return nullptr;
}
// Returns the first child of this element.
Element* Element::GetFirstChild() const
{
if (GetNumChildren() > 0)
return children[0].get();
return nullptr;
}
// Gets the last child of this element.
Element* Element::GetLastChild() const
{
if (GetNumChildren() > 0)
return (children.end() - (num_non_dom_children + 1))->get();
return nullptr;
}
Element* Element::GetChild(int index) const
{
if (index < 0 || index >= (int) children.size())
return nullptr;
return children[index].get();
}
int Element::GetNumChildren(bool include_non_dom_elements) const
{
return (int) children.size() - (include_non_dom_elements ? 0 : num_non_dom_children);
}
// Gets the markup and content of the element.
void Element::GetInnerRML(String& content) const
{
for (int i = 0; i < GetNumChildren(); i++)
{
children[i]->GetRML(content);
}
}
// Gets the markup and content of the element.
String Element::GetInnerRML() const {
String result;
GetInnerRML(result);
return result;
}
// Sets the markup and content of the element. All existing children will be replaced.
void Element::SetInnerRML(const String& rml)
{
RMLUI_ZoneScopedC(0x6495ED);
// Remove all DOM children.
while ((int) children.size() > num_non_dom_children)
RemoveChild(children.front().get());
if(!rml.empty())
Factory::InstanceElementText(this, rml);
}
// Sets the current element as the focus object.
bool Element::Focus()
{
// Are we allowed focus?
Style::Focus focus_property = meta->computed_values.focus;
if (focus_property == Style::Focus::None)
return false;
// Ask our context if we can switch focus.
Context* context = GetContext();
if (context == nullptr)
return false;
if (!context->OnFocusChange(this))
return false;
// Set this as the end of the focus chain.
focus = nullptr;
// Update the focus chain up the hierarchy.
Element* element = this;
while (Element* parent = element->GetParentNode())
{
parent->focus = element;
element = parent;
}
return true;
}
// Removes focus from from this element.
void Element::Blur()
{
if (parent)
{
Context* context = GetContext();
if (context == nullptr)
return;
if (context->GetFocusElement() == this)
{
parent->Focus();
}
else if (parent->focus == this)
{
parent->focus = nullptr;
}
}
}
// Fakes a mouse click on this element.
void Element::Click()
{
Context* context = GetContext();
if (context == nullptr)
return;
context->GenerateClickEvent(this);
}
// Adds an event listener
void Element::AddEventListener(const String& event, EventListener* listener, bool in_capture_phase)
{
EventId id = EventSpecificationInterface::GetIdOrInsert(event);
meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase);
}
// Adds an event listener
void Element::AddEventListener(EventId id, EventListener* listener, bool in_capture_phase)
{
meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase);
}
// Removes an event listener from this element.
void Element::RemoveEventListener(const String& event, EventListener* listener, bool in_capture_phase)
{
EventId id = EventSpecificationInterface::GetIdOrInsert(event);
meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase);
}
// Removes an event listener from this element.
void Element::RemoveEventListener(EventId id, EventListener* listener, bool in_capture_phase)
{
meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase);
}
// Dispatches the specified event
bool Element::DispatchEvent(const String& type, const Dictionary& parameters)
{
const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type);
return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, specification.interruptible, specification.bubbles, specification.default_action_phase);
}
// Dispatches the specified event
bool Element::DispatchEvent(const String& type, const Dictionary& parameters, bool interruptible, bool bubbles)
{
const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type);
return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, interruptible, bubbles, specification.default_action_phase);
}
// Dispatches the specified event
bool Element::DispatchEvent(EventId id, const Dictionary& parameters)
{
const EventSpecification& specification = EventSpecificationInterface::Get(id);
return EventDispatcher::DispatchEvent(this, specification.id, specification.type, parameters, specification.interruptible, specification.bubbles, specification.default_action_phase);
}
// Scrolls the parent element's contents so that this element is visible.
void Element::ScrollIntoView(bool align_with_top)
{
Vector2f size(0, 0);
if (!align_with_top)
size.y = main_box.GetSize(Box::BORDER).y;
Element* scroll_parent = parent;
while (scroll_parent != nullptr)
{
Style::Overflow overflow_x_property = scroll_parent->GetComputedValues().overflow_x;
Style::Overflow overflow_y_property = scroll_parent->GetComputedValues().overflow_y;
if ((overflow_x_property != Style::Overflow::Visible &&
scroll_parent->GetScrollWidth() > scroll_parent->GetClientWidth()) ||
(overflow_y_property != Style::Overflow::Visible &&
scroll_parent->GetScrollHeight() > scroll_parent->GetClientHeight()))
{
Vector2f offset = scroll_parent->GetAbsoluteOffset(Box::BORDER) - GetAbsoluteOffset(Box::BORDER);
Vector2f scroll_offset(scroll_parent->GetScrollLeft(), scroll_parent->GetScrollTop());
scroll_offset -= offset;
scroll_offset.x += scroll_parent->GetClientLeft();
scroll_offset.y += scroll_parent->GetClientTop();
if (!align_with_top)
scroll_offset.y -= (scroll_parent->GetClientHeight() - size.y);
if (overflow_x_property != Style::Overflow::Visible)
scroll_parent->SetScrollLeft(scroll_offset.x);
if (overflow_y_property != Style::Overflow::Visible)
scroll_parent->SetScrollTop(scroll_offset.y);
}
scroll_parent = scroll_parent->GetParentNode();
}
}
// Appends a child to this element
Element* Element::AppendChild(ElementPtr child, bool dom_element)
{
RMLUI_ASSERT(child);
Element* child_ptr = child.get();
if (dom_element)
children.insert(children.end() - num_non_dom_children, std::move(child));
else
{
children.push_back(std::move(child));
num_non_dom_children++;
}
// Set parent just after inserting into children. This allows us to eg. get our previous sibling in SetParent.
child_ptr->SetParent(this);
Element* ancestor = child_ptr;
for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode())
ancestor->OnChildAdd(child_ptr);
DirtyStackingContext();
DirtyStructure();
if (dom_element)
DirtyLayout();
return child_ptr;
}
// Adds a child to this element, directly after the adjacent element. Inherits
// the dom/non-dom status from the adjacent element.
Element* Element::InsertBefore(ElementPtr child, Element* adjacent_element)
{
RMLUI_ASSERT(child);
// Find the position in the list of children of the adjacent element. If
// it's nullptr or we can't find it, then we insert it at the end of the dom
// children, as a dom element.
size_t child_index = 0;
bool found_child = false;
if (adjacent_element)
{
for (child_index = 0; child_index < children.size(); child_index++)
{
if (children[child_index].get() == adjacent_element)
{
found_child = true;
break;
}
}
}
Element* child_ptr = nullptr;
if (found_child)
{
child_ptr = child.get();
if ((int) child_index >= GetNumChildren())
num_non_dom_children++;
else
DirtyLayout();
children.insert(children.begin() + child_index, std::move(child));
child_ptr->SetParent(this);
Element* ancestor = child_ptr;
for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode())
ancestor->OnChildAdd(child_ptr);
DirtyStackingContext();
DirtyStructure();
}
else
{
child_ptr = AppendChild(std::move(child));
}
return child_ptr;
}
// Replaces the second node with the first node.
ElementPtr Element::ReplaceChild(ElementPtr inserted_element, Element* replaced_element)
{
RMLUI_ASSERT(inserted_element);
auto insertion_point = children.begin();
while (insertion_point != children.end() && insertion_point->get() != replaced_element)
{
++insertion_point;
}
Element* inserted_element_ptr = inserted_element.get();
if (insertion_point == children.end())
{
AppendChild(std::move(inserted_element));
return nullptr;
}
children.insert(insertion_point, std::move(inserted_element));
inserted_element_ptr->SetParent(this);
ElementPtr result = RemoveChild(replaced_element);
Element* ancestor = inserted_element_ptr;
for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode())
ancestor->OnChildAdd(inserted_element_ptr);
return result;
}
// Removes the specified child
ElementPtr Element::RemoveChild(Element* child)
{
size_t child_index = 0;
for (auto itr = children.begin(); itr != children.end(); ++itr)
{
// Add the element to the delete list
if (itr->get() == child)
{
Element* ancestor = child;
for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode())
ancestor->OnChildRemove(child);
if (child_index >= children.size() - num_non_dom_children)
num_non_dom_children--;
ElementPtr detached_child = std::move(*itr);
children.erase(itr);
// Remove the child element as the focused child of this element.
if (child == focus)
{
focus = nullptr;
// If this child (or a descendant of this child) is the context's currently
// focused element, set the focus to us instead.
if (Context * context = GetContext())
{
Element* focus_element = context->GetFocusElement();
while (focus_element)
{
if (focus_element == child)
{
Focus();
break;
}
focus_element = focus_element->GetParentNode();
}
}
}
detached_child->SetParent(nullptr);
DirtyLayout();
DirtyStackingContext();
DirtyStructure();
return detached_child;
}
child_index++;
}
return nullptr;
}
bool Element::HasChildNodes() const
{
return (int) children.size() > num_non_dom_children;
}
Element* Element::GetElementById(const String& id)
{
// Check for special-case tokens.
if (id == "#self")
return this;
else if (id == "#document")
return GetOwnerDocument();
else if (id == "#parent")
return this->parent;
else
{
Element* search_root = GetOwnerDocument();
if (search_root == nullptr)
search_root = this;
return ElementUtilities::GetElementById(search_root, id);
}
}
// Get all elements with the given tag.
void Element::GetElementsByTagName(ElementList& elements, const String& tag)
{
return ElementUtilities::GetElementsByTagName(elements, this, tag);
}
// Get all elements with the given class set on them.
void Element::GetElementsByClassName(ElementList& elements, const String& class_name)
{
return ElementUtilities::GetElementsByClassName(elements, this, class_name);
}
static Element* QuerySelectorMatchRecursive(const StyleSheetNodeListRaw& nodes, Element* element)
{
for (int i = 0; i < element->GetNumChildren(); i++)
{
Element* child = element->GetChild(i);
for (const StyleSheetNode* node : nodes)
{
if (node->IsApplicable(child, false))
return child;
}
Element* matching_element = QuerySelectorMatchRecursive(nodes, child);
if (matching_element)
return matching_element;
}
return nullptr;
}
static void QuerySelectorAllMatchRecursive(ElementList& matching_elements, const StyleSheetNodeListRaw& nodes, Element* element)
{
for (int i = 0; i < element->GetNumChildren(); i++)
{
Element* child = element->GetChild(i);
for (const StyleSheetNode* node : nodes)
{
if (node->IsApplicable(child, false))
{
matching_elements.push_back(child);
break;
}
}
QuerySelectorAllMatchRecursive(matching_elements, nodes, child);
}
}
Element* Element::QuerySelector(const String& selectors)
{
StyleSheetNode root_node;
StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors);
if (leaf_nodes.empty())
{
Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str());
return nullptr;
}
return QuerySelectorMatchRecursive(leaf_nodes, this);
}
void Element::QuerySelectorAll(ElementList& elements, const String& selectors)
{
StyleSheetNode root_node;
StyleSheetNodeListRaw leaf_nodes = StyleSheetParser::ConstructNodes(root_node, selectors);
if (leaf_nodes.empty())
{
Log::Message(Log::LT_WARNING, "Query selector '%s' is empty. In element %s", selectors.c_str(), GetAddress().c_str());
return;
}
QuerySelectorAllMatchRecursive(elements, leaf_nodes, this);
}
// Access the event dispatcher
EventDispatcher* Element::GetEventDispatcher() const
{
return &meta->event_dispatcher;
}
String Element::GetEventDispatcherSummary() const
{
return meta->event_dispatcher.ToString();
}
// Access the element decorators
ElementDecoration* Element::GetElementDecoration() const
{
return &meta->decoration;
}
// Returns the element's scrollbar functionality.
ElementScroll* Element::GetElementScroll() const
{
return &meta->scroll;
}
DataModel* Element::GetDataModel() const
{
return data_model;
}
int Element::GetClippingIgnoreDepth()
{
if (clipping_state_dirty)
{
IsClippingEnabled();
}
return clipping_ignore_depth;
}
bool Element::IsClippingEnabled()
{
if (clipping_state_dirty)
{
const auto& computed = GetComputedValues();
// Is clipping enabled for this element, yes unless both overlow properties are set to visible
clipping_enabled = computed.overflow_x != Style::Overflow::Visible
|| computed.overflow_y != Style::Overflow::Visible;
// Get the clipping ignore depth from the clip property
clipping_ignore_depth = computed.clip.number;
clipping_state_dirty = false;
}
return clipping_enabled;
}
// Gets the render interface owned by this element's context.
RenderInterface* Element::GetRenderInterface()
{
if (Context* context = GetContext())
return context->GetRenderInterface();
return ::Rml::GetRenderInterface();
}
void Element::SetInstancer(ElementInstancer* _instancer)
{
// Only record the first instancer being set as some instancers call other instancers to do their dirty work, in
// which case we don't want to update the lowest level instancer.
if (!instancer)
{
instancer = _instancer;
}
}
// Forces the element to generate a local stacking context, regardless of the value of its z-index property.
void Element::ForceLocalStackingContext()
{
local_stacking_context_forced = true;
local_stacking_context = true;
DirtyStackingContext();
}
// Called during the update loop after children are rendered.
void Element::OnUpdate()
{
}
// Called during render after backgrounds, borders, decorators, but before children, are rendered.
void Element::OnRender()
{
}
void Element::OnResize()
{
}
// Called during a layout operation, when the element is being positioned and sized.
void Element::OnLayout()
{
}
// Called when attributes on the element are changed.
void Element::OnAttributeChange(const ElementAttributes& changed_attributes)
{
auto it = changed_attributes.find("id");
if (it != changed_attributes.end())
{
id = it->second.Get();
meta->style.DirtyDefinition();
}
it = changed_attributes.find("class");
if (it != changed_attributes.end())
{
meta->style.SetClassNames(it->second.Get());
}
it = changed_attributes.find("style");
if (it != changed_attributes.end())
{
if (it->second.GetType() == Variant::STRING)
{
PropertyDictionary properties;
StyleSheetParser parser;
parser.ParseProperties(properties, it->second.GetReference());
for (const auto& name_value : properties.GetProperties())
{
meta->style.SetProperty(name_value.first, name_value.second);
}
}
else if (it->second.GetType() != Variant::NONE)
{
Log::Message(Log::LT_WARNING, "Invalid 'style' attribute, string type required. In element: %s", GetAddress().c_str());
}
}
}
// Called when properties on the element are changed.
void Element::OnPropertyChange(const PropertyIdSet& changed_properties)
{
RMLUI_ZoneScoped;
if (!IsLayoutDirty())
{
// Force a relayout if any of the changed properties require it.
const PropertyIdSet changed_properties_forcing_layout = (changed_properties & StyleSheetSpecification::GetRegisteredPropertiesForcingLayout());
if(!changed_properties_forcing_layout.Empty())
DirtyLayout();
}
const bool border_radius_changed = (
changed_properties.Contains(PropertyId::BorderTopLeftRadius) ||
changed_properties.Contains(PropertyId::BorderTopRightRadius) ||
changed_properties.Contains(PropertyId::BorderBottomRightRadius) ||
changed_properties.Contains(PropertyId::BorderBottomLeftRadius)
);
// Update the visibility.
if (changed_properties.Contains(PropertyId::Visibility) ||
changed_properties.Contains(PropertyId::Display))
{
bool new_visibility = (meta->computed_values.display != Style::Display::None && meta->computed_values.visibility == Style::Visibility::Visible);
if (visible != new_visibility)
{
visible = new_visibility;
if (parent != nullptr)
parent->DirtyStackingContext();
if (!visible)
Blur();
}
if (changed_properties.Contains(PropertyId::Display))
{
// Due to structural pseudo-classes, this may change the element definition in siblings and parent.
// However, the definitions will only be changed on the next update loop which may result in jarring behavior for one @frame.
// A possible workaround is to add the parent to a list of elements that need to be updated again.
if (parent != nullptr)
parent->DirtyStructure();
}
}
// Update the position.
if (changed_properties.Contains(PropertyId::Left) ||
changed_properties.Contains(PropertyId::Right) ||
changed_properties.Contains(PropertyId::Top) ||
changed_properties.Contains(PropertyId::Bottom))
{
// TODO: This should happen during/after layout, as the containing box is not properly defined yet. Off-by-one @frame issue.
UpdateOffset();
DirtyOffset();
}
// Update the z-index.
if (changed_properties.Contains(PropertyId::ZIndex))
{
Style::ZIndex z_index_property = meta->computed_values.z_index;
if (z_index_property.type == Style::ZIndex::Auto)
{
if (local_stacking_context &&
!local_stacking_context_forced)
{
// We're no longer acting as a stacking context.
local_stacking_context = false;
stacking_context_dirty = false;
stacking_context.clear();
}
// If our old z-index was not zero, then we must dirty our stacking context so we'll be re-indexed.
if (z_index != 0)
{
z_index = 0;
DirtyStackingContext();
}
}
else
{
float new_z_index = z_index_property.value;
if (new_z_index != z_index)
{
z_index = new_z_index;
if (parent != nullptr)
parent->DirtyStackingContext();
}
if (!local_stacking_context)
{
local_stacking_context = true;
stacking_context_dirty = true;
}
}
}
// Dirty the background if it's changed.
if (border_radius_changed ||
changed_properties.Contains(PropertyId::BackgroundColor) ||
changed_properties.Contains(PropertyId::Opacity) ||
changed_properties.Contains(PropertyId::ImageColor))
{
meta->background_border.DirtyBackground();
}
// Dirty the border if it's changed.
if (border_radius_changed ||
changed_properties.Contains(PropertyId::BorderTopWidth) ||
changed_properties.Contains(PropertyId::BorderRightWidth) ||
changed_properties.Contains(PropertyId::BorderBottomWidth) ||
changed_properties.Contains(PropertyId::BorderLeftWidth) ||
changed_properties.Contains(PropertyId::BorderTopColor) ||
changed_properties.Contains(PropertyId::BorderRightColor) ||
changed_properties.Contains(PropertyId::BorderBottomColor) ||
changed_properties.Contains(PropertyId::BorderLeftColor) ||
changed_properties.Contains(PropertyId::Opacity))
{
meta->background_border.DirtyBorder();
}
// Dirty the decoration if it's changed.
if (border_radius_changed ||
changed_properties.Contains(PropertyId::Decorator) ||
changed_properties.Contains(PropertyId::Opacity) ||
changed_properties.Contains(PropertyId::ImageColor))
{
meta->decoration.DirtyDecorators();
}
// Check for clipping state changes
if (changed_properties.Contains(PropertyId::Clip) ||
changed_properties.Contains(PropertyId::OverflowX) ||
changed_properties.Contains(PropertyId::OverflowY))
{
clipping_state_dirty = true;
}
// Check for `perspective' and `perspective-origin' changes
if (changed_properties.Contains(PropertyId::Perspective) ||
changed_properties.Contains(PropertyId::PerspectiveOriginX) ||
changed_properties.Contains(PropertyId::PerspectiveOriginY))
{
DirtyTransformState(true, false);
}
// Check for `transform' and `transform-origin' changes
if (changed_properties.Contains(PropertyId::Transform) ||
changed_properties.Contains(PropertyId::TransformOriginX) ||
changed_properties.Contains(PropertyId::TransformOriginY) ||
changed_properties.Contains(PropertyId::TransformOriginZ))
{
DirtyTransformState(false, true);
}
// Check for `animation' changes
if (changed_properties.Contains(PropertyId::Animation))
{
dirty_animation = true;
}
// Check for `transition' changes
if (changed_properties.Contains(PropertyId::Transition))
{
dirty_transition = true;
}
}
// Called when a child node has been added somewhere in the hierarchy
void Element::OnChildAdd(Element* /*child*/)
{
}
// Called when a child node has been removed somewhere in the hierarchy
void Element::OnChildRemove(Element* /*child*/)
{
}
// Forces a re-layout of this element, and any other children required.
void Element::DirtyLayout()
{
Element* document = GetOwnerDocument();
if (document != nullptr)
document->DirtyLayout();
}
// Forces a re-layout of this element, and any other children required.
bool Element::IsLayoutDirty()
{
Element* document = GetOwnerDocument();
if (document != nullptr)
return document->IsLayoutDirty();
return false;
}
void Element::ProcessDefaultAction(Event& event)
{
if (event == EventId::Mousedown && IsPointWithinElement(Vector2f(event.GetParameter< float >("mouse_x", 0), event.GetParameter< float >("mouse_y", 0))) &&
event.GetParameter< int >("button", 0) == 0)
SetPseudoClass("active", true);
if (event == EventId::Mousescroll)
{
if (GetScrollHeight() > GetClientHeight())
{
Style::Overflow overflow_property = meta->computed_values.overflow_y;
if (overflow_property == Style::Overflow::Auto ||
overflow_property == Style::Overflow::Scroll)
{
// Stop the propagation if the current element has scrollbars.
// This prevents scrolling in parent elements, which is often unintended. If instead desired behavior is
// to scroll in parent elements when reaching top/bottom, move StopPropagation inside the next if statement.
event.StopPropagation();
const float wheel_delta = event.GetParameter< float >("wheel_delta", 0.f);
if ((wheel_delta < 0 && GetScrollTop() > 0) ||
(wheel_delta > 0 && GetScrollHeight() > GetScrollTop() + GetClientHeight()))
{
// Defined as three times the default line-height, multiplied by the dp ratio.
float default_scroll_length = 3.f * DefaultComputedValues.line_height.value;
if (const Context* context = GetContext())
default_scroll_length *= context->GetDensityIndependentPixelRatio();
SetScrollTop(GetScrollTop() + wheel_delta * default_scroll_length);
}
}
}
return;
}
if (event.GetPhase() == EventPhase::Target)
{
switch (event.GetId())
{
case EventId::Mouseover:
SetPseudoClass("hover", true);
break;
case EventId::Mouseout:
SetPseudoClass("hover", false);
break;
case EventId::Focus:
SetPseudoClass("focus", true);
break;
case EventId::Blur:
SetPseudoClass("focus", false);
break;
default:
break;
}
}
}
const Style::ComputedValues& Element::GetComputedValues() const
{
return meta->computed_values;
}
void Element::GetRML(String& content)
{
// First we start the open tag, add the attributes then close the open tag.
// Then comes the children in order, then we add our close tag.
content += "<";
content += tag;
for (auto& pair : attributes)
{
auto& name = pair.first;
auto& variant = pair.second;
String value;
if (variant.GetInto(value))
content += " " + name + "=\"" + value + "\"";
}
if (HasChildNodes())
{
content += ">";
GetInnerRML(content);
content += "";
content += tag;
content += ">";
}
else
{
content += " />";
}
}
void Element::SetOwnerDocument(ElementDocument* document)
{
// If this element is a document, then never change owner_document.
if (owner_document != this)
{
if (owner_document && !document)
{
// We are detaching from the document and thereby also the context.
if (Context * context = owner_document->GetContext())
context->OnElementDetach(this);
}
if (owner_document != document)
{
owner_document = document;
for (ElementPtr& child : children)
child->SetOwnerDocument(document);
}
}
}
void Element::SetDataModel(DataModel* new_data_model)
{
RMLUI_ASSERTMSG(!data_model || !new_data_model, "We must either attach a new data model, or detach the old one.");
if (data_model == new_data_model)
return;
if (data_model)
data_model->OnElementRemove(this);
data_model = new_data_model;
if (data_model)
ElementUtilities::ApplyDataViewsControllers(this);
for (ElementPtr& child : children)
child->SetDataModel(new_data_model);
}
void Element::Release()
{
if (instancer)
instancer->ReleaseElement(this);
else
Log::Message(Log::LT_WARNING, "Leak detected: element %s not instanced via RmlUi Factory. Unable to release.", GetAddress().c_str());
}
void Element::SetParent(Element* _parent)
{
// Assumes we are already detached from the hierarchy or we are detaching now.
RMLUI_ASSERT(!parent || !_parent);
parent = _parent;
if (parent)
{
// We need to update our definition and make sure we inherit the properties of our new parent.
meta->style.DirtyDefinition();
meta->style.DirtyInheritedProperties();
}
// The transform state may require recalculation.
if (transform_state || (parent && parent->transform_state))
DirtyTransformState(true, true);
SetOwnerDocument(parent ? parent->GetOwnerDocument() : nullptr);
if (!parent)
{
if (data_model)
SetDataModel(nullptr);
}
else
{
auto it = attributes.find("data-model");
if (it == attributes.end())
{
SetDataModel(parent->data_model);
}
else if (parent->data_model)
{
String name = it->second.Get();
Log::Message(Log::LT_ERROR, "Nested data models are not allowed. Data model '%s' given in element %s.", name.c_str(), GetAddress().c_str());
}
else if (Context* context = GetContext())
{
String name = it->second.Get();
if (DataModel* model = context->GetDataModelPtr(name))
{
model->AttachModelRootElement(this);
SetDataModel(model);
}
else
Log::Message(Log::LT_ERROR, "Could not locate data model '%s' in element %s.", name.c_str(), GetAddress().c_str());
}
}
}
void Element::DirtyOffset()
{
if(!offset_dirty)
{
offset_dirty = true;
if(transform_state)
DirtyTransformState(true, true);
// Not strictly true ... ?
for (size_t i = 0; i < children.size(); i++)
children[i]->DirtyOffset();
}
}
void Element::UpdateOffset()
{
using namespace Style;
const auto& computed = meta->computed_values;
Position position_property = computed.position;
if (position_property == Position::Absolute ||
position_property == Position::Fixed)
{
if (offset_parent != nullptr)
{
const Box& parent_box = offset_parent->GetBox();
Vector2f containing_block = parent_box.GetSize(Box::PADDING);
// If the element is anchored left, then the position is offset by that resolved value.
if (computed.left.type != Left::Auto)
relative_offset_base.x = parent_box.GetEdge(Box::BORDER, Box::LEFT) + (ResolveValue(computed.left, containing_block.x) + GetBox().GetEdge(Box::MARGIN, Box::LEFT));
// If the element is anchored right, then the position is set first so the element's right-most edge
// (including margins) will render up against the containing box's right-most content edge, and then
// offset by the resolved value.
else if (computed.right.type != Right::Auto)
relative_offset_base.x = containing_block.x + parent_box.GetEdge(Box::BORDER, Box::LEFT) - (ResolveValue(computed.right, containing_block.x) + GetBox().GetSize(Box::BORDER).x + GetBox().GetEdge(Box::MARGIN, Box::RIGHT));
// If the element is anchored top, then the position is offset by that resolved value.
if (computed.top.type != Top::Auto)
relative_offset_base.y = parent_box.GetEdge(Box::BORDER, Box::TOP) + (ResolveValue(computed.top, containing_block.y) + GetBox().GetEdge(Box::MARGIN, Box::TOP));
// If the element is anchored bottom, then the position is set first so the element's right-most edge
// (including margins) will render up against the containing box's right-most content edge, and then
// offset by the resolved value.
else if (computed.bottom.type != Bottom::Auto)
relative_offset_base.y = containing_block.y + parent_box.GetEdge(Box::BORDER, Box::TOP) - (ResolveValue(computed.bottom, containing_block.y) + GetBox().GetSize(Box::BORDER).y + GetBox().GetEdge(Box::MARGIN, Box::BOTTOM));
}
}
else if (position_property == Position::Relative)
{
if (offset_parent != nullptr)
{
const Box& parent_box = offset_parent->GetBox();
Vector2f containing_block = parent_box.GetSize();
if (computed.left.type != Left::Auto)
relative_offset_position.x = ResolveValue(computed.left, containing_block.x);
else if (computed.right.type != Right::Auto)
relative_offset_position.x = -1 * ResolveValue(computed.right, containing_block.x);
else
relative_offset_position.x = 0;
if (computed.top.type != Top::Auto)
relative_offset_position.y = ResolveValue(computed.top, containing_block.y);
else if (computed.bottom.type != Bottom::Auto)
relative_offset_position.y = -1 * ResolveValue(computed.bottom, containing_block.y);
else
relative_offset_position.y = 0;
}
}
else
{
relative_offset_position.x = 0;
relative_offset_position.y = 0;
}
}
void Element::SetBaseline(float in_baseline)
{
baseline = in_baseline;
}
void Element::BuildLocalStackingContext()
{
stacking_context_dirty = false;
stacking_context.clear();
BuildStackingContext(&stacking_context);
std::stable_sort(stacking_context.begin(), stacking_context.end(), ElementSortZIndex());
}
void Element::BuildStackingContext(ElementList* new_stacking_context)
{
RMLUI_ZoneScoped;
// Build the list of ordered children. Our child list is sorted within the stacking context so stacked elements
// will render in the right order; ie, positioned elements will render on top of inline elements, which will render
// on top of floated elements, which will render on top of block elements.
Vector< Pair< Element*, float > > ordered_children;
for (size_t i = 0; i < children.size(); ++i)
{
Element* child = children[i].get();
if (!child->IsVisible())
continue;
Pair< Element*, float > ordered_child;
ordered_child.first = child;
if (child->GetPosition() != Style::Position::Static)
ordered_child.second = 3;
else if (child->GetFloat() != Style::Float::None)
ordered_child.second = 1;
else if (child->GetDisplay() == Style::Display::Block)
ordered_child.second = 0;
else
ordered_child.second = 2;
ordered_children.push_back(ordered_child);
}
// Sort the list!
std::stable_sort(ordered_children.begin(), ordered_children.end(), ElementSortZOrder());
// Add the list of ordered children into the stacking context in order.
for (size_t i = 0; i < ordered_children.size(); ++i)
{
new_stacking_context->push_back(ordered_children[i].first);
if (!ordered_children[i].first->local_stacking_context)
ordered_children[i].first->BuildStackingContext(new_stacking_context);
}
}
void Element::DirtyStackingContext()
{
// The first ancestor of ours that doesn't have an automatic z-index is the ancestor that is establishing our local
// stacking context.
Element* stacking_context_parent = this;
while (stacking_context_parent != nullptr &&
!stacking_context_parent->local_stacking_context)
stacking_context_parent = stacking_context_parent->GetParentNode();
if (stacking_context_parent != nullptr)
stacking_context_parent->stacking_context_dirty = true;
}
void Element::DirtyStructure()
{
structure_dirty = true;
}
void Element::UpdateStructure()
{
if (structure_dirty)
{
structure_dirty = false;
// If this element or its children depend on structured selectors, they may need to be updated.
GetStyle()->DirtyDefinition();
}
}
bool Element::Animate(const String & property_name, const Property & target_value, float duration, Tween tween, int num_iterations, bool alternate_direction, float delay, const Property* start_value)
{
bool result = false;
PropertyId property_id = StyleSheetSpecification::GetPropertyId(property_name);
auto it_animation = StartAnimation(property_id, start_value, num_iterations, alternate_direction, delay, false);
if (it_animation != animations.end())
{
result = it_animation->AddKey(duration, target_value, *this, tween, true);
if (!result)
animations.erase(it_animation);
}
return result;
}
bool Element::AddAnimationKey(const String & property_name, const Property & target_value, float duration, Tween tween)
{
ElementAnimation* animation = nullptr;
PropertyId property_id = StyleSheetSpecification::GetPropertyId(property_name);
for (auto& existing_animation : animations) {
if (existing_animation.GetPropertyId() == property_id) {
animation = &existing_animation;
break;
}
}
if (!animation)
return false;
bool result = animation->AddKey(animation->GetDuration() + duration, target_value, *this, tween, true);
return result;
}
ElementAnimationList::iterator Element::StartAnimation(PropertyId property_id, const Property* start_value, int num_iterations, bool alternate_direction, float delay, bool initiated_by_animation_property)
{
auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == property_id; });
if (it != animations.end())
{
*it = ElementAnimation{};
}
else
{
animations.emplace_back();
it = animations.end() - 1;
}
Property value;
if (start_value)
{
value = *start_value;
if (!value.definition)
if(auto default_value = GetProperty(property_id))
value.definition = default_value->definition;
}
else if (auto default_value = GetProperty(property_id))
{
value = *default_value;
}
if (value.definition)
{
ElementAnimationOrigin origin = (initiated_by_animation_property ? ElementAnimationOrigin::Animation : ElementAnimationOrigin::User);
double start_time = Clock::GetElapsedTime() + (double)delay;
*it = ElementAnimation{ property_id, origin, value, *this, start_time, 0.0f, num_iterations, alternate_direction };
}
if(!it->IsInitalized())
{
animations.erase(it);
it = animations.end();
}
return it;
}
bool Element::AddAnimationKeyTime(PropertyId property_id, const Property* target_value, float time, Tween tween)
{
if (!target_value)
target_value = meta->style.GetProperty(property_id);
if (!target_value)
return false;
ElementAnimation* animation = nullptr;
for (auto& existing_animation : animations) {
if (existing_animation.GetPropertyId() == property_id) {
animation = &existing_animation;
break;
}
}
if (!animation)
return false;
bool result = animation->AddKey(time, *target_value, *this, tween, true);
return result;
}
bool Element::StartTransition(const Transition & transition, const Property& start_value, const Property & target_value)
{
auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == transition.id; });
if (it != animations.end() && !it->IsTransition())
return false;
float duration = transition.duration;
double start_time = Clock::GetElapsedTime() + (double)transition.delay;
if (it == animations.end())
{
// Add transition as new animation
animations.push_back(
ElementAnimation{ transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false }
);
it = (animations.end() - 1);
}
else
{
// Compress the duration based on the progress of the current animation
float f = it->GetInterpolationFactor();
f = 1.0f - (1.0f - f)*transition.reverse_adjustment_factor;
duration = duration * f;
// Replace old transition
*it = ElementAnimation{ transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false };
}
bool result = it->AddKey(duration, target_value, *this, transition.tween, true);
if (result)
SetProperty(transition.id, start_value);
else
animations.erase(it);
return result;
}
void Element::HandleTransitionProperty()
{
if(dirty_transition)
{
dirty_transition = false;
// Remove all transitions that are no longer in our local list
const TransitionList& keep_transitions = GetComputedValues().transition;
if (keep_transitions.all)
return;
auto it_remove = animations.end();
if (keep_transitions.none)
{
// All transitions should be removed, but only touch the animations that originate from the 'transition' property.
// Move all animations to be erased in a valid state at the end of the list, and erase later.
it_remove = std::partition(animations.begin(), animations.end(),
[](const ElementAnimation& animation) -> bool { return !animation.IsTransition(); }
);
}
else
{
// Only remove the transitions that are not in our keep list.
const auto& keep_transitions_list = keep_transitions.transitions;
it_remove = std::partition(animations.begin(), animations.end(),
[&keep_transitions_list](const ElementAnimation& animation) -> bool {
if (!animation.IsTransition())
return true;
auto it = std::find_if(keep_transitions_list.begin(), keep_transitions_list.end(),
[&animation](const Transition& transition) { return animation.GetPropertyId() == transition.id; }
);
bool keep_animation = (it != keep_transitions_list.end());
return keep_animation;
}
);
}
// We can decide what to do with cancelled transitions here.
for (auto it = it_remove; it != animations.end(); ++it)
RemoveProperty(it->GetPropertyId());
animations.erase(it_remove, animations.end());
}
}
void Element::HandleAnimationProperty()
{
// Note: We are effectively restarting all animations whenever 'dirty_animation' is set. Use the dirty flag with care,
// or find another approach which only updates actual "dirty" animations.
if (dirty_animation)
{
dirty_animation = false;
const AnimationList& animation_list = meta->computed_values.animation;
bool element_has_animations = (!animation_list.empty() || !animations.empty());
StyleSheet* stylesheet = nullptr;
if (element_has_animations)
stylesheet = GetStyleSheet().get();
if (stylesheet)
{
// Remove existing animations
{
// We only touch the animations that originate from the 'animation' property.
auto it_remove = std::partition(animations.begin(), animations.end(),
[](const ElementAnimation & animation) { return animation.GetOrigin() != ElementAnimationOrigin::Animation; }
);
// We can decide what to do with cancelled animations here.
for (auto it = it_remove; it != animations.end(); ++it)
RemoveProperty(it->GetPropertyId());
animations.erase(it_remove, animations.end());
}
// Start animations
for (const auto& animation : animation_list)
{
const Keyframes* keyframes_ptr = stylesheet->GetKeyframes(animation.name);
if (keyframes_ptr && keyframes_ptr->blocks.size() >= 1 && !animation.paused)
{
auto& property_ids = keyframes_ptr->property_ids;
auto& blocks = keyframes_ptr->blocks;
bool has_from_key = (blocks[0].normalized_time == 0);
bool has_to_key = (blocks.back().normalized_time == 1);
// If the first key defines initial conditions for a given property, use those values, else, use this element's current values.
for (PropertyId id : property_ids)
StartAnimation(id, (has_from_key ? blocks[0].properties.GetProperty(id) : nullptr), animation.num_iterations, animation.alternate, animation.delay, true);
// Add middle keys: Need to skip the first and last keys if they set the initial and end conditions, respectively.
for (int i = (has_from_key ? 1 : 0); i < (int)blocks.size() + (has_to_key ? -1 : 0); i++)
{
// Add properties of current key to animation
float time = blocks[i].normalized_time * animation.duration;
for (auto& property : blocks[i].properties.GetProperties())
AddAnimationKeyTime(property.first, &property.second, time, animation.tween);
}
// If the last key defines end conditions for a given property, use those values, else, use this element's current values.
float time = animation.duration;
for (PropertyId id : property_ids)
AddAnimationKeyTime(id, (has_to_key ? blocks.back().properties.GetProperty(id) : nullptr), time, animation.tween);
}
}
}
}
}
void Element::AdvanceAnimations()
{
if (!animations.empty())
{
double time = Clock::GetElapsedTime();
for (auto& animation : animations)
{
Property property = animation.UpdateAndGetProperty(time, *this);
if (property.unit != Property::UNKNOWN)
SetProperty(animation.GetPropertyId(), property);
}
// Move all completed animations to the end of the list
auto it_completed = std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return !animation.IsComplete(); });
Vector dictionary_list;
Vector is_transition;
dictionary_list.reserve(animations.end() - it_completed);
is_transition.reserve(animations.end() - it_completed);
for (auto it = it_completed; it != animations.end(); ++it)
{
const String& property_name = StyleSheetSpecification::GetPropertyName(it->GetPropertyId());
dictionary_list.emplace_back();
dictionary_list.back().emplace("property", Variant(property_name));
is_transition.push_back(it->IsTransition());
// Remove completed transition- and animation-initiated properties.
// Should behave like in HandleTransitionProperty() and HandleAnimationProperty() respectively.
if (it->GetOrigin() != ElementAnimationOrigin::User)
RemoveProperty(it->GetPropertyId());
}
// Need to erase elements before submitting event, as iterators might be invalidated when calling external code.
animations.erase(it_completed, animations.end());
for (size_t i = 0; i < dictionary_list.size(); i++)
DispatchEvent(is_transition[i] ? EventId::Transitionend : EventId::Animationend, dictionary_list[i]);
}
}
void Element::DirtyTransformState(bool perspective_dirty, bool transform_dirty)
{
dirty_perspective |= perspective_dirty;
dirty_transform |= transform_dirty;
}
void Element::UpdateTransformState()
{
if (!dirty_perspective && !dirty_transform)
return;
const ComputedValues& computed = meta->computed_values;
const Vector2f pos = GetAbsoluteOffset(Box::BORDER);
const Vector2f size = GetBox().GetSize(Box::BORDER);
bool perspective_or_transform_changed = false;
if (dirty_perspective)
{
// If perspective is set on this element, then it applies to our children. We just calculate it here,
// and let the children's transform update merge it with their transform.
bool had_perspective = (transform_state && transform_state->GetLocalPerspective());
float distance = computed.perspective;
Vector2f vanish = Vector2f(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f);
bool have_perspective = false;
if (distance > 0.0f)
{
have_perspective = true;
// Compute the vanishing point from the perspective origin
if (computed.perspective_origin_x.type == Style::PerspectiveOrigin::Percentage)
vanish.x = pos.x + computed.perspective_origin_x.value * 0.01f * size.x;
else
vanish.x = pos.x + computed.perspective_origin_x.value;
if (computed.perspective_origin_y.type == Style::PerspectiveOrigin::Percentage)
vanish.y = pos.y + computed.perspective_origin_y.value * 0.01f * size.y;
else
vanish.y = pos.y + computed.perspective_origin_y.value;
}
if (have_perspective)
{
// Equivalent to: Translate(x,y,0) * Perspective(distance) * Translate(-x,-y,0)
Matrix4f perspective = Matrix4f::FromRows(
{ 1, 0, -vanish.x / distance, 0 },
{ 0, 1, -vanish.y / distance, 0 },
{ 0, 0, 1, 0 },
{ 0, 0, -1 / distance, 1 }
);
if (!transform_state)
transform_state = MakeUnique();
perspective_or_transform_changed |= transform_state->SetLocalPerspective(&perspective);
}
else if (transform_state)
transform_state->SetLocalPerspective(nullptr);
perspective_or_transform_changed |= (have_perspective != had_perspective);
dirty_perspective = false;
}
if (dirty_transform)
{
// We want to find the accumulated transform given all our ancestors. It is assumed here that the parent transform is already updated,
// so that we only need to consider our local transform and combine it with our parent's transform and perspective matrices.
bool had_transform = (transform_state && transform_state->GetTransform());
bool have_transform = false;
Matrix4f transform = Matrix4f::Identity();
if (computed.transform)
{
// First find the current element's transform
const int n = computed.transform->GetNumPrimitives();
for (int i = 0; i < n; ++i)
{
const TransformPrimitive& primitive = computed.transform->GetPrimitive(i);
Matrix4f matrix = TransformUtilities::ResolveTransform(primitive, *this);
transform *= matrix;
have_transform = true;
}
if(have_transform)
{
// Compute the transform origin
Vector3f transform_origin(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f, 0);
if (computed.transform_origin_x.type == Style::TransformOrigin::Percentage)
transform_origin.x = pos.x + computed.transform_origin_x.value * size.x * 0.01f;
else
transform_origin.x = pos.x + computed.transform_origin_x.value;
if (computed.transform_origin_y.type == Style::TransformOrigin::Percentage)
transform_origin.y = pos.y + computed.transform_origin_y.value * size.y * 0.01f;
else
transform_origin.y = pos.y + computed.transform_origin_y.value;
transform_origin.z = computed.transform_origin_z;
// Make the transformation apply relative to the transform origin
transform = Matrix4f::Translate(transform_origin) * transform * Matrix4f::Translate(-transform_origin);
}
// We may want to include the local offsets here, as suggested by the CSS specs, so that the local transform is applied after the offset I believe
// the motivation is. Then we would need to subtract the absolute zero-offsets during geometry submit whenever we have transforms.
}
if (parent && parent->transform_state)
{
// Apply the parent's local perspective and transform.
// @performance: If we have no local transform and no parent perspective, we can effectively just point to the parent transform instead of copying it.
const TransformState& parent_state = *parent->transform_state;
if (auto parent_perspective = parent_state.GetLocalPerspective())
{
transform = *parent_perspective * transform;
have_transform = true;
}
if (auto parent_transform = parent_state.GetTransform())
{
transform = *parent_transform * transform;
have_transform = true;
}
}
if (have_transform)
{
if (!transform_state)
transform_state = MakeUnique();
perspective_or_transform_changed |= transform_state->SetTransform(&transform);
}
else if (transform_state)
transform_state->SetTransform(nullptr);
perspective_or_transform_changed |= (had_transform != have_transform);
}
// A change in perspective or transform will require an update to children transforms as well.
if (perspective_or_transform_changed)
{
for (size_t i = 0; i < children.size(); i++)
children[i]->DirtyTransformState(false, true);
}
// No reason to keep the transform state around if transform and perspective have been removed.
if (transform_state && !transform_state->GetTransform() && !transform_state->GetLocalPerspective())
{
transform_state.reset();
}
}
} // namespace Rml