/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "../../Include/RmlUi/Controls/ElementProgressBar.h" #include "../../Include/RmlUi/Core/Math.h" #include "../../Include/RmlUi/Core/GeometryUtilities.h" #include "../../Include/RmlUi/Core/PropertyIdSet.h" #include "../../Include/RmlUi/Core/Factory.h" #include "../../Include/RmlUi/Core/ElementDocument.h" #include "../../Include/RmlUi/Core/StyleSheet.h" #include "../../Include/RmlUi/Core/ElementUtilities.h" #include "../../Include/RmlUi/Core/URL.h" #include namespace Rml { namespace Controls { ElementProgressBar::ElementProgressBar(const Core::String& tag) : Element(tag), direction(DefaultDirection), start_edge(DefaultStartEdge), value(0), fill(nullptr), rect_set(false), geometry(this) { geometry_dirty = false; texture_dirty = true; // Add the fill element as a non-DOM element. Core::ElementPtr fill_element = Core::Factory::InstanceElement(this, "*", "fill", Core::XMLAttributes()); RMLUI_ASSERT(fill_element); fill = AppendChild(std::move(fill_element), false); } ElementProgressBar::~ElementProgressBar() { } float ElementProgressBar::GetValue() const { return value; } void ElementProgressBar::SetValue(float in_value) { SetAttribute("value", in_value); } void ElementProgressBar::OnRender() { // Some properties may change geometry without dirtying the layout, eg. opacity. if (geometry_dirty) GenerateGeometry(); // Render the geometry at the fill element's content region. geometry.Render(fill->GetAbsoluteOffset().Round()); } void ElementProgressBar::OnAttributeChange(const Rml::Core::ElementAttributes& changed_attributes) { Rml::Core::Element::OnAttributeChange(changed_attributes); if (changed_attributes.find("value") != changed_attributes.end()) { value = Core::Math::Clamp( GetAttribute< float >("value", 0.0f), 0.0f, 1.0f); geometry_dirty = true; } if (changed_attributes.find("direction") != changed_attributes.end()) { using DirectionNameList = std::array; static const DirectionNameList names = { "top", "right", "bottom", "left", "clockwise", "counter-clockwise" }; direction = DefaultDirection; Core::String name = Core::StringUtilities::ToLower( GetAttribute< Core::String >("direction", "") ); auto it = std::find(names.begin(), names.end(), name); size_t index = size_t(it - names.begin()); if (index < size_t(Direction::Count)) direction = Direction(index); geometry_dirty = true; } if (changed_attributes.find("start-edge") != changed_attributes.end()) { using StartEdgeNameList = std::array; static const StartEdgeNameList names = { "top", "right", "bottom", "left" }; start_edge = DefaultStartEdge; Core::String name = Core::StringUtilities::ToLower(GetAttribute< Core::String >("start-edge", "")); auto it = std::find(names.begin(), names.end(), name); size_t index = size_t(it - names.begin()); if (index < size_t(StartEdge::Count)) start_edge = StartEdge(index); geometry_dirty = true; } } void ElementProgressBar::OnPropertyChange(const Core::PropertyIdSet& changed_properties) { Element::OnPropertyChange(changed_properties); if (changed_properties.Contains(Core::PropertyId::ImageColor) || changed_properties.Contains(Core::PropertyId::Opacity)) { geometry_dirty = true; } if (changed_properties.Contains(Core::PropertyId::FillImage)) { texture_dirty = true; } } void ElementProgressBar::OnResize() { using Core::Box; using Core::Vector2f; const Vector2f element_size = GetBox().GetSize(); // Build and set the 'fill' element's box. Here we are mainly interested in all the edge sizes set by the user. // The content size of the box is here scaled to fit inside the progress bar. Then, during 'CreateGeometry()', // the 'fill' element's content size is further shrunk according to 'value' along the proper direction. Box fill_box; Core::ElementUtilities::BuildBox(fill_box, element_size, fill); const Vector2f margin_top_left( fill_box.GetEdge(Box::MARGIN, Box::LEFT), fill_box.GetEdge(Box::MARGIN, Box::TOP) ); const Vector2f edge_size = fill_box.GetSize(Box::MARGIN) - fill_box.GetSize(Box::CONTENT); fill_offset = GetBox().GetPosition() + margin_top_left; fill_size = element_size - edge_size; fill_box.SetContent(fill_size); fill->SetBox(fill_box); geometry_dirty = true; } void ElementProgressBar::GenerateGeometry() { using Core::Vector2f; Vector2f render_size = fill_size; { // Size and offset the fill element depending on the progressbar value. Vector2f offset = fill_offset; switch (direction) { case Direction::Top: render_size.y = fill_size.y * value; offset.y = fill_offset.y + fill_size.y - render_size.y; break; case Direction::Right: render_size.x = fill_size.x * value; break; case Direction::Bottom: render_size.y = fill_size.y * value; break; case Direction::Left: render_size.x = fill_size.x * value; offset.x = fill_offset.x + fill_size.x - render_size.x; break; case Direction::Clockwise: case Direction::CounterClockwise: // Circular progress bars cannot use a box to shape the fill element, instead we need to manually create the geometry from the image texture. // Thus, we leave the size and offset untouched as a canvas for the manual geometry. break; RMLUI_UNUSED_SWITCH_ENUM(Direction::Count); } Core::Box fill_box = fill->GetBox(); fill_box.SetContent(render_size); fill->SetBox(fill_box); fill->SetOffset(offset, this); } if (texture_dirty) LoadTexture(); geometry.Release(true); geometry_dirty = false; // If we don't have a fill texture, then there is no need to generate manual geometry, and we are done here. // Instead, users can style the fill element eg. by decorators. if (!texture) return; // Otherwise, the 'fill-image' property is set, let's generate its geometry. auto& vertices = geometry.GetVertices(); auto& indices = geometry.GetIndices(); Vector2f texcoords[2]; if (rect_set) { Vector2f texture_dimensions((float)texture.GetDimensions(GetRenderInterface()).x, (float)texture.GetDimensions(GetRenderInterface()).y); if (texture_dimensions.x == 0) texture_dimensions.x = 1; if (texture_dimensions.y == 0) texture_dimensions.y = 1; texcoords[0].x = rect.x / texture_dimensions.x; texcoords[0].y = rect.y / texture_dimensions.y; texcoords[1].x = (rect.x + rect.width) / texture_dimensions.x; texcoords[1].y = (rect.y + rect.height) / texture_dimensions.y; } else { texcoords[0] = Vector2f(0, 0); texcoords[1] = Vector2f(1, 1); } Core::Colourb quad_colour; { const Core::ComputedValues& computed = GetComputedValues(); const float opacity = computed.opacity; quad_colour = computed.image_color; quad_colour.alpha = (Core::byte)(opacity * (float)quad_colour.alpha); } switch (direction) { // For the top, right, bottom, left directions the fill element already describes where we should draw the fill, // we only need to generate the final texture coordinates here. case Direction::Top: texcoords[0].y = texcoords[0].y + (1.0f - value) * (texcoords[1].y - texcoords[0].y); break; case Direction::Right: texcoords[1].x = texcoords[0].x + value * (texcoords[1].x - texcoords[0].x); break; case Direction::Bottom: texcoords[1].y = texcoords[0].y + value * (texcoords[1].y - texcoords[0].y); break; case Direction::Left: texcoords[0].x = texcoords[0].x + (1.0f - value) * (texcoords[1].x - texcoords[0].x); break; case Direction::Clockwise: case Direction::CounterClockwise: { // The circular directions require custom geometry as a box is insufficient. // We divide the "circle" into eight parts, here called octants, such that each part can be represented by a triangle. // 'num_octants' tells us how many of these are completely or partially filled. const int num_octants = Core::Math::Clamp(Core::Math::RoundUpToInteger(8.f * value), 0, 8); const int num_vertices = 2 + num_octants; const int num_triangles = num_octants; const bool cw = (direction == Direction::Clockwise); if (num_octants == 0) break; vertices.resize(num_vertices); indices.resize(3 * num_triangles); RMLUI_ASSERT(int(start_edge) >= int(StartEdge::Top) && int(start_edge) <= int(StartEdge::Left)); // The octant our "circle" expands from. const int start_octant = 2 * int(start_edge); // Positions along the unit square (clockwise, index 0 on top) const float x[8] = { 0, 1, 1, 1, 0, -1, -1, -1 }; const float y[8] = { -1, -1, 0, 1, 1, 1, 0, -1 }; // Set the position of the octant vertices to be rendered. for (int i = 0; i <= num_octants; i++) { int j = (cw ? i : 8 - i); j = ((j + start_octant) % 8); vertices[i].position = Vector2f(x[j], y[j]); } // Find the position of the vertex representing the partially filled triangle. if (value < 1.f) { using namespace Core::Math; const float angle_offset = float(start_octant) / 8.f * 2.f * RMLUI_PI; const float angle = angle_offset + (cw ? 1.f : -1.f) * value * 2.f * RMLUI_PI; Vector2f pos(Sin(angle), -Cos(angle)); // Project it from the circle towards the surrounding unit square. pos = pos / Max(AbsoluteValue(pos.x), AbsoluteValue(pos.y)); vertices[num_octants].position = pos; } const int i_center = num_vertices - 1; vertices[i_center].position = Vector2f(0, 0); for (int i = 0; i < num_triangles; i++) { indices[i * 3 + 0] = i_center; indices[i * 3 + 2] = i; indices[i * 3 + 1] = i + 1; } for (int i = 0; i < num_vertices; i++) { // Transform position from [-1, 1] to [0, 1] and then to [0, size] const Vector2f pos = (Vector2f(1, 1) + vertices[i].position) * 0.5f; vertices[i].position = pos * render_size; vertices[i].tex_coord = texcoords[0] + pos * (texcoords[1] - texcoords[0]); vertices[i].colour = quad_colour; } } break; RMLUI_UNUSED_SWITCH_ENUM(Direction::Count); } const bool is_circular = (direction == Direction::Clockwise || direction == Direction::CounterClockwise); if(!is_circular) { vertices.resize(4); indices.resize(6); Rml::Core::GeometryUtilities::GenerateQuad(&vertices[0], &indices[0], Vector2f(0), render_size, quad_colour, texcoords[0], texcoords[1]); } } bool ElementProgressBar::LoadTexture() { texture_dirty = false; geometry_dirty = true; rect_set = false; Core::String name; if (auto property = fill->GetLocalProperty(Core::PropertyId::FillImage)) name = property->Get(); Core::ElementDocument* document = GetOwnerDocument(); bool texture_set = false; if(!name.empty() && document) { // Check for a sprite first, this takes precedence. if (auto& style_sheet = document->GetStyleSheet()) { if (const Core::Sprite* sprite = style_sheet->GetSprite(name)) { rect = sprite->rectangle; rect_set = true; texture = sprite->sprite_sheet->texture; texture_set = true; } } // Otherwise, treat it as a path if (!texture_set) { Core::URL source_url; source_url.SetURL(document->GetSourceURL()); texture.Set(name, source_url.GetPath()); texture_set = true; } } if (!texture_set) { texture = {}; rect = {}; } // Set the texture onto our geometry object. geometry.SetTexture(&texture); return true; } } }