/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019-2023 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "GeometryBackgroundBorder.h" #include "../../Include/RmlUi/Core/Box.h" #include "../../Include/RmlUi/Core/Math.h" #include #include namespace Rml { GeometryBackgroundBorder::GeometryBackgroundBorder(Vector& vertices, Vector& indices) : vertices(vertices), indices(indices) {} BorderMetrics GeometryBackgroundBorder::ComputeBorderMetrics(Vector2f outer_position, EdgeSizes edge_sizes, Vector2f inner_size, CornerSizes outer_radii_def) { BorderMetrics metrics = {}; // -- Find the corner positions -- const Vector2f inner_position = outer_position + Vector2f(edge_sizes[LEFT], edge_sizes[TOP]); const Vector2f outer_size = inner_size + Vector2f(edge_sizes[LEFT] + edge_sizes[RIGHT], edge_sizes[TOP] + edge_sizes[BOTTOM]); metrics.positions_outer = { outer_position, outer_position + Vector2f(outer_size.x, 0), outer_position + outer_size, outer_position + Vector2f(0, outer_size.y), }; metrics.positions_inner = { inner_position, inner_position + Vector2f(inner_size.x, 0), inner_position + inner_size, inner_position + Vector2f(0, inner_size.y), }; // -- For curved borders, find the positions to draw ellipses around, and the scaled outer and inner radii -- const float sum_radius = (outer_radii_def[TOP_LEFT] + outer_radii_def[TOP_RIGHT] + outer_radii_def[BOTTOM_RIGHT] + outer_radii_def[BOTTOM_LEFT]); const bool has_radius = (sum_radius > 1.f); if (has_radius) { auto& outer_radii = metrics.outer_radii; outer_radii = outer_radii_def; // Scale the radii such that we have no overlapping curves. float scale_factor = FLT_MAX; scale_factor = Math::Min(scale_factor, inner_size.x / (outer_radii[TOP_LEFT] + outer_radii[TOP_RIGHT])); // Top scale_factor = Math::Min(scale_factor, inner_size.y / (outer_radii[TOP_RIGHT] + outer_radii[BOTTOM_RIGHT])); // Right scale_factor = Math::Min(scale_factor, inner_size.x / (outer_radii[BOTTOM_RIGHT] + outer_radii[BOTTOM_LEFT])); // Bottom scale_factor = Math::Min(scale_factor, inner_size.y / (outer_radii[BOTTOM_LEFT] + outer_radii[TOP_LEFT])); // Left scale_factor = Math::Min(1.0f, scale_factor); for (float& radius : outer_radii) radius = Math::Round(radius * scale_factor); // Place the circle/ellipse centers metrics.positions_circle_center = { metrics.positions_outer[TOP_LEFT] + Vector2f(1, 1) * outer_radii[TOP_LEFT], metrics.positions_outer[TOP_RIGHT] + Vector2f(-1, 1) * outer_radii[TOP_RIGHT], metrics.positions_outer[BOTTOM_RIGHT] + Vector2f(-1, -1) * outer_radii[BOTTOM_RIGHT], metrics.positions_outer[BOTTOM_LEFT] + Vector2f(1, -1) * outer_radii[BOTTOM_LEFT], }; metrics.inner_radii = { Vector2f(outer_radii[TOP_LEFT]) - Vector2f(edge_sizes[LEFT], edge_sizes[TOP]), Vector2f(outer_radii[TOP_RIGHT]) - Vector2f(edge_sizes[RIGHT], edge_sizes[TOP]), Vector2f(outer_radii[BOTTOM_RIGHT]) - Vector2f(edge_sizes[RIGHT], edge_sizes[BOTTOM]), Vector2f(outer_radii[BOTTOM_LEFT]) - Vector2f(edge_sizes[LEFT], edge_sizes[BOTTOM]), }; } return metrics; } void GeometryBackgroundBorder::DrawBackground(const BorderMetrics& metrics, ColourbPremultiplied color) { const int offset_vertices = (int)vertices.size(); for (int corner = 0; corner < 4; corner++) DrawBackgroundCorner(Corner(corner), metrics.positions_inner[corner], metrics.positions_circle_center[corner], metrics.outer_radii[corner], metrics.inner_radii[corner], color); FillBackground(offset_vertices); } void GeometryBackgroundBorder::DrawBorder(const BorderMetrics& metrics, EdgeSizes edge_sizes, const ColourbPremultiplied border_colors[4]) { RMLUI_ASSERT(border_colors); const int offset_vertices = (int)vertices.size(); const bool draw_edge[4] = { edge_sizes[TOP] > 0 && border_colors[TOP].alpha > 0, edge_sizes[RIGHT] > 0 && border_colors[RIGHT].alpha > 0, edge_sizes[BOTTOM] > 0 && border_colors[BOTTOM].alpha > 0, edge_sizes[LEFT] > 0 && border_colors[LEFT].alpha > 0, }; const bool draw_corner[4] = { draw_edge[TOP] || draw_edge[LEFT], draw_edge[TOP] || draw_edge[RIGHT], draw_edge[BOTTOM] || draw_edge[RIGHT], draw_edge[BOTTOM] || draw_edge[LEFT], }; for (int corner = 0; corner < 4; corner++) { const Edge edge0 = Edge((corner + 3) % 4); const Edge edge1 = Edge(corner); if (draw_corner[corner]) { DrawBorderCorner(Corner(corner), metrics.positions_outer[corner], metrics.positions_inner[corner], metrics.positions_circle_center[corner], metrics.outer_radii[corner], metrics.inner_radii[corner], border_colors[edge0], border_colors[edge1]); } if (draw_edge[edge1]) { RMLUI_ASSERTMSG(draw_corner[corner] && draw_corner[(corner + 1) % 4], "Border edges can only be drawn if both of its connected corners are drawn."); FillEdge(edge1 == LEFT ? offset_vertices : (int)vertices.size()); } } } void GeometryBackgroundBorder::DrawBackgroundCorner(Corner corner, Vector2f pos_inner, Vector2f pos_circle_center, float R, Vector2f r, ColourbPremultiplied color) { if (R == 0 || r.x <= 0 || r.y <= 0) { DrawPoint(pos_inner, color); } else if (r.x > 0 && r.y > 0) { const float a0 = float((int)corner + 2) * 0.5f * Math::RMLUI_PI; const float a1 = float((int)corner + 3) * 0.5f * Math::RMLUI_PI; const int num_points = GetNumPoints(R); DrawArc(pos_circle_center, r, a0, a1, color, color, num_points); } } void GeometryBackgroundBorder::DrawPoint(Vector2f pos, ColourbPremultiplied color) { const int offset_vertices = (int)vertices.size(); vertices.resize(offset_vertices + 1); vertices[offset_vertices].position = pos; vertices[offset_vertices].colour = color; } void GeometryBackgroundBorder::DrawArc(Vector2f pos_center, Vector2f r, float a0, float a1, ColourbPremultiplied color0, ColourbPremultiplied color1, int num_points) { RMLUI_ASSERT(num_points >= 2 && r.x > 0 && r.y > 0); const int offset_vertices = (int)vertices.size(); vertices.resize(offset_vertices + num_points); for (int i = 0; i < num_points; i++) { const float t = float(i) / float(num_points - 1); const float a = Math::Lerp(t, a0, a1); const Vector2f unit_vector(Math::Cos(a), Math::Sin(a)); vertices[offset_vertices + i].position = unit_vector * r + pos_center; vertices[offset_vertices + i].colour = Math::RoundedLerp(t, color0, color1); } } void GeometryBackgroundBorder::FillBackground(int index_start) { const int num_added_vertices = (int)vertices.size() - index_start; const int offset_indices = (int)indices.size(); const int num_triangles = (num_added_vertices - 2); indices.resize(offset_indices + 3 * num_triangles); for (int i = 0; i < num_triangles; i++) { indices[offset_indices + 3 * i] = index_start; indices[offset_indices + 3 * i + 1] = index_start + i + 2; indices[offset_indices + 3 * i + 2] = index_start + i + 1; } } void GeometryBackgroundBorder::DrawBorderCorner(Corner corner, Vector2f pos_outer, Vector2f pos_inner, Vector2f pos_circle_center, float R, Vector2f r, ColourbPremultiplied color0, ColourbPremultiplied color1) { const float a0 = float((int)corner + 2) * 0.5f * Math::RMLUI_PI; const float a1 = float((int)corner + 3) * 0.5f * Math::RMLUI_PI; if (R == 0) { DrawPointPoint(pos_outer, pos_inner, color0, color1); } else if (r.x > 0 && r.y > 0) { DrawArcArc(pos_circle_center, R, r, a0, a1, color0, color1, GetNumPoints(R)); } else { DrawArcPoint(pos_circle_center, pos_inner, R, a0, a1, color0, color1, GetNumPoints(R)); } } void GeometryBackgroundBorder::DrawPointPoint(Vector2f pos_outer, Vector2f pos_inner, ColourbPremultiplied color0, ColourbPremultiplied color1) { const bool different_color = (color0 != color1); vertices.reserve((int)vertices.size() + (different_color ? 4 : 2)); DrawPoint(pos_inner, color0); DrawPoint(pos_outer, color0); if (different_color) { DrawPoint(pos_inner, color1); DrawPoint(pos_outer, color1); } } void GeometryBackgroundBorder::DrawArcArc(Vector2f pos_center, float R, Vector2f r, float a0, float a1, ColourbPremultiplied color0, ColourbPremultiplied color1, int num_points) { RMLUI_ASSERT(num_points >= 2 && R > 0 && r.x > 0 && r.y > 0); const int num_triangles = 2 * (num_points - 1); const int offset_vertices = (int)vertices.size(); const int offset_indices = (int)indices.size(); vertices.resize(offset_vertices + 2 * num_points); indices.resize(offset_indices + 3 * num_triangles); for (int i = 0; i < num_points; i++) { const float t = float(i) / float(num_points - 1); const float a = Math::Lerp(t, a0, a1); const ColourbPremultiplied color = Math::RoundedLerp(t, color0, color1); const Vector2f unit_vector(Math::Cos(a), Math::Sin(a)); vertices[offset_vertices + 2 * i].position = unit_vector * r + pos_center; vertices[offset_vertices + 2 * i].colour = color; vertices[offset_vertices + 2 * i + 1].position = unit_vector * R + pos_center; vertices[offset_vertices + 2 * i + 1].colour = color; } for (int i = 0; i < num_triangles; i += 2) { indices[offset_indices + 3 * i + 0] = offset_vertices + i + 0; indices[offset_indices + 3 * i + 1] = offset_vertices + i + 2; indices[offset_indices + 3 * i + 2] = offset_vertices + i + 1; indices[offset_indices + 3 * i + 3] = offset_vertices + i + 1; indices[offset_indices + 3 * i + 4] = offset_vertices + i + 2; indices[offset_indices + 3 * i + 5] = offset_vertices + i + 3; } } void GeometryBackgroundBorder::DrawArcPoint(Vector2f pos_center, Vector2f pos_inner, float R, float a0, float a1, ColourbPremultiplied color0, ColourbPremultiplied color1, int num_points) { RMLUI_ASSERT(R > 0 && num_points >= 2); const int offset_vertices = (int)vertices.size(); vertices.reserve(offset_vertices + num_points + 2); // Generate the vertices. We could also split the arc mid-way to create a sharp color transition. DrawPoint(pos_inner, color0); DrawArc(pos_center, Vector2f(R), a0, a1, color0, color1, num_points); DrawPoint(pos_inner, color1); RMLUI_ASSERT((int)vertices.size() - offset_vertices == num_points + 2); // Swap the last two vertices such that the outer edge vertex is last, see the comment for the border drawing functions. Their colors should // already be the same. const int last_vertex = (int)vertices.size() - 1; std::swap(vertices[last_vertex - 1].position, vertices[last_vertex].position); // Generate the indices const int num_triangles = (num_points - 1); const int i_vertex_inner0 = offset_vertices; const int i_vertex_inner1 = last_vertex - 1; const int offset_indices = (int)indices.size(); indices.resize(offset_indices + 3 * num_triangles); for (int i = 0; i < num_triangles; i++) { indices[offset_indices + 3 * i + 0] = (i > num_triangles / 2 ? i_vertex_inner1 : i_vertex_inner0); indices[offset_indices + 3 * i + 1] = offset_vertices + i + 2; indices[offset_indices + 3 * i + 2] = offset_vertices + i + 1; } // Since we swapped the last two vertices we also need to change the last triangle. indices[offset_indices + 3 * (num_triangles - 1) + 1] = last_vertex; } void GeometryBackgroundBorder::FillEdge(int index_next_corner) { const int offset_indices = (int)indices.size(); const int num_vertices = (int)vertices.size(); RMLUI_ASSERT(num_vertices >= 2); indices.resize(offset_indices + 6); indices[offset_indices + 0] = num_vertices - 2; indices[offset_indices + 1] = index_next_corner; indices[offset_indices + 2] = num_vertices - 1; indices[offset_indices + 3] = num_vertices - 1; indices[offset_indices + 4] = index_next_corner; indices[offset_indices + 5] = index_next_corner + 1; } int GeometryBackgroundBorder::GetNumPoints(float R) const { return Math::Clamp(3 + Math::RoundToInteger(R / 6.f), 2, 100); } } // namespace Rml