/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019-2023 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "DecoratorGradient.h" #include "../../Include/RmlUi/Core/ComputedValues.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/ElementUtilities.h" #include "../../Include/RmlUi/Core/Geometry.h" #include "../../Include/RmlUi/Core/Math.h" #include "../../Include/RmlUi/Core/MeshUtilities.h" #include "../../Include/RmlUi/Core/PropertyDefinition.h" #include "ComputeProperty.h" #include "DecoratorShader.h" namespace Rml { // Returns the point along the input line ('line_point', 'line_vector') closest to the input 'point'. static Vector2f IntersectionPointToLineNormal(const Vector2f point, const Vector2f line_point, const Vector2f line_vector) { const Vector2f delta = line_point - point; return line_point - delta.DotProduct(line_vector) * line_vector; } /// Convert all color stop positions to normalized numbers. /// @param[in] element The element to resolve lengths against. /// @param[in] gradient_line_length The length of the gradient line, along which color stops are placed. /// @param[in] soft_spacing The desired minimum distance between stops to avoid aliasing, in normalized number units. /// @param[in] unresolved_stops /// @return A list of resolved color stops, all in number units. static ColorStopList ResolveColorStops(Element* element, const float gradient_line_length, const float soft_spacing, const ColorStopList& unresolved_stops) { ColorStopList stops = unresolved_stops; const int num_stops = (int)stops.size(); // Resolve all lengths, percentages, and angles to numbers. After this step all stops with a unit other than Number are considered as Auto. for (ColorStop& stop : stops) { if (Any(stop.position.unit & Unit::LENGTH)) { const float resolved_position = element->ResolveLength(stop.position); stop.position = NumericValue(resolved_position / gradient_line_length, Unit::NUMBER); } else if (stop.position.unit == Unit::PERCENT) { stop.position = NumericValue(stop.position.number * 0.01f, Unit::NUMBER); } else if (Any(stop.position.unit & Unit::ANGLE)) { stop.position = NumericValue(ComputeAngle(stop.position) * (1.f / (2.f * Math::RMLUI_PI)), Unit::NUMBER); } } // Resolve auto positions of the first and last color stops. auto resolve_edge_stop = [](ColorStop& stop, float auto_to_number) { if (stop.position.unit != Unit::NUMBER) stop.position = NumericValue(auto_to_number, Unit::NUMBER); }; resolve_edge_stop(stops[0], 0.f); resolve_edge_stop(stops[num_stops - 1], 1.f); // Ensures that color stop positions are strictly increasing, and have at least 1px spacing to avoid aliasing. auto nudge_stop = [prev_position = stops[0].position.number](ColorStop& stop, bool update_prev = true) mutable { stop.position.number = Math::Max(stop.position.number, prev_position); if (update_prev) prev_position = stop.position.number; }; int auto_begin_i = -1; // Evenly space stops with sequential auto indices, and nudge stop positions to ensure strictly increasing positions. for (int i = 1; i < num_stops; i++) { ColorStop& stop = stops[i]; if (stop.position.unit != Unit::NUMBER) { // Mark the first of any consecutive auto stops. if (auto_begin_i < 0) auto_begin_i = i; } else if (auto_begin_i < 0) { // The stop has a definite position and there are no previous autos to handle, just ensure it is properly spaced. nudge_stop(stop); } else { // Space out all the previous auto stops, indices [auto_begin_i, i). nudge_stop(stop, false); const int num_auto_stops = i - auto_begin_i; const float t0 = stops[auto_begin_i - 1].position.number; const float t1 = stop.position.number; for (int j = 0; j < num_auto_stops; j++) { const float fraction_along_t0_t1 = float(j + 1) / float(num_auto_stops + 1); stops[j + auto_begin_i].position = NumericValue(t0 + (t1 - t0) * fraction_along_t0_t1, Unit::NUMBER); nudge_stop(stops[j + auto_begin_i]); } nudge_stop(stop); auto_begin_i = -1; } } // Ensures that stops are placed some minimum distance from each other to avoid aliasing, if possible. for (int i = 1; i < num_stops - 1; i++) { const float p0 = stops[i - 1].position.number; const float p1 = stops[i].position.number; const float p2 = stops[i + 1].position.number; float& new_position = stops[i].position.number; if (p1 - p0 < soft_spacing) { if (p2 - p0 < 2.f * soft_spacing) new_position = 0.5f * (p2 + p0); else new_position = p0 + soft_spacing; } } RMLUI_ASSERT(std::all_of(stops.begin(), stops.end(), [](auto&& stop) { return stop.position.unit == Unit::NUMBER; })); return stops; } // Compute a 2d-position property value into a percentage-length vector. static Vector2Numeric ComputePosition(const Property* p_position[2]) { Vector2Numeric position; for (int dimension = 0; dimension < 2; dimension++) { NumericValue& value = position[dimension]; const Property& property = *p_position[dimension]; if (property.unit == Unit::KEYWORD) { enum { TOP_LEFT, CENTER, BOTTOM_RIGHT }; switch (property.Get()) { case TOP_LEFT: value = NumericValue(0.f, Unit::PERCENT); break; case CENTER: value = NumericValue(50.f, Unit::PERCENT); break; case BOTTOM_RIGHT: value = NumericValue(100.f, Unit::PERCENT); break; } } else { value = property.GetNumericValue(); } } return position; } DecoratorStraightGradient::DecoratorStraightGradient() {} DecoratorStraightGradient::~DecoratorStraightGradient() {} bool DecoratorStraightGradient::Initialise(const Direction in_direction, const Colourb in_start, const Colourb in_stop) { direction = in_direction; start = in_start; stop = in_stop; return true; } DecoratorDataHandle DecoratorStraightGradient::GenerateElementData(Element* element, BoxArea paint_area) const { const Box& box = element->GetBox(); const ComputedValues& computed = element->GetComputedValues(); const float opacity = computed.opacity(); Mesh mesh; MeshUtilities::GenerateBackground(mesh, element->GetBox(), Vector2f(0), computed.border_radius(), ColourbPremultiplied(), paint_area); ColourbPremultiplied colour_start = start.ToPremultiplied(opacity); ColourbPremultiplied colour_stop = stop.ToPremultiplied(opacity); const Vector2f offset = box.GetPosition(paint_area); const Vector2f size = box.GetSize(paint_area); Vector& vertices = mesh.vertices; if (direction == Direction::Horizontal) { for (int i = 0; i < (int)vertices.size(); i++) { const float t = Math::Clamp((vertices[i].position.x - offset.x) / size.x, 0.0f, 1.0f); vertices[i].colour = Math::RoundedLerp(t, colour_start, colour_stop); } } else if (direction == Direction::Vertical) { for (int i = 0; i < (int)vertices.size(); i++) { const float t = Math::Clamp((vertices[i].position.y - offset.y) / size.y, 0.0f, 1.0f); vertices[i].colour = Math::RoundedLerp(t, colour_start, colour_stop); } } Geometry* geometry = new Geometry(element->GetRenderManager()->MakeGeometry(std::move(mesh))); return reinterpret_cast(geometry); } void DecoratorStraightGradient::ReleaseElementData(DecoratorDataHandle element_data) const { delete reinterpret_cast(element_data); } void DecoratorStraightGradient::RenderElement(Element* element, DecoratorDataHandle element_data) const { auto* data = reinterpret_cast(element_data); data->Render(element->GetAbsoluteOffset(BoxArea::Border)); } DecoratorStraightGradientInstancer::DecoratorStraightGradientInstancer() { ids.direction = RegisterProperty("direction", "horizontal").AddParser("keyword", "horizontal, vertical").GetId(); ids.start = RegisterProperty("start-color", "#ffffff").AddParser("color").GetId(); ids.stop = RegisterProperty("stop-color", "#ffffff").AddParser("color").GetId(); RegisterShorthand("decorator", "direction, start-color, stop-color", ShorthandType::FallThrough); } DecoratorStraightGradientInstancer::~DecoratorStraightGradientInstancer() {} SharedPtr DecoratorStraightGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_, const DecoratorInstancerInterface& /*interface_*/) { using Direction = DecoratorStraightGradient::Direction; Direction direction; if (name == "horizontal-gradient") direction = Direction::Horizontal; else if (name == "vertical-gradient") direction = Direction::Vertical; else { direction = (Direction)properties_.GetProperty(ids.direction)->Get(); Log::Message(Log::LT_WARNING, "Decorator syntax 'gradient(horizontal|vertical ...)' is deprecated, please replace with 'horizontal-gradient(...)' or " "'vertical-gradient(...)'"); } Colourb start = properties_.GetProperty(ids.start)->Get(); Colourb stop = properties_.GetProperty(ids.stop)->Get(); auto decorator = MakeShared(); if (decorator->Initialise(direction, start, stop)) return decorator; return nullptr; } DecoratorLinearGradient::DecoratorLinearGradient() {} DecoratorLinearGradient::~DecoratorLinearGradient() {} bool DecoratorLinearGradient::Initialise(bool in_repeating, Corner in_corner, float in_angle, const ColorStopList& in_color_stops) { repeating = in_repeating; corner = in_corner; angle = in_angle; color_stops = in_color_stops; return !color_stops.empty(); } DecoratorDataHandle DecoratorLinearGradient::GenerateElementData(Element* element, BoxArea paint_area) const { RenderManager* render_manager = element->GetRenderManager(); if (!render_manager) return INVALID_DECORATORDATAHANDLE; RMLUI_ASSERT(!color_stops.empty()); const Box& box = element->GetBox(); const Vector2f dimensions = box.GetSize(paint_area); LinearGradientShape gradient_shape = CalculateShape(dimensions); // One-pixel minimum color stop spacing to avoid aliasing. const float soft_spacing = 1.f / gradient_shape.length; ColorStopList resolved_stops = ResolveColorStops(element, gradient_shape.length, soft_spacing, color_stops); CompiledShader shader = render_manager->CompileShader("linear-gradient", Dictionary{ {"p0", Variant(gradient_shape.p0)}, {"p1", Variant(gradient_shape.p1)}, {"length", Variant(gradient_shape.length)}, {"repeating", Variant(repeating)}, {"color_stop_list", Variant(std::move(resolved_stops))}, }); if (!shader) return INVALID_DECORATORDATAHANDLE; Mesh mesh; const ComputedValues& computed = element->GetComputedValues(); const byte alpha = byte(computed.opacity() * 255.f); MeshUtilities::GenerateBackground(mesh, box, Vector2f(), computed.border_radius(), ColourbPremultiplied(alpha, alpha), paint_area); const Vector2f render_offset = box.GetPosition(paint_area); for (Vertex& vertex : mesh.vertices) vertex.tex_coord = vertex.position - render_offset; ShaderElementData* element_data = GetShaderElementDataPool().AllocateAndConstruct(render_manager->MakeGeometry(std::move(mesh)), std::move(shader)); return reinterpret_cast(element_data); } void DecoratorLinearGradient::ReleaseElementData(DecoratorDataHandle handle) const { ShaderElementData* element_data = reinterpret_cast(handle); GetShaderElementDataPool().DestroyAndDeallocate(element_data); } void DecoratorLinearGradient::RenderElement(Element* element, DecoratorDataHandle handle) const { ShaderElementData* element_data = reinterpret_cast(handle); element_data->geometry.Render(element->GetAbsoluteOffset(BoxArea::Border), {}, element_data->shader); } DecoratorLinearGradient::LinearGradientShape DecoratorLinearGradient::CalculateShape(Vector2f dim) const { using uint = unsigned int; const Vector2f corners[(int)Corner::Count] = {Vector2f(dim.x, 0), dim, Vector2f(0, dim.y), Vector2f(0, 0)}; const Vector2f center = 0.5f * dim; uint quadrant = 0; Vector2f line_vector; if (corner == Corner::None) { // Find the target quadrant and unit vector for the given angle. quadrant = uint(Math::NormaliseAngle(angle) * (4.f / (2.f * Math::RMLUI_PI))) % 4u; line_vector = Vector2f(Math::Sin(angle), -Math::Cos(angle)); } else { // Quadrant given by the corner, need to find the vector perpendicular to the line connecting the neighboring corners. quadrant = uint(corner); const Vector2f v_neighbors = (corners[(quadrant + 1u) % 4u] - corners[(quadrant + 3u) % 4u]).Normalise(); line_vector = {v_neighbors.y, -v_neighbors.x}; } const uint quadrant_opposite = (quadrant + 2u) % 4u; const Vector2f starting_point = IntersectionPointToLineNormal(corners[quadrant_opposite], center, line_vector); const Vector2f ending_point = IntersectionPointToLineNormal(corners[quadrant], center, line_vector); const float length = Math::Absolute(dim.x * line_vector.x) + Math::Absolute(-dim.y * line_vector.y); return LinearGradientShape{starting_point, ending_point, length}; } DecoratorLinearGradientInstancer::DecoratorLinearGradientInstancer() { ids.angle = RegisterProperty("angle", "180deg").AddParser("angle").GetId(); ids.direction_to = RegisterProperty("to", "unspecified").AddParser("keyword", "unspecified, to").GetId(); // See Direction enum for keyword values. ids.direction_x = RegisterProperty("direction-x", "unspecified").AddParser("keyword", "unspecified=0, left=8, right=2").GetId(); ids.direction_y = RegisterProperty("direction-y", "unspecified").AddParser("keyword", "unspecified=0, top=1, bottom=4").GetId(); ids.color_stop_list = RegisterProperty("color-stops", "").AddParser("color_stop_list").GetId(); RegisterShorthand("direction", "angle, to, direction-x, direction-y, direction-x", ShorthandType::FallThrough); RegisterShorthand("decorator", "direction?, color-stops#", ShorthandType::RecursiveCommaSeparated); } DecoratorLinearGradientInstancer::~DecoratorLinearGradientInstancer() {} SharedPtr DecoratorLinearGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_, const DecoratorInstancerInterface& /*interface_*/) { const Property* p_angle = properties_.GetProperty(ids.angle); const Property* p_direction_to = properties_.GetProperty(ids.direction_to); const Property* p_direction_x = properties_.GetProperty(ids.direction_x); const Property* p_direction_y = properties_.GetProperty(ids.direction_y); const Property* p_color_stop_list = properties_.GetProperty(ids.color_stop_list); if (!p_angle || !p_direction_to || !p_direction_x || !p_direction_y || !p_color_stop_list) return nullptr; using Corner = DecoratorLinearGradient::Corner; Corner corner = Corner::None; float angle = 0.f; if (p_direction_to->Get()) { const Direction direction = (Direction)(p_direction_x->Get() | p_direction_y->Get()); switch (direction) { case Direction::Top: angle = 0.f; break; case Direction::Right: angle = 0.5f * Math::RMLUI_PI; break; case Direction::Bottom: angle = Math::RMLUI_PI; break; case Direction::Left: angle = 1.5f * Math::RMLUI_PI; break; case Direction::TopLeft: corner = Corner::TopLeft; break; case Direction::TopRight: corner = Corner::TopRight; break; case Direction::BottomRight: corner = Corner::BottomRight; break; case Direction::BottomLeft: corner = Corner::BottomLeft; break; case Direction::None: default: return nullptr; break; } } else { angle = ComputeAngle(p_angle->GetNumericValue()); } if (p_color_stop_list->unit != Unit::COLORSTOPLIST) return nullptr; const ColorStopList& color_stop_list = p_color_stop_list->value.GetReference(); const bool repeating = (name == "repeating-linear-gradient"); auto decorator = MakeShared(); if (decorator->Initialise(repeating, corner, angle, color_stop_list)) return decorator; return nullptr; } DecoratorRadialGradient::DecoratorRadialGradient() {} DecoratorRadialGradient::~DecoratorRadialGradient() {} bool DecoratorRadialGradient::Initialise(bool in_repeating, Shape in_shape, SizeType in_size_type, Vector2Numeric in_size, Vector2Numeric in_position, const ColorStopList& in_color_stops) { repeating = in_repeating; shape = in_shape; size_type = in_size_type; size = in_size; position = in_position; color_stops = in_color_stops; return !color_stops.empty(); } DecoratorDataHandle DecoratorRadialGradient::GenerateElementData(Element* element, BoxArea box_area) const { RenderManager* render_manager = element->GetRenderManager(); if (!render_manager) return INVALID_DECORATORDATAHANDLE; RMLUI_ASSERT(!color_stops.empty() && (shape == Shape::Circle || shape == Shape::Ellipse)); const Box& box = element->GetBox(); const Vector2f dimensions = box.GetSize(box_area); RadialGradientShape gradient_shape = CalculateRadialGradientShape(element, dimensions); // One-pixel minimum color stop spacing to avoid aliasing. const float soft_spacing = 1.f / Math::Min(gradient_shape.radius.x, gradient_shape.radius.y); ColorStopList resolved_stops = ResolveColorStops(element, gradient_shape.radius.x, soft_spacing, color_stops); CompiledShader shader = render_manager->CompileShader("radial-gradient", Dictionary{ {"center", Variant(gradient_shape.center)}, {"radius", Variant(gradient_shape.radius)}, {"repeating", Variant(repeating)}, {"color_stop_list", Variant(std::move(resolved_stops))}, }); if (!shader) return INVALID_DECORATORDATAHANDLE; Mesh mesh; const ComputedValues& computed = element->GetComputedValues(); const byte alpha = byte(computed.opacity() * 255.f); MeshUtilities::GenerateBackground(mesh, box, Vector2f(), computed.border_radius(), ColourbPremultiplied(alpha, alpha), box_area); const Vector2f render_offset = box.GetPosition(box_area); for (Vertex& vertex : mesh.vertices) vertex.tex_coord = vertex.position - render_offset; ShaderElementData* element_data = GetShaderElementDataPool().AllocateAndConstruct(render_manager->MakeGeometry(std::move(mesh)), std::move(shader)); return reinterpret_cast(element_data); } void DecoratorRadialGradient::ReleaseElementData(DecoratorDataHandle handle) const { ShaderElementData* element_data = reinterpret_cast(handle); GetShaderElementDataPool().DestroyAndDeallocate(element_data); } void DecoratorRadialGradient::RenderElement(Element* element, DecoratorDataHandle handle) const { ShaderElementData* element_data = reinterpret_cast(handle); element_data->geometry.Render(element->GetAbsoluteOffset(BoxArea::Border), {}, element_data->shader); } DecoratorRadialGradient::RadialGradientShape DecoratorRadialGradient::CalculateRadialGradientShape(Element* element, Vector2f dimensions) const { RadialGradientShape result; result.center.x = element->ResolveNumericValue(position.x, dimensions.x); result.center.y = element->ResolveNumericValue(position.y, dimensions.y); const bool is_circle = (shape == Shape::Circle); auto Abs = [](Vector2f v) { return Vector2f{Math::Absolute(v.x), Math::Absolute(v.y)}; }; auto d = dimensions; auto c = result.center; Vector2f r; switch (size_type) { case SizeType::ClosestSide: { r = Abs(Math::Min(c, d - c)); result.radius = (is_circle ? Vector2f(Math::Min(r.x, r.y)) : r); } break; case SizeType::FarthestSide: { r = Abs(Math::Max(c, d - c)); result.radius = (is_circle ? Vector2f(Math::Max(r.x, r.y)) : r); } break; case SizeType::ClosestCorner: case SizeType::FarthestCorner: { if (size_type == SizeType::ClosestCorner) r = Abs(Math::Min(c, d - c)); // Same as closest-side. else r = Abs(Math::Max(c, d - c)); // Same as farthest-side. if (is_circle) { result.radius = Vector2f(r.Magnitude()); } else { r = Math::Max(r, Vector2f(1)); // In case r.x ~= 0 result.radius.x = Math::SquareRoot(2.f * r.x * r.x); result.radius.y = result.radius.x * (r.y / r.x); } } break; case SizeType::LengthPercentage: { result.radius.x = element->ResolveNumericValue(size.x, d.x); result.radius.y = (is_circle ? result.radius.x : element->ResolveNumericValue(size.y, d.y)); result.radius = Abs(result.radius); } break; } result.radius = Math::Max(result.radius, Vector2f(1.f)); return result; } DecoratorRadialGradientInstancer::DecoratorRadialGradientInstancer() { ids.ending_shape = RegisterProperty("ending-shape", "unspecified").AddParser("keyword", "circle, ellipse, unspecified").GetId(); ids.size_x = RegisterProperty("size-x", "farthest-corner") .AddParser("keyword", "closest-side, farthest-side, closest-corner, farthest-corner") .AddParser("length_percent") .GetId(); ids.size_y = RegisterProperty("size-y", "unspecified").AddParser("keyword", "unspecified").AddParser("length_percent").GetId(); RegisterProperty("at", "unspecified").AddParser("keyword", "at, unspecified"); ids.position_x = RegisterProperty("position-x", "center").AddParser("keyword", "left, center, right").AddParser("length_percent").GetId(); ids.position_y = RegisterProperty("position-y", "center").AddParser("keyword", "top, center, bottom").AddParser("length_percent").GetId(); ids.color_stop_list = RegisterProperty("color-stops", "").AddParser("color_stop_list").GetId(); RegisterShorthand("shape", "ending-shape, size-x, size-y, at, position-x, position-y, position-x", ShorthandType::FallThrough); RegisterShorthand("decorator", "shape?, color-stops#", ShorthandType::RecursiveCommaSeparated); } DecoratorRadialGradientInstancer::~DecoratorRadialGradientInstancer() {} SharedPtr DecoratorRadialGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_, const DecoratorInstancerInterface& /*interface_*/) { const Property* p_ending_shape = properties_.GetProperty(ids.ending_shape); const Property* p_size_x = properties_.GetProperty(ids.size_x); const Property* p_size_y = properties_.GetProperty(ids.size_y); const Property* p_position[2] = {properties_.GetProperty(ids.position_x), properties_.GetProperty(ids.position_y)}; const Property* p_color_stop_list = properties_.GetProperty(ids.color_stop_list); if (!p_ending_shape || !p_size_x || !p_size_y || !p_position[0] || !p_position[1] || !p_color_stop_list) return nullptr; using SizeType = DecoratorRadialGradient::SizeType; using Shape = DecoratorRadialGradient::Shape; Shape shape = (Shape)p_ending_shape->Get(); if (shape == Shape::Unspecified) { const bool circle_sized = (Any(p_size_x->unit & Unit::LENGTH_PERCENT) && p_size_y->unit == Unit::KEYWORD); shape = (circle_sized ? Shape::Circle : Shape::Ellipse); } if (shape == Shape::Circle && (p_size_x->unit == Unit::PERCENT || p_size_y->unit != Unit::KEYWORD)) return nullptr; SizeType size_type = {}; Vector2Numeric size; if (p_size_x->unit == Unit::KEYWORD) { size_type = (SizeType)p_size_x->Get(); } else { size_type = SizeType::LengthPercentage; size.x = p_size_x->GetNumericValue(); size.y = (p_size_y->unit == Unit::KEYWORD ? size.x : p_size_y->GetNumericValue()); } const Vector2Numeric position = ComputePosition(p_position); const bool repeating = (name == "repeating-radial-gradient"); if (p_color_stop_list->unit != Unit::COLORSTOPLIST) return nullptr; const ColorStopList& color_stop_list = p_color_stop_list->value.GetReference(); auto decorator = MakeShared(); if (decorator->Initialise(repeating, shape, size_type, size, position, color_stop_list)) return decorator; return nullptr; } DecoratorConicGradient::DecoratorConicGradient() {} DecoratorConicGradient::~DecoratorConicGradient() {} bool DecoratorConicGradient::Initialise(bool in_repeating, float in_angle, Vector2Numeric in_position, const ColorStopList& in_color_stops) { repeating = in_repeating; angle = in_angle; position = in_position; color_stops = in_color_stops; return !color_stops.empty(); } DecoratorDataHandle DecoratorConicGradient::GenerateElementData(Element* element, BoxArea box_area) const { RenderManager* render_manager = element->GetRenderManager(); if (!render_manager) return INVALID_DECORATORDATAHANDLE; RMLUI_ASSERT(!color_stops.empty()); const Box& box = element->GetBox(); const Vector2f dimensions = box.GetSize(box_area); const Vector2f center = Vector2f{element->ResolveNumericValue(position.x, dimensions.x), element->ResolveNumericValue(position.y, dimensions.y)}.Round(); ColorStopList resolved_stops = ResolveColorStops(element, 1.f, 0.f, color_stops); CompiledShader shader = render_manager->CompileShader("conic-gradient", Dictionary{ {"angle", Variant(angle)}, {"center", Variant(center)}, {"repeating", Variant(repeating)}, {"color_stop_list", Variant(std::move(resolved_stops))}, }); if (!shader) return INVALID_DECORATORDATAHANDLE; Mesh mesh; const ComputedValues& computed = element->GetComputedValues(); const byte alpha = byte(computed.opacity() * 255.f); MeshUtilities::GenerateBackground(mesh, box, Vector2f(), computed.border_radius(), ColourbPremultiplied(alpha, alpha), box_area); const Vector2f render_offset = box.GetPosition(box_area); for (Vertex& vertex : mesh.vertices) vertex.tex_coord = vertex.position - render_offset; ShaderElementData* element_data = GetShaderElementDataPool().AllocateAndConstruct(render_manager->MakeGeometry(std::move(mesh)), std::move(shader)); return reinterpret_cast(element_data); } void DecoratorConicGradient::ReleaseElementData(DecoratorDataHandle handle) const { ShaderElementData* element_data = reinterpret_cast(handle); GetShaderElementDataPool().DestroyAndDeallocate(element_data); } void DecoratorConicGradient::RenderElement(Element* element, DecoratorDataHandle handle) const { ShaderElementData* element_data = reinterpret_cast(handle); element_data->geometry.Render(element->GetAbsoluteOffset(BoxArea::Border), {}, element_data->shader); } DecoratorConicGradientInstancer::DecoratorConicGradientInstancer() { RegisterProperty("from", "from").AddParser("keyword", "from"); ids.angle = RegisterProperty("angle", "0deg").AddParser("angle").GetId(); RegisterProperty("at", "unspecified").AddParser("keyword", "at, unspecified"); ids.position_x = RegisterProperty("position-x", "center").AddParser("keyword", "left, center, right").AddParser("length_percent").GetId(); ids.position_y = RegisterProperty("position-y", "center").AddParser("keyword", "top, center, bottom").AddParser("length_percent").GetId(); ids.color_stop_list = RegisterProperty("color-stops", "").AddParser("color_stop_list", "angle").GetId(); RegisterShorthand("shape", "from, angle, at, position-x, position-y, position-x", ShorthandType::FallThrough); RegisterShorthand("decorator", "shape?, color-stops#", ShorthandType::RecursiveCommaSeparated); } DecoratorConicGradientInstancer::~DecoratorConicGradientInstancer() {} SharedPtr DecoratorConicGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_, const DecoratorInstancerInterface& /*interface_*/) { const Property* p_angle = properties_.GetProperty(ids.angle); const Property* p_position[2] = {properties_.GetProperty(ids.position_x), properties_.GetProperty(ids.position_y)}; const Property* p_color_stop_list = properties_.GetProperty(ids.color_stop_list); if (!p_angle || !p_position[0] || !p_position[1] || !p_color_stop_list) return nullptr; const float angle = ComputeAngle(p_angle->GetNumericValue()); const Vector2Numeric position = ComputePosition(p_position); const bool repeating = (name == "repeating-conic-gradient"); if (p_color_stop_list->unit != Unit::COLORSTOPLIST) return nullptr; const ColorStopList& color_stop_list = p_color_stop_list->value.GetReference(); auto decorator = MakeShared(); if (decorator->Initialise(repeating, angle, position, color_stop_list)) return decorator; return nullptr; } } // namespace Rml