/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/Context.h" #include "../../Include/RmlUi/Core/Core.h" #include "../../Include/RmlUi/Core/DataModel.h" #include "../../Include/RmlUi/Core/ElementDocument.h" #include "../../Include/RmlUi/Core/ElementInstancer.h" #include "../../Include/RmlUi/Core/ElementScroll.h" #include "../../Include/RmlUi/Core/ElementUtilities.h" #include "../../Include/RmlUi/Core/Factory.h" #include "../../Include/RmlUi/Core/Dictionary.h" #include "../../Include/RmlUi/Core/Profiling.h" #include "../../Include/RmlUi/Core/PropertyIdSet.h" #include "../../Include/RmlUi/Core/PropertiesIteratorView.h" #include "../../Include/RmlUi/Core/PropertyDefinition.h" #include "../../Include/RmlUi/Core/StyleSheetSpecification.h" #include "../../Include/RmlUi/Core/TransformPrimitive.h" #include "../../Include/RmlUi/Core/TransformState.h" #include "Clock.h" #include "ComputeProperty.h" #include "ElementAnimation.h" #include "ElementBackground.h" #include "ElementBorder.h" #include "ElementDefinition.h" #include "ElementStyle.h" #include "EventDispatcher.h" #include "EventSpecification.h" #include "ElementDecoration.h" #include "LayoutEngine.h" #include "PluginRegistry.h" #include "PropertiesIterator.h" #include "Pool.h" #include "StyleSheetParser.h" #include "XMLParseTools.h" #include #include namespace Rml { namespace Core { /** STL function object for sorting elements by z-type (ie, float-types before general types, etc). @author Peter Curry */ class ElementSortZOrder { public: bool operator()(const std::pair< Element*, float >& lhs, const std::pair< Element*, float >& rhs) const { return lhs.second < rhs.second; } }; /** STL function object for sorting elements by z-index property. @author Peter Curry */ class ElementSortZIndex { public: bool operator()(const Element* lhs, const Element* rhs) const { // Check the z-index. return lhs->GetZIndex() < rhs->GetZIndex(); } }; // Determines how many levels up in the hierarchy the OnChildAdd and OnChildRemove are called (starting at the child itself) static constexpr int ChildNotifyLevels = 2; // Meta objects for element collected in a single struct to reduce memory allocations struct ElementMeta { ElementMeta(Element* el) : event_dispatcher(el), style(el), background(el), border(el), decoration(el), scroll(el) {} EventDispatcher event_dispatcher; ElementStyle style; ElementBackground background; ElementBorder border; ElementDecoration decoration; ElementScroll scroll; Style::ComputedValues computed_values; }; static Pool< ElementMeta > element_meta_chunk_pool(200, true); /// Constructs a new RmlUi element. Element::Element(const String& tag) : tag(tag), relative_offset_base(0, 0), relative_offset_position(0, 0), absolute_offset(0, 0), scroll_offset(0, 0), content_offset(0, 0), content_box(0, 0), transform_state(), dirty_transform(false), dirty_perspective(false), dirty_animation(false), dirty_transition(false) { RMLUI_ASSERT(tag == StringUtilities::ToLower(tag)); parent = nullptr; focus = nullptr; instancer = nullptr; owner_document = nullptr; offset_fixed = false; offset_parent = nullptr; offset_dirty = true; client_area = Box::PADDING; num_non_dom_children = 0; visible = true; z_index = 0; local_stacking_context = false; local_stacking_context_forced = false; stacking_context_dirty = false; structure_dirty = false; computed_values_are_default_initialized = true; clipping_ignore_depth = 0; clipping_enabled = false; clipping_state_dirty = true; meta = element_meta_chunk_pool.AllocateAndConstruct(this); data_model = nullptr; } Element::~Element() { RMLUI_ASSERT(parent == nullptr); PluginRegistry::NotifyElementDestroy(this); // Remove scrollbar elements before we delete the children! meta->scroll.ClearScrollbars(); // A simplified version of RemoveChild() for destruction. for (ElementPtr& child : children) { Element* child_ancestor = child.get(); for (int i = 0; i <= ChildNotifyLevels && child_ancestor; i++, child_ancestor = child_ancestor->GetParentNode()) child_ancestor->OnChildRemove(child.get()); child->SetParent(nullptr); } children.clear(); num_non_dom_children = 0; element_meta_chunk_pool.DestroyAndDeallocate(meta); } void Element::Update(float dp_ratio) { #ifdef RMLUI_ENABLE_PROFILING auto name = GetAddress(false, false); RMLUI_ZoneScoped; RMLUI_ZoneText(name.c_str(), name.size()); #endif OnUpdate(); UpdateStructure(); HandleTransitionProperty(); HandleAnimationProperty(); AdvanceAnimations(); meta->scroll.Update(); UpdateProperties(); // Do en extra pass over the animations and properties if the 'animation' property was just changed. if (dirty_animation) { HandleAnimationProperty(); AdvanceAnimations(); UpdateProperties(); } for (size_t i = 0; i < children.size(); i++) children[i]->Update(dp_ratio); } void Element::UpdateProperties() { meta->style.UpdateDefinition(); if (meta->style.AnyPropertiesDirty()) { const ComputedValues* parent_values = nullptr; if (parent) parent_values = &parent->GetComputedValues(); const ComputedValues* document_values = nullptr; float dp_ratio = 1.0f; if (auto doc = GetOwnerDocument()) { document_values = &doc->GetComputedValues(); if (Context * context = doc->GetContext()) dp_ratio = context->GetDensityIndependentPixelRatio(); } // Compute values and clear dirty properties PropertyIdSet dirty_properties = meta->style.ComputeValues(meta->computed_values, parent_values, document_values, computed_values_are_default_initialized, dp_ratio); computed_values_are_default_initialized = false; // Computed values are just calculated and can safely be used in OnPropertyChange. // However, new properties set during this call will not be available until the next update loop. if (!dirty_properties.Empty()) OnPropertyChange(dirty_properties); } } void Element::Render() { #ifdef RMLUI_ENABLE_PROFILING auto name = GetAddress(false, false); RMLUI_ZoneScoped; RMLUI_ZoneText(name.c_str(), name.size()); #endif // Rebuild our stacking context if necessary. if (stacking_context_dirty) BuildLocalStackingContext(); UpdateTransformState(); // Render all elements in our local stacking context that have a z-index beneath our local index of 0. size_t i = 0; for (; i < stacking_context.size() && stacking_context[i]->z_index < 0; ++i) stacking_context[i]->Render(); // Apply our transform ElementUtilities::ApplyTransform(*this); // Set up the clipping region for this element. if (ElementUtilities::SetClippingRegion(this)) { meta->background.RenderBackground(); meta->border.RenderBorder(); meta->decoration.RenderDecorators(); { RMLUI_ZoneScopedNC("OnRender", 0x228B22); OnRender(); } } // Render the rest of the elements in the stacking context. for (; i < stacking_context.size(); ++i) stacking_context[i]->Render(); } // Clones this element, returning a new, unparented element. ElementPtr Element::Clone() const { ElementPtr clone; if (instancer) { clone = instancer->InstanceElement(nullptr, GetTagName(), attributes); if (clone) clone->SetInstancer(instancer); } else clone = Factory::InstanceElement(nullptr, GetTagName(), GetTagName(), attributes); if (clone != nullptr) { String inner_rml; GetInnerRML(inner_rml); clone->SetInnerRML(inner_rml); } return clone; } // Sets or removes a class on the element. void Element::SetClass(const String& class_name, bool activate) { meta->style.SetClass(class_name, activate); } // Checks if a class is set on the element. bool Element::IsClassSet(const String& class_name) const { return meta->style.IsClassSet(class_name); } // Specifies the entire list of classes for this element. This will replace any others specified. void Element::SetClassNames(const String& class_names) { SetAttribute("class", class_names); } /// Return the active class list String Element::GetClassNames() const { return meta->style.GetClassNames(); } // Returns the active style sheet for this element. This may be nullptr. const SharedPtr& Element::GetStyleSheet() const { if (ElementDocument * document = GetOwnerDocument()) return document->GetStyleSheet(); static SharedPtr null_style_sheet; return null_style_sheet; } // Returns the element's definition. const ElementDefinition* Element::GetDefinition() { return meta->style.GetDefinition(); } // Fills an String with the full address of this element. String Element::GetAddress(bool include_pseudo_classes, bool include_parents) const { // Add the tag name onto the address. String address(tag); // Add the ID if we have one. if (!id.empty()) { address += "#"; address += id; } String classes = meta->style.GetClassNames(); if (!classes.empty()) { classes = StringUtilities::Replace(classes, ' ', '.'); address += "."; address += classes; } if (include_pseudo_classes) { const PseudoClassList& pseudo_classes = meta->style.GetActivePseudoClasses(); for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i) { address += ":"; address += (*i); } } if (include_parents && parent) { address += " < "; return address + parent->GetAddress(include_pseudo_classes, true); } else return address; } // Sets the position of this element, as a two-dimensional offset from another element. void Element::SetOffset(const Vector2f& offset, Element* _offset_parent, bool _offset_fixed) { _offset_fixed |= GetPosition() == Style::Position::Fixed; // If our offset has definitely changed, or any of our parenting has, then these are set and // updated based on our left / right / top / bottom properties. if (relative_offset_base != offset || offset_parent != _offset_parent || offset_fixed != _offset_fixed) { relative_offset_base = offset; offset_fixed = _offset_fixed; offset_parent = _offset_parent; UpdateOffset(); DirtyOffset(); } // Otherwise, our offset is updated in case left / right / top / bottom will have an impact on // our final position, and our children are dirtied if they do. else { Vector2f& old_base = relative_offset_base; Vector2f& old_position = relative_offset_position; UpdateOffset(); if (old_base != relative_offset_base || old_position != relative_offset_position) DirtyOffset(); } } // Returns the position of the top-left corner of one of the areas of this element's primary box. Vector2f Element::GetRelativeOffset(Box::Area area) { return relative_offset_base + relative_offset_position + GetBox().GetPosition(area); } // Returns the position of the top-left corner of one of the areas of this element's primary box. Vector2f Element::GetAbsoluteOffset(Box::Area area) { if (offset_dirty) { offset_dirty = false; if (offset_parent != nullptr) absolute_offset = offset_parent->GetAbsoluteOffset(Box::BORDER) + relative_offset_base + relative_offset_position; else absolute_offset = relative_offset_base + relative_offset_position; // Add any parent scrolling onto our position as well. Could cache this if required. if (!offset_fixed) { Element* scroll_parent = parent; while (scroll_parent != nullptr) { absolute_offset -= (scroll_parent->scroll_offset + scroll_parent->content_offset); if (scroll_parent == offset_parent) break; else scroll_parent = scroll_parent->parent; } } } return absolute_offset + GetBox().GetPosition(area); } // Sets an alternate area to use as the client area. void Element::SetClientArea(Box::Area _client_area) { client_area = _client_area; } // Returns the area the element uses as its client area. Box::Area Element::GetClientArea() const { return client_area; } // Sets the dimensions of the element's internal content. void Element::SetContentBox(const Vector2f& _content_offset, const Vector2f& _content_box) { if (content_offset != _content_offset || content_box != _content_box) { // Seems to be jittering a wee bit; might need to be looked at. scroll_offset.x += (content_offset.x - _content_offset.x); scroll_offset.y += (content_offset.y - _content_offset.y); content_offset = _content_offset; content_box = _content_box; scroll_offset.x = Math::Min(scroll_offset.x, GetScrollWidth() - GetClientWidth()); scroll_offset.y = Math::Min(scroll_offset.y, GetScrollHeight() - GetClientHeight()); DirtyOffset(); } } // Sets the box describing the size of the element. void Element::SetBox(const Box& box) { if (box != main_box || additional_boxes.size() > 0) { main_box = box; additional_boxes.clear(); OnResize(); meta->background.DirtyBackground(); meta->border.DirtyBorder(); meta->decoration.DirtyDecorators(); } } // Adds a box to the end of the list describing this element's geometry. void Element::AddBox(const Box& box) { additional_boxes.push_back(box); OnResize(); meta->background.DirtyBackground(); meta->border.DirtyBorder(); meta->decoration.DirtyDecorators(); } // Returns one of the boxes describing the size of the element. const Box& Element::GetBox() { return main_box; } // Returns one of the boxes describing the size of the element. const Box& Element::GetBox(int index) { if (index < 1) return main_box; int additional_box_index = index - 1; if (additional_box_index >= (int)additional_boxes.size()) return main_box; return additional_boxes[additional_box_index]; } // Returns the number of boxes making up this element's geometry. int Element::GetNumBoxes() { return 1 + (int)additional_boxes.size(); } // Returns the baseline of the element, in pixels offset from the bottom of the element's content area. float Element::GetBaseline() const { return 0; } // Gets the intrinsic dimensions of this element, if it is of a type that has an inherent size. bool Element::GetIntrinsicDimensions(Vector2f& RMLUI_UNUSED_PARAMETER(dimensions)) { RMLUI_UNUSED(dimensions); return false; } // Checks if a given point in screen coordinates lies within the bordered area of this element. bool Element::IsPointWithinElement(const Vector2f& point) { Vector2f position = GetAbsoluteOffset(Box::BORDER); for (int i = 0; i < GetNumBoxes(); ++i) { const Box& box = GetBox(i); Vector2f box_position = position + box.GetOffset(); Vector2f box_dimensions = box.GetSize(Box::BORDER); if (point.x >= box_position.x && point.x <= (box_position.x + box_dimensions.x) && point.y >= box_position.y && point.y <= (box_position.y + box_dimensions.y)) { return true; } } return false; } // Returns the visibility of the element. bool Element::IsVisible() const { return visible; } // Returns the z-index of the element. float Element::GetZIndex() const { return z_index; } // Returns the element's font face handle. FontFaceHandle Element::GetFontFaceHandle() const { return meta->computed_values.font_face_handle; } // Sets a local property override on the element. bool Element::SetProperty(const String& name, const String& value) { // The name may be a shorthand giving us multiple underlying properties PropertyDictionary properties; if (!StyleSheetSpecification::ParsePropertyDeclaration(properties, name, value)) { Log::Message(Log::LT_WARNING, "Syntax error parsing inline property declaration '%s: %s;'.", name.c_str(), value.c_str()); return false; } for (auto& property : properties.GetProperties()) { if (!meta->style.SetProperty(property.first, property.second)) return false; } return true; } // Sets a local property override on the element to a pre-parsed value. bool Element::SetProperty(PropertyId id, const Property& property) { return meta->style.SetProperty(id, property); } // Removes a local property override on the element. void Element::RemoveProperty(const String& name) { meta->style.RemoveProperty(StyleSheetSpecification::GetPropertyId(name)); } // Removes a local property override on the element. void Element::RemoveProperty(PropertyId id) { meta->style.RemoveProperty(id); } // Returns one of this element's properties. const Property* Element::GetProperty(const String& name) { return meta->style.GetProperty(StyleSheetSpecification::GetPropertyId(name)); } // Returns one of this element's properties. const Property* Element::GetProperty(PropertyId id) { return meta->style.GetProperty(id); } // Returns one of this element's properties. const Property* Element::GetLocalProperty(const String& name) { return meta->style.GetLocalProperty(StyleSheetSpecification::GetPropertyId(name)); } const Property* Element::GetLocalProperty(PropertyId id) { return meta->style.GetLocalProperty(id); } const PropertyMap& Element::GetLocalStyleProperties() { return meta->style.GetLocalStyleProperties(); } float Element::ResolveNumericProperty(const Property *property, float base_value) { return meta->style.ResolveNumericProperty(property, base_value); } float Element::ResolveNumericProperty(const String& property_name) { auto property = meta->style.GetProperty(StyleSheetSpecification::GetPropertyId(property_name)); if (!property) return 0.0f; if (property->unit & Property::ANGLE) return ComputeAngle(*property); RelativeTarget relative_target = RelativeTarget::None; if (property->definition) relative_target = property->definition->GetRelativeTarget(); float result = meta->style.ResolveLength(property, relative_target); return result; } Vector2f Element::GetContainingBlock() { Vector2f containing_block(0, 0); if (offset_parent != nullptr) { using namespace Style; Position position_property = GetPosition(); const Box& parent_box = offset_parent->GetBox(); if (position_property == Position::Static || position_property == Position::Relative) { containing_block = parent_box.GetSize(); } else if(position_property == Position::Absolute || position_property == Position::Fixed) { containing_block = parent_box.GetSize(Box::PADDING); } } return containing_block; } Style::Position Element::GetPosition() { return meta->computed_values.position; } Style::Float Element::GetFloat() { return meta->computed_values.float_; } Style::Display Element::GetDisplay() { return meta->computed_values.display; } float Element::GetLineHeight() { return meta->computed_values.line_height.value; } // Returns this element's TransformState const TransformState *Element::GetTransformState() const noexcept { return transform_state.get(); } // Project a 2D point in pixel coordinates onto the element's plane. bool Element::Project(Vector2f& point) const noexcept { if(!transform_state || !transform_state->GetTransform()) return true; // The input point is in window coordinates. Need to find the projection of the point onto the current element plane, // taking into account the full transform applied to the element. if (const Matrix4f* inv_transform = transform_state->GetInverseTransform()) { // Pick two points forming a line segment perpendicular to the window. Vector4f window_points[2] = {{ point.x, point.y, -10, 1}, { point.x, point.y, 10, 1 }}; // Project them into the local element space. window_points[0] = *inv_transform * window_points[0]; window_points[1] = *inv_transform * window_points[1]; Vector3f local_points[2] = { window_points[0].PerspectiveDivide(), window_points[1].PerspectiveDivide() }; // Construct a ray from the two projected points in the local space of the current element. // Find the intersection with the z=0 plane to produce our destination point. Vector3f ray = local_points[1] - local_points[0]; // Only continue if we are not close to parallel with the plane. if(std::fabs(ray.z) > 1.0f) { // Solving the line equation p = p0 + t*ray for t, knowing that p.z = 0, produces the following. float t = -local_points[0].z / ray.z; Vector3f p = local_points[0] + ray * t; point = Vector2f(p.x, p.y); return true; } } // The transformation matrix is either singular, or the ray is parallel to the element's plane. return false; } PropertiesIteratorView Element::IterateLocalProperties() const { return PropertiesIteratorView(std::make_unique(meta->style.Iterate())); } // Sets or removes a pseudo-class on the element. void Element::SetPseudoClass(const String& pseudo_class, bool activate) { meta->style.SetPseudoClass(pseudo_class, activate); } // Checks if a specific pseudo-class has been set on the element. bool Element::IsPseudoClassSet(const String& pseudo_class) const { return meta->style.IsPseudoClassSet(pseudo_class); } // Checks if a complete set of pseudo-classes are set on the element. bool Element::ArePseudoClassesSet(const PseudoClassList& pseudo_classes) const { for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i) { if (!IsPseudoClassSet(*i)) return false; } return true; } // Gets a list of the current active pseudo classes const PseudoClassList& Element::GetActivePseudoClasses() const { return meta->style.GetActivePseudoClasses(); } /// Get the named attribute Variant* Element::GetAttribute(const String& name) { return GetIf(attributes, name); } // Checks if the element has a certain attribute. bool Element::HasAttribute(const String& name) const { return attributes.find(name) != attributes.end(); } // Removes an attribute from the element void Element::RemoveAttribute(const String& name) { auto it = attributes.find(name); if (it != attributes.end()) { attributes.erase(it); ElementAttributes changed_attributes; changed_attributes.emplace(name, Variant()); OnAttributeChange(changed_attributes); } } // Gets the outer most focus element down the tree from this node Element* Element::GetFocusLeafNode() { // If there isn't a focus, then we are the leaf. if (!focus) { return this; } // Recurse down the tree until we found the leaf focus element Element* focus_element = focus; while (focus_element->focus) focus_element = focus_element->focus; return focus_element; } // Returns the element's context. Context* Element::GetContext() const { ElementDocument* document = GetOwnerDocument(); if (document != nullptr) return document->GetContext(); return nullptr; } // Set a group of attributes void Element::SetAttributes(const ElementAttributes& _attributes) { attributes.reserve(attributes.size() + _attributes.size()); for (auto& pair : _attributes) attributes[pair.first] = pair.second; OnAttributeChange(_attributes); } // Returns the number of attributes on the element. int Element::GetNumAttributes() const { return (int)attributes.size(); } // Gets the name of the element. const String& Element::GetTagName() const { return tag; } // Gets the ID of the element. const String& Element::GetId() const { return id; } // Sets the ID of the element. void Element::SetId(const String& _id) { SetAttribute("id", _id); } // Gets the horizontal offset from the context's left edge to element's left border edge. float Element::GetAbsoluteLeft() { return GetAbsoluteOffset(Box::BORDER).x; } // Gets the vertical offset from the context's top edge to element's top border edge. float Element::GetAbsoluteTop() { return GetAbsoluteOffset(Box::BORDER).y; } // Gets the width of the left border of an element. float Element::GetClientLeft() { return GetBox().GetPosition(client_area).x; } // Gets the height of the top border of an element. float Element::GetClientTop() { return GetBox().GetPosition(client_area).y; } // Gets the inner width of the element. float Element::GetClientWidth() { return GetBox().GetSize(client_area).x - meta->scroll.GetScrollbarSize(ElementScroll::VERTICAL); } // Gets the inner height of the element. float Element::GetClientHeight() { return GetBox().GetSize(client_area).y - meta->scroll.GetScrollbarSize(ElementScroll::HORIZONTAL); } // Returns the element from which all offset calculations are currently computed. Element* Element::GetOffsetParent() { return offset_parent; } // Gets the distance from this element's left border to its offset parent's left border. float Element::GetOffsetLeft() { return relative_offset_base.x + relative_offset_position.x; } // Gets the distance from this element's top border to its offset parent's top border. float Element::GetOffsetTop() { return relative_offset_base.y + relative_offset_position.y; } // Gets the width of the element, including the client area, padding, borders and scrollbars, but not margins. float Element::GetOffsetWidth() { return GetBox().GetSize(Box::BORDER).x; } // Gets the height of the element, including the client area, padding, borders and scrollbars, but not margins. float Element::GetOffsetHeight() { return GetBox().GetSize(Box::BORDER).y; } // Gets the left scroll offset of the element. float Element::GetScrollLeft() { return scroll_offset.x; } // Sets the left scroll offset of the element. void Element::SetScrollLeft(float scroll_left) { const float new_offset = Math::Clamp(Math::RoundFloat(scroll_left), 0.0f, GetScrollWidth() - GetClientWidth()); if (new_offset != scroll_offset.x) { scroll_offset.x = new_offset; meta->scroll.UpdateScrollbar(ElementScroll::HORIZONTAL); DirtyOffset(); DispatchEvent(EventId::Scroll, Dictionary()); } } // Gets the top scroll offset of the element. float Element::GetScrollTop() { return scroll_offset.y; } // Sets the top scroll offset of the element. void Element::SetScrollTop(float scroll_top) { const float new_offset = Math::Clamp(Math::RoundFloat(scroll_top), 0.0f, GetScrollHeight() - GetClientHeight()); if(new_offset != scroll_offset.y) { scroll_offset.y = new_offset; meta->scroll.UpdateScrollbar(ElementScroll::VERTICAL); DirtyOffset(); DispatchEvent(EventId::Scroll, Dictionary()); } } // Gets the width of the scrollable content of the element; it includes the element padding but not its margin. float Element::GetScrollWidth() { return Math::Max(content_box.x, GetClientWidth()); } // Gets the height of the scrollable content of the element; it includes the element padding but not its margin. float Element::GetScrollHeight() { return Math::Max(content_box.y, GetClientHeight()); } // Gets the object representing the declarations of an element's style attributes. ElementStyle* Element::GetStyle() const { return &meta->style; } // Gets the document this element belongs to. ElementDocument* Element::GetOwnerDocument() const { #ifdef RMLUI_DEBUG if (parent && !owner_document) { // Since we have a parent but no owner_document, then we must be a 'loose' element -- that is, constructed // outside of a document and not attached to a child of any element in the hierarchy of a document. // This check ensures that we didn't just forget to set the owner document. RMLUI_ASSERT(!parent->GetOwnerDocument()); } #endif return owner_document; } // Gets this element's parent node. Element* Element::GetParentNode() const { return parent; } // Gets the element immediately following this one in the tree. Element* Element::GetNextSibling() const { if (parent == nullptr) return nullptr; for (size_t i = 0; i < parent->children.size() - (parent->num_non_dom_children + 1); i++) { if (parent->children[i].get() == this) return parent->children[i + 1].get(); } return nullptr; } // Gets the element immediately preceding this one in the tree. Element* Element::GetPreviousSibling() const { if (parent == nullptr) return nullptr; for (size_t i = 1; i < parent->children.size() - parent->num_non_dom_children; i++) { if (parent->children[i].get() == this) return parent->children[i - 1].get(); } return nullptr; } // Returns the first child of this element. Element* Element::GetFirstChild() const { if (GetNumChildren() > 0) return children[0].get(); return nullptr; } // Gets the last child of this element. Element* Element::GetLastChild() const { if (GetNumChildren() > 0) return (children.end() - (num_non_dom_children + 1))->get(); return nullptr; } Element* Element::GetChild(int index) const { if (index < 0 || index >= (int) children.size()) return nullptr; return children[index].get(); } int Element::GetNumChildren(bool include_non_dom_elements) const { return (int) children.size() - (include_non_dom_elements ? 0 : num_non_dom_children); } // Gets the markup and content of the element. void Element::GetInnerRML(String& content) const { for (int i = 0; i < GetNumChildren(); i++) { children[i]->GetRML(content); } } // Gets the markup and content of the element. String Element::GetInnerRML() const { String result; GetInnerRML(result); return result; } // Sets the markup and content of the element. All existing children will be replaced. void Element::SetInnerRML(const String& rml) { RMLUI_ZoneScopedC(0x6495ED); // Remove all DOM children. while ((int) children.size() > num_non_dom_children) RemoveChild(children.front().get()); if(!rml.empty()) Factory::InstanceElementText(this, rml); } // Sets the current element as the focus object. bool Element::Focus() { // Are we allowed focus? Style::Focus focus_property = meta->computed_values.focus; if (focus_property == Style::Focus::None) return false; // Ask our context if we can switch focus. Context* context = GetContext(); if (context == nullptr) return false; if (!context->OnFocusChange(this)) return false; // Set this as the end of the focus chain. focus = nullptr; // Update the focus chain up the hierarchy. Element* element = this; while (Element* parent = element->GetParentNode()) { parent->focus = element; element = parent; } return true; } // Removes focus from from this element. void Element::Blur() { if (parent) { Context* context = GetContext(); if (context == nullptr) return; if (context->GetFocusElement() == this) { parent->Focus(); } else if (parent->focus == this) { parent->focus = nullptr; } } } // Fakes a mouse click on this element. void Element::Click() { Context* context = GetContext(); if (context == nullptr) return; context->GenerateClickEvent(this); } // Adds an event listener void Element::AddEventListener(const String& event, EventListener* listener, bool in_capture_phase) { EventId id = EventSpecificationInterface::GetIdOrInsert(event); meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase); } // Adds an event listener void Element::AddEventListener(EventId id, EventListener* listener, bool in_capture_phase) { meta->event_dispatcher.AttachEvent(id, listener, in_capture_phase); } // Removes an event listener from this element. void Element::RemoveEventListener(const String& event, EventListener* listener, bool in_capture_phase) { EventId id = EventSpecificationInterface::GetIdOrInsert(event); meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase); } // Removes an event listener from this element. void Element::RemoveEventListener(EventId id, EventListener* listener, bool in_capture_phase) { meta->event_dispatcher.DetachEvent(id, listener, in_capture_phase); } // Dispatches the specified event bool Element::DispatchEvent(const String& type, const Dictionary& parameters) { const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type); return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, specification.interruptible, specification.bubbles, specification.default_action_phase); } // Dispatches the specified event bool Element::DispatchEvent(const String& type, const Dictionary& parameters, bool interruptible, bool bubbles) { const EventSpecification& specification = EventSpecificationInterface::GetOrInsert(type); return EventDispatcher::DispatchEvent(this, specification.id, type, parameters, interruptible, bubbles, specification.default_action_phase); } // Dispatches the specified event bool Element::DispatchEvent(EventId id, const Dictionary& parameters) { const EventSpecification& specification = EventSpecificationInterface::Get(id); return EventDispatcher::DispatchEvent(this, specification.id, specification.type, parameters, specification.interruptible, specification.bubbles, specification.default_action_phase); } // Scrolls the parent element's contents so that this element is visible. void Element::ScrollIntoView(bool align_with_top) { Vector2f size(0, 0); if (!align_with_top) { size.y = main_box.GetOffset().y + main_box.GetSize(Box::BORDER).y; } Element* scroll_parent = parent; while (scroll_parent != nullptr) { Style::Overflow overflow_x_property = scroll_parent->GetComputedValues().overflow_x; Style::Overflow overflow_y_property = scroll_parent->GetComputedValues().overflow_y; if ((overflow_x_property != Style::Overflow::Visible && scroll_parent->GetScrollWidth() > scroll_parent->GetClientWidth()) || (overflow_y_property != Style::Overflow::Visible && scroll_parent->GetScrollHeight() > scroll_parent->GetClientHeight())) { Vector2f offset = scroll_parent->GetAbsoluteOffset(Box::BORDER) - GetAbsoluteOffset(Box::BORDER); Vector2f scroll_offset(scroll_parent->GetScrollLeft(), scroll_parent->GetScrollTop()); scroll_offset -= offset; scroll_offset.x += scroll_parent->GetClientLeft(); scroll_offset.y += scroll_parent->GetClientTop(); if (!align_with_top) scroll_offset.y -= (scroll_parent->GetClientHeight() - size.y); if (overflow_x_property != Style::Overflow::Visible) scroll_parent->SetScrollLeft(scroll_offset.x); if (overflow_y_property != Style::Overflow::Visible) scroll_parent->SetScrollTop(scroll_offset.y); } scroll_parent = scroll_parent->GetParentNode(); } } // Appends a child to this element Element* Element::AppendChild(ElementPtr child, bool dom_element) { RMLUI_ASSERT(child); Element* child_ptr = child.get(); if (dom_element) children.insert(children.end() - num_non_dom_children, std::move(child)); else { children.push_back(std::move(child)); num_non_dom_children++; } // Set parent just after inserting into children. This allows us to eg. get our previous sibling in SetParent. child_ptr->SetParent(this); Element* ancestor = child_ptr; for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode()) ancestor->OnChildAdd(child_ptr); DirtyStackingContext(); DirtyStructure(); if (dom_element) DirtyLayout(); return child_ptr; } // Adds a child to this element, directly after the adjacent element. Inherits // the dom/non-dom status from the adjacent element. Element* Element::InsertBefore(ElementPtr child, Element* adjacent_element) { RMLUI_ASSERT(child); // Find the position in the list of children of the adjacent element. If // it's nullptr or we can't find it, then we insert it at the end of the dom // children, as a dom element. size_t child_index = 0; bool found_child = false; if (adjacent_element) { for (child_index = 0; child_index < children.size(); child_index++) { if (children[child_index].get() == adjacent_element) { found_child = true; break; } } } Element* child_ptr = nullptr; if (found_child) { child_ptr = child.get(); if ((int) child_index >= GetNumChildren()) num_non_dom_children++; else DirtyLayout(); children.insert(children.begin() + child_index, std::move(child)); child_ptr->SetParent(this); Element* ancestor = child_ptr; for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode()) ancestor->OnChildAdd(child_ptr); DirtyStackingContext(); DirtyStructure(); } else { child_ptr = AppendChild(std::move(child)); } return child_ptr; } // Replaces the second node with the first node. ElementPtr Element::ReplaceChild(ElementPtr inserted_element, Element* replaced_element) { RMLUI_ASSERT(inserted_element); auto insertion_point = children.begin(); while (insertion_point != children.end() && insertion_point->get() != replaced_element) { ++insertion_point; } Element* inserted_element_ptr = inserted_element.get(); if (insertion_point == children.end()) { AppendChild(std::move(inserted_element)); return nullptr; } children.insert(insertion_point, std::move(inserted_element)); inserted_element_ptr->SetParent(this); ElementPtr result = RemoveChild(replaced_element); Element* ancestor = inserted_element_ptr; for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode()) ancestor->OnChildAdd(inserted_element_ptr); return result; } // Removes the specified child ElementPtr Element::RemoveChild(Element* child) { size_t child_index = 0; for (auto itr = children.begin(); itr != children.end(); ++itr) { // Add the element to the delete list if (itr->get() == child) { Element* ancestor = child; for (int i = 0; i <= ChildNotifyLevels && ancestor; i++, ancestor = ancestor->GetParentNode()) ancestor->OnChildRemove(child); if (child_index >= children.size() - num_non_dom_children) num_non_dom_children--; ElementPtr detached_child = std::move(*itr); children.erase(itr); // Remove the child element as the focused child of this element. if (child == focus) { focus = nullptr; // If this child (or a descendant of this child) is the context's currently // focused element, set the focus to us instead. if (Context * context = GetContext()) { Element* focus_element = context->GetFocusElement(); while (focus_element) { if (focus_element == child) { Focus(); break; } focus_element = focus_element->GetParentNode(); } } } detached_child->SetParent(nullptr); DirtyLayout(); DirtyStackingContext(); DirtyStructure(); return detached_child; } child_index++; } return nullptr; } bool Element::HasChildNodes() const { return (int) children.size() > num_non_dom_children; } Element* Element::GetElementById(const String& id) { // Check for special-case tokens. if (id == "#self") return this; else if (id == "#document") return GetOwnerDocument(); else if (id == "#parent") return this->parent; else { Element* search_root = GetOwnerDocument(); if (search_root == nullptr) search_root = this; return ElementUtilities::GetElementById(search_root, id); } } // Get all elements with the given tag. void Element::GetElementsByTagName(ElementList& elements, const String& tag) { return ElementUtilities::GetElementsByTagName(elements, this, tag); } // Get all elements with the given class set on them. void Element::GetElementsByClassName(ElementList& elements, const String& class_name) { return ElementUtilities::GetElementsByClassName(elements, this, class_name); } // Access the event dispatcher EventDispatcher* Element::GetEventDispatcher() const { return &meta->event_dispatcher; } String Element::GetEventDispatcherSummary() const { return meta->event_dispatcher.ToString(); } // Access the element background. ElementBackground* Element::GetElementBackground() const { return &meta->background; } // Access the element border. ElementBorder* Element::GetElementBorder() const { return &meta->border; } // Access the element decorators ElementDecoration* Element::GetElementDecoration() const { return &meta->decoration; } // Returns the element's scrollbar functionality. ElementScroll* Element::GetElementScroll() const { return &meta->scroll; } DataModel* Element::GetDataModel() const { return data_model; } int Element::GetClippingIgnoreDepth() { if (clipping_state_dirty) { IsClippingEnabled(); } return clipping_ignore_depth; } bool Element::IsClippingEnabled() { if (clipping_state_dirty) { const auto& computed = GetComputedValues(); // Is clipping enabled for this element, yes unless both overlow properties are set to visible clipping_enabled = computed.overflow_x != Style::Overflow::Visible || computed.overflow_y != Style::Overflow::Visible; // Get the clipping ignore depth from the clip property clipping_ignore_depth = computed.clip.number; clipping_state_dirty = false; } return clipping_enabled; } // Gets the render interface owned by this element's context. RenderInterface* Element::GetRenderInterface() { if (Context* context = GetContext()) return context->GetRenderInterface(); return Rml::Core::GetRenderInterface(); } void Element::SetInstancer(ElementInstancer* _instancer) { // Only record the first instancer being set as some instancers call other instancers to do their dirty work, in // which case we don't want to update the lowest level instancer. if (!instancer) { instancer = _instancer; } } // Forces the element to generate a local stacking context, regardless of the value of its z-index property. void Element::ForceLocalStackingContext() { local_stacking_context_forced = true; local_stacking_context = true; DirtyStackingContext(); } // Called during the update loop after children are rendered. void Element::OnUpdate() { } // Called during render after backgrounds, borders, decorators, but before children, are rendered. void Element::OnRender() { } void Element::OnResize() { } // Called during a layout operation, when the element is being positioned and sized. void Element::OnLayout() { } // Called when attributes on the element are changed. void Element::OnAttributeChange(const ElementAttributes& changed_attributes) { auto it = changed_attributes.find("id"); if (it != changed_attributes.end()) { id = it->second.Get(); meta->style.DirtyDefinition(); } it = changed_attributes.find("class"); if (it != changed_attributes.end()) { meta->style.SetClassNames(it->second.Get()); } it = changed_attributes.find("style"); if (it != changed_attributes.end()) { if (it->second.GetType() == Variant::STRING) { PropertyDictionary properties; StyleSheetParser parser; parser.ParseProperties(properties, it->second.GetReference()); for (const auto& name_value : properties.GetProperties()) { meta->style.SetProperty(name_value.first, name_value.second); } } else if (it->second.GetType() != Variant::NONE) { Log::Message(Log::LT_WARNING, "Invalid 'style' attribute, string type required. In element: %s", GetAddress().c_str()); } } } // Called when properties on the element are changed. void Element::OnPropertyChange(const PropertyIdSet& changed_properties) { RMLUI_ZoneScoped; if (!IsLayoutDirty()) { // Force a relayout if any of the changed properties require it. const PropertyIdSet changed_properties_forcing_layout = (changed_properties & StyleSheetSpecification::GetRegisteredPropertiesForcingLayout()); if(!changed_properties_forcing_layout.Empty()) DirtyLayout(); } // Update the visibility. if (changed_properties.Contains(PropertyId::Visibility) || changed_properties.Contains(PropertyId::Display)) { bool new_visibility = (meta->computed_values.display != Style::Display::None && meta->computed_values.visibility == Style::Visibility::Visible); if (visible != new_visibility) { visible = new_visibility; if (parent != nullptr) parent->DirtyStackingContext(); if (!visible) Blur(); } if (changed_properties.Contains(PropertyId::Display)) { // Due to structural pseudo-classes, this may change the element definition in siblings and parent. // However, the definitions will only be changed on the next update loop which may result in jarring behavior for one @frame. // A possible workaround is to add the parent to a list of elements that need to be updated again. if (parent != nullptr) parent->DirtyStructure(); } } // Update the position. if (changed_properties.Contains(PropertyId::Left) || changed_properties.Contains(PropertyId::Right) || changed_properties.Contains(PropertyId::Top) || changed_properties.Contains(PropertyId::Bottom)) { // TODO: This should happen during/after layout, as the containing box is not properly defined yet. Off-by-one @frame issue. UpdateOffset(); DirtyOffset(); } // Update the z-index. if (changed_properties.Contains(PropertyId::ZIndex)) { Style::ZIndex z_index_property = meta->computed_values.z_index; if (z_index_property.type == Style::ZIndex::Auto) { if (local_stacking_context && !local_stacking_context_forced) { // We're no longer acting as a stacking context. local_stacking_context = false; stacking_context_dirty = false; stacking_context.clear(); } // If our old z-index was not zero, then we must dirty our stacking context so we'll be re-indexed. if (z_index != 0) { z_index = 0; DirtyStackingContext(); } } else { float new_z_index = z_index_property.value; if (new_z_index != z_index) { z_index = new_z_index; if (parent != nullptr) parent->DirtyStackingContext(); } if (!local_stacking_context) { local_stacking_context = true; stacking_context_dirty = true; } } } // Dirty the background if it's changed. if (changed_properties.Contains(PropertyId::BackgroundColor) || changed_properties.Contains(PropertyId::Opacity) || changed_properties.Contains(PropertyId::ImageColor)) { meta->background.DirtyBackground(); } // Dirty the decoration if it's changed. if (changed_properties.Contains(PropertyId::Decorator) || changed_properties.Contains(PropertyId::Opacity) || changed_properties.Contains(PropertyId::ImageColor)) { meta->decoration.DirtyDecorators(); } // Dirty the border if it's changed. if (changed_properties.Contains(PropertyId::BorderTopWidth) || changed_properties.Contains(PropertyId::BorderRightWidth) || changed_properties.Contains(PropertyId::BorderBottomWidth) || changed_properties.Contains(PropertyId::BorderLeftWidth) || changed_properties.Contains(PropertyId::BorderTopColor) || changed_properties.Contains(PropertyId::BorderRightColor) || changed_properties.Contains(PropertyId::BorderBottomColor) || changed_properties.Contains(PropertyId::BorderLeftColor) || changed_properties.Contains(PropertyId::Opacity)) meta->border.DirtyBorder(); // Check for clipping state changes if (changed_properties.Contains(PropertyId::Clip) || changed_properties.Contains(PropertyId::OverflowX) || changed_properties.Contains(PropertyId::OverflowY)) { clipping_state_dirty = true; } // Check for `perspective' and `perspective-origin' changes if (changed_properties.Contains(PropertyId::Perspective) || changed_properties.Contains(PropertyId::PerspectiveOriginX) || changed_properties.Contains(PropertyId::PerspectiveOriginY)) { DirtyTransformState(true, false); } // Check for `transform' and `transform-origin' changes if (changed_properties.Contains(PropertyId::Transform) || changed_properties.Contains(PropertyId::TransformOriginX) || changed_properties.Contains(PropertyId::TransformOriginY) || changed_properties.Contains(PropertyId::TransformOriginZ)) { DirtyTransformState(false, true); } // Check for `animation' changes if (changed_properties.Contains(PropertyId::Animation)) { dirty_animation = true; } // Check for `transition' changes if (changed_properties.Contains(PropertyId::Transition)) { dirty_transition = true; } } // Called when a child node has been added somewhere in the hierarchy void Element::OnChildAdd(Element* /*child*/) { } // Called when a child node has been removed somewhere in the hierarchy void Element::OnChildRemove(Element* /*child*/) { } // Forces a re-layout of this element, and any other children required. void Element::DirtyLayout() { Element* document = GetOwnerDocument(); if (document != nullptr) document->DirtyLayout(); } // Forces a re-layout of this element, and any other children required. bool Element::IsLayoutDirty() { Element* document = GetOwnerDocument(); if (document != nullptr) return document->IsLayoutDirty(); return false; } void Element::ProcessDefaultAction(Event& event) { if (event == EventId::Mousedown && IsPointWithinElement(Vector2f(event.GetParameter< float >("mouse_x", 0), event.GetParameter< float >("mouse_y", 0))) && event.GetParameter< int >("button", 0) == 0) SetPseudoClass("active", true); if (event == EventId::Mousescroll) { if (GetScrollHeight() > GetClientHeight()) { Style::Overflow overflow_property = meta->computed_values.overflow_y; if (overflow_property == Style::Overflow::Auto || overflow_property == Style::Overflow::Scroll) { // Stop the propagation if the current element has scrollbars. // This prevents scrolling in parent elements, which is often unintended. If instead desired behavior is // to scroll in parent elements when reaching top/bottom, move StopPropagation inside the next if statement. event.StopPropagation(); const float wheel_delta = event.GetParameter< float >("wheel_delta", 0.f); if ((wheel_delta < 0 && GetScrollTop() > 0) || (wheel_delta > 0 && GetScrollHeight() > GetScrollTop() + GetClientHeight())) { // Defined as three times the default line-height, multiplied by the dp ratio. float default_scroll_length = 3.f * DefaultComputedValues.line_height.value; if (const Context* context = GetContext()) default_scroll_length *= context->GetDensityIndependentPixelRatio(); SetScrollTop(GetScrollTop() + wheel_delta * default_scroll_length); } } } return; } if (event.GetPhase() == EventPhase::Target) { switch (event.GetId()) { case EventId::Mouseover: SetPseudoClass("hover", true); break; case EventId::Mouseout: SetPseudoClass("hover", false); break; case EventId::Focus: SetPseudoClass("focus", true); break; case EventId::Blur: SetPseudoClass("focus", false); break; default: break; } } } const Style::ComputedValues& Element::GetComputedValues() const { return meta->computed_values; } void Element::GetRML(String& content) { // First we start the open tag, add the attributes then close the open tag. // Then comes the children in order, then we add our close tag. content += "<"; content += tag; for (auto& pair : attributes) { auto& name = pair.first; auto& variant = pair.second; String value; if (variant.GetInto(value)) content += " " + name + "=\"" + value + "\""; } if (HasChildNodes()) { content += ">"; GetInnerRML(content); content += ""; } else { content += " />"; } } void Element::SetOwnerDocument(ElementDocument* document) { // If this element is a document, then never change owner_document. if (owner_document != this) { if (owner_document && !document) { // We are detaching from the document and thereby also the context. if (Context * context = owner_document->GetContext()) context->OnElementDetach(this); } if (owner_document != document) { owner_document = document; for (ElementPtr& child : children) child->SetOwnerDocument(document); } } } void Element::SetDataModel(DataModel* new_data_model) { RMLUI_ASSERTMSG(!data_model || !new_data_model, "We must either attach a new data model, or detach the old one."); if (data_model == new_data_model) return; if (data_model) data_model->OnElementRemove(this); data_model = new_data_model; if (data_model) ElementUtilities::ApplyDataViewsControllers(this); for (ElementPtr& child : children) child->SetDataModel(new_data_model); } void Element::Release() { if (instancer) instancer->ReleaseElement(this); else Log::Message(Log::LT_WARNING, "Leak detected: element %s not instanced via RmlUi Factory. Unable to release.", GetAddress().c_str()); } void Element::SetParent(Element* _parent) { // Assumes we are already detached from the hierarchy or we are detaching now. RMLUI_ASSERT(!parent || !_parent); parent = _parent; if (parent) { // We need to update our definition and make sure we inherit the properties of our new parent. meta->style.DirtyDefinition(); meta->style.DirtyInheritedProperties(); } // The transform state may require recalculation. if (transform_state || (parent && parent->transform_state)) DirtyTransformState(true, true); SetOwnerDocument(parent ? parent->GetOwnerDocument() : nullptr); if (!parent) { if (data_model) SetDataModel(nullptr); } else { auto it = attributes.find("data-model"); if (it == attributes.end()) { SetDataModel(parent->data_model); } else if (parent->data_model) { String name = it->second.Get(); Log::Message(Log::LT_ERROR, "Nested data models are not allowed. Data model '%s' given in element %s.", name.c_str(), GetAddress().c_str()); } else if (Context* context = GetContext()) { String name = it->second.Get(); if (DataModel* model = context->GetDataModelPtr(name)) { model->AttachModelRootElement(this); SetDataModel(model); } else Log::Message(Log::LT_ERROR, "Could not locate data model '%s' in element %s.", name.c_str(), GetAddress().c_str()); } } } void Element::DirtyOffset() { if(!offset_dirty) { offset_dirty = true; if(transform_state) DirtyTransformState(true, true); // Not strictly true ... ? for (size_t i = 0; i < children.size(); i++) children[i]->DirtyOffset(); } } void Element::UpdateOffset() { using namespace Style; const auto& computed = meta->computed_values; Position position_property = computed.position; if (position_property == Position::Absolute || position_property == Position::Fixed) { if (offset_parent != nullptr) { const Box& parent_box = offset_parent->GetBox(); Vector2f containing_block = parent_box.GetSize(Box::PADDING); // If the element is anchored left, then the position is offset by that resolved value. if (computed.left.type != Left::Auto) relative_offset_base.x = parent_box.GetEdge(Box::BORDER, Box::LEFT) + (ResolveValue(computed.left, containing_block.x) + GetBox().GetEdge(Box::MARGIN, Box::LEFT)); // If the element is anchored right, then the position is set first so the element's right-most edge // (including margins) will render up against the containing box's right-most content edge, and then // offset by the resolved value. else if (computed.right.type != Right::Auto) relative_offset_base.x = containing_block.x + parent_box.GetEdge(Box::BORDER, Box::LEFT) - (ResolveValue(computed.right, containing_block.x) + GetBox().GetSize(Box::BORDER).x + GetBox().GetEdge(Box::MARGIN, Box::RIGHT)); // If the element is anchored top, then the position is offset by that resolved value. if (computed.top.type != Top::Auto) relative_offset_base.y = parent_box.GetEdge(Box::BORDER, Box::TOP) + (ResolveValue(computed.top, containing_block.y) + GetBox().GetEdge(Box::MARGIN, Box::TOP)); // If the element is anchored bottom, then the position is set first so the element's right-most edge // (including margins) will render up against the containing box's right-most content edge, and then // offset by the resolved value. else if (computed.bottom.type != Bottom::Auto) relative_offset_base.y = containing_block.y + parent_box.GetEdge(Box::BORDER, Box::TOP) - (ResolveValue(computed.bottom, containing_block.y) + GetBox().GetSize(Box::BORDER).y + GetBox().GetEdge(Box::MARGIN, Box::BOTTOM)); } } else if (position_property == Position::Relative) { if (offset_parent != nullptr) { const Box& parent_box = offset_parent->GetBox(); Vector2f containing_block = parent_box.GetSize(); if (computed.left.type != Left::Auto) relative_offset_position.x = ResolveValue(computed.left, containing_block.x); else if (computed.right.type != Right::Auto) relative_offset_position.x = -1 * ResolveValue(computed.right, containing_block.x); else relative_offset_position.x = 0; if (computed.top.type != Top::Auto) relative_offset_position.y = ResolveValue(computed.top, containing_block.y); else if (computed.bottom.type != Bottom::Auto) relative_offset_position.y = -1 * ResolveValue(computed.bottom, containing_block.y); else relative_offset_position.y = 0; } } else { relative_offset_position.x = 0; relative_offset_position.y = 0; } } void Element::BuildLocalStackingContext() { stacking_context_dirty = false; stacking_context.clear(); BuildStackingContext(&stacking_context); std::stable_sort(stacking_context.begin(), stacking_context.end(), ElementSortZIndex()); } void Element::BuildStackingContext(ElementList* new_stacking_context) { RMLUI_ZoneScoped; // Build the list of ordered children. Our child list is sorted within the stacking context so stacked elements // will render in the right order; ie, positioned elements will render on top of inline elements, which will render // on top of floated elements, which will render on top of block elements. std::vector< std::pair< Element*, float > > ordered_children; for (size_t i = 0; i < children.size(); ++i) { Element* child = children[i].get(); if (!child->IsVisible()) continue; std::pair< Element*, float > ordered_child; ordered_child.first = child; if (child->GetPosition() != Style::Position::Static) ordered_child.second = 3; else if (child->GetFloat() != Style::Float::None) ordered_child.second = 1; else if (child->GetDisplay() == Style::Display::Block) ordered_child.second = 0; else ordered_child.second = 2; ordered_children.push_back(ordered_child); } // Sort the list! std::stable_sort(ordered_children.begin(), ordered_children.end(), ElementSortZOrder()); // Add the list of ordered children into the stacking context in order. for (size_t i = 0; i < ordered_children.size(); ++i) { new_stacking_context->push_back(ordered_children[i].first); if (!ordered_children[i].first->local_stacking_context) ordered_children[i].first->BuildStackingContext(new_stacking_context); } } void Element::DirtyStackingContext() { // The first ancestor of ours that doesn't have an automatic z-index is the ancestor that is establishing our local // stacking context. Element* stacking_context_parent = this; while (stacking_context_parent != nullptr && !stacking_context_parent->local_stacking_context) stacking_context_parent = stacking_context_parent->GetParentNode(); if (stacking_context_parent != nullptr) stacking_context_parent->stacking_context_dirty = true; } void Element::DirtyStructure() { structure_dirty = true; } void Element::UpdateStructure() { if (structure_dirty) { structure_dirty = false; // If this element or its children depend on structured selectors, they may need to be updated. GetStyle()->DirtyDefinition(); } } bool Element::Animate(const String & property_name, const Property & target_value, float duration, Tween tween, int num_iterations, bool alternate_direction, float delay, const Property* start_value) { bool result = false; PropertyId property_id = StyleSheetSpecification::GetPropertyId(property_name); auto it_animation = StartAnimation(property_id, start_value, num_iterations, alternate_direction, delay, false); if (it_animation != animations.end()) { result = it_animation->AddKey(duration, target_value, *this, tween, true); if (!result) animations.erase(it_animation); } return result; } bool Element::AddAnimationKey(const String & property_name, const Property & target_value, float duration, Tween tween) { ElementAnimation* animation = nullptr; PropertyId property_id = StyleSheetSpecification::GetPropertyId(property_name); for (auto& existing_animation : animations) { if (existing_animation.GetPropertyId() == property_id) { animation = &existing_animation; break; } } if (!animation) return false; bool result = animation->AddKey(animation->GetDuration() + duration, target_value, *this, tween, true); return result; } ElementAnimationList::iterator Element::StartAnimation(PropertyId property_id, const Property* start_value, int num_iterations, bool alternate_direction, float delay, bool initiated_by_animation_property) { auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == property_id; }); if (it != animations.end()) { *it = ElementAnimation{}; } else { animations.emplace_back(); it = animations.end() - 1; } Property value; if (start_value) { value = *start_value; if (!value.definition) if(auto default_value = GetProperty(property_id)) value.definition = default_value->definition; } else if (auto default_value = GetProperty(property_id)) { value = *default_value; } if (value.definition) { ElementAnimationOrigin origin = (initiated_by_animation_property ? ElementAnimationOrigin::Animation : ElementAnimationOrigin::User); double start_time = Clock::GetElapsedTime() + (double)delay; *it = ElementAnimation{ property_id, origin, value, *this, start_time, 0.0f, num_iterations, alternate_direction }; } if(!it->IsInitalized()) { animations.erase(it); it = animations.end(); } return it; } bool Element::AddAnimationKeyTime(PropertyId property_id, const Property* target_value, float time, Tween tween) { if (!target_value) target_value = meta->style.GetProperty(property_id); if (!target_value) return false; ElementAnimation* animation = nullptr; for (auto& existing_animation : animations) { if (existing_animation.GetPropertyId() == property_id) { animation = &existing_animation; break; } } if (!animation) return false; bool result = animation->AddKey(time, *target_value, *this, tween, true); return result; } bool Element::StartTransition(const Transition & transition, const Property& start_value, const Property & target_value) { auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyId() == transition.id; }); if (it != animations.end() && !it->IsTransition()) return false; float duration = transition.duration; double start_time = Clock::GetElapsedTime() + (double)transition.delay; if (it == animations.end()) { // Add transition as new animation animations.push_back( ElementAnimation{ transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false } ); it = (animations.end() - 1); } else { // Compress the duration based on the progress of the current animation float f = it->GetInterpolationFactor(); f = 1.0f - (1.0f - f)*transition.reverse_adjustment_factor; duration = duration * f; // Replace old transition *it = ElementAnimation{ transition.id, ElementAnimationOrigin::Transition, start_value, *this, start_time, 0.0f, 1, false }; } bool result = it->AddKey(duration, target_value, *this, transition.tween, true); if (result) SetProperty(transition.id, start_value); else animations.erase(it); return result; } void Element::HandleTransitionProperty() { if(dirty_transition) { dirty_transition = false; // Remove all transitions that are no longer in our local list const TransitionList& keep_transitions = GetComputedValues().transition; if (keep_transitions.all) return; auto it_remove = animations.end(); if (keep_transitions.none) { // All transitions should be removed, but only touch the animations that originate from the 'transition' property. // Move all animations to be erased in a valid state at the end of the list, and erase later. it_remove = std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) -> bool { return !animation.IsTransition(); } ); } else { // Only remove the transitions that are not in our keep list. const auto& keep_transitions_list = keep_transitions.transitions; it_remove = std::partition(animations.begin(), animations.end(), [&keep_transitions_list](const ElementAnimation& animation) -> bool { if (!animation.IsTransition()) return true; auto it = std::find_if(keep_transitions_list.begin(), keep_transitions_list.end(), [&animation](const Transition& transition) { return animation.GetPropertyId() == transition.id; } ); bool keep_animation = (it != keep_transitions_list.end()); return keep_animation; } ); } // We can decide what to do with cancelled transitions here. for (auto it = it_remove; it != animations.end(); ++it) RemoveProperty(it->GetPropertyId()); animations.erase(it_remove, animations.end()); } } void Element::HandleAnimationProperty() { // Note: We are effectively restarting all animations whenever 'dirty_animation' is set. Use the dirty flag with care, // or find another approach which only updates actual "dirty" animations. if (dirty_animation) { dirty_animation = false; const AnimationList& animation_list = meta->computed_values.animation; bool element_has_animations = (!animation_list.empty() || !animations.empty()); StyleSheet* stylesheet = nullptr; if (element_has_animations) stylesheet = GetStyleSheet().get(); if (stylesheet) { // Remove existing animations { // We only touch the animations that originate from the 'animation' property. auto it_remove = std::partition(animations.begin(), animations.end(), [](const ElementAnimation & animation) { return animation.GetOrigin() != ElementAnimationOrigin::Animation; } ); // We can decide what to do with cancelled animations here. for (auto it = it_remove; it != animations.end(); ++it) RemoveProperty(it->GetPropertyId()); animations.erase(it_remove, animations.end()); } // Start animations for (const auto& animation : animation_list) { const Keyframes* keyframes_ptr = stylesheet->GetKeyframes(animation.name); if (keyframes_ptr && keyframes_ptr->blocks.size() >= 1 && !animation.paused) { auto& property_ids = keyframes_ptr->property_ids; auto& blocks = keyframes_ptr->blocks; bool has_from_key = (blocks[0].normalized_time == 0); bool has_to_key = (blocks.back().normalized_time == 1); // If the first key defines initial conditions for a given property, use those values, else, use this element's current values. for (PropertyId id : property_ids) StartAnimation(id, (has_from_key ? blocks[0].properties.GetProperty(id) : nullptr), animation.num_iterations, animation.alternate, animation.delay, true); // Add middle keys: Need to skip the first and last keys if they set the initial and end conditions, respectively. for (int i = (has_from_key ? 1 : 0); i < (int)blocks.size() + (has_to_key ? -1 : 0); i++) { // Add properties of current key to animation float time = blocks[i].normalized_time * animation.duration; for (auto& property : blocks[i].properties.GetProperties()) AddAnimationKeyTime(property.first, &property.second, time, animation.tween); } // If the last key defines end conditions for a given property, use those values, else, use this element's current values. float time = animation.duration; for (PropertyId id : property_ids) AddAnimationKeyTime(id, (has_to_key ? blocks.back().properties.GetProperty(id) : nullptr), time, animation.tween); } } } } } void Element::AdvanceAnimations() { if (!animations.empty()) { double time = Clock::GetElapsedTime(); for (auto& animation : animations) { Property property = animation.UpdateAndGetProperty(time, *this); if (property.unit != Property::UNKNOWN) SetProperty(animation.GetPropertyId(), property); } // Move all completed animations to the end of the list auto it_completed = std::partition(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return !animation.IsComplete(); }); std::vector dictionary_list; std::vector is_transition; dictionary_list.reserve(animations.end() - it_completed); is_transition.reserve(animations.end() - it_completed); for (auto it = it_completed; it != animations.end(); ++it) { const String& property_name = StyleSheetSpecification::GetPropertyName(it->GetPropertyId()); dictionary_list.emplace_back(); dictionary_list.back().emplace("property", Variant(property_name)); is_transition.push_back(it->IsTransition()); // Remove completed transition- and animation-initiated properties. // Should behave like in HandleTransitionProperty() and HandleAnimationProperty() respectively. if (it->GetOrigin() != ElementAnimationOrigin::User) RemoveProperty(it->GetPropertyId()); } // Need to erase elements before submitting event, as iterators might be invalidated when calling external code. animations.erase(it_completed, animations.end()); for (size_t i = 0; i < dictionary_list.size(); i++) DispatchEvent(is_transition[i] ? EventId::Transitionend : EventId::Animationend, dictionary_list[i]); } } void Element::DirtyTransformState(bool perspective_dirty, bool transform_dirty) { dirty_perspective |= perspective_dirty; dirty_transform |= transform_dirty; } void Element::UpdateTransformState() { if (!dirty_perspective && !dirty_transform) return; const ComputedValues& computed = meta->computed_values; const Vector2f pos = GetAbsoluteOffset(Box::BORDER); const Vector2f size = GetBox().GetSize(Box::BORDER); bool perspective_or_transform_changed = false; if (dirty_perspective) { // If perspective is set on this element, then it applies to our children. We just calculate it here, // and let the children's transform update merge it with their transform. bool had_perspective = (transform_state && transform_state->GetLocalPerspective()); float distance = computed.perspective; Vector2f vanish = Vector2f(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f); bool have_perspective = false; if (distance > 0.0f) { have_perspective = true; // Compute the vanishing point from the perspective origin if (computed.perspective_origin_x.type == Style::PerspectiveOrigin::Percentage) vanish.x = pos.x + computed.perspective_origin_x.value * 0.01f * size.x; else vanish.x = pos.x + computed.perspective_origin_x.value; if (computed.perspective_origin_y.type == Style::PerspectiveOrigin::Percentage) vanish.y = pos.y + computed.perspective_origin_y.value * 0.01f * size.y; else vanish.y = pos.y + computed.perspective_origin_y.value; } if (have_perspective) { // Equivalent to: Translate(x,y,0) * Perspective(distance) * Translate(-x,-y,0) Matrix4f perspective = Matrix4f::FromRows( { 1, 0, -vanish.x / distance, 0 }, { 0, 1, -vanish.y / distance, 0 }, { 0, 0, 1, 0 }, { 0, 0, -1 / distance, 1 } ); if (!transform_state) transform_state = std::make_unique(); perspective_or_transform_changed |= transform_state->SetLocalPerspective(&perspective); } else if (transform_state) transform_state->SetLocalPerspective(nullptr); perspective_or_transform_changed |= (have_perspective != had_perspective); dirty_perspective = false; } if (dirty_transform) { // We want to find the accumulated transform given all our ancestors. It is assumed here that the parent transform is already updated, // so that we only need to consider our local transform and combine it with our parent's transform and perspective matrices. bool had_transform = (transform_state && transform_state->GetTransform()); bool have_transform = false; Matrix4f transform = Matrix4f::Identity(); if (computed.transform) { // First find the current element's transform const int n = computed.transform->GetNumPrimitives(); for (int i = 0; i < n; ++i) { const Transforms::Primitive& primitive = computed.transform->GetPrimitive(i); Matrix4f matrix; if (primitive.ResolveTransform(matrix, *this)) { transform *= matrix; have_transform = true; } } if(have_transform) { // Compute the transform origin Vector3f transform_origin(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f, 0); if (computed.transform_origin_x.type == Style::TransformOrigin::Percentage) transform_origin.x = pos.x + computed.transform_origin_x.value * size.x * 0.01f; else transform_origin.x = pos.x + computed.transform_origin_x.value; if (computed.transform_origin_y.type == Style::TransformOrigin::Percentage) transform_origin.y = pos.y + computed.transform_origin_y.value * size.y * 0.01f; else transform_origin.y = pos.y + computed.transform_origin_y.value; transform_origin.z = computed.transform_origin_z; // Make the transformation apply relative to the transform origin transform = Matrix4f::Translate(transform_origin) * transform * Matrix4f::Translate(-transform_origin); } // We may want to include the local offsets here, as suggested by the CSS specs, so that the local transform is applied after the offset I believe // the motivation is. Then we would need to subtract the absolute zero-offsets during geometry submit whenever we have transforms. } if (parent && parent->transform_state) { // Apply the parent's local perspective and transform. // @performance: If we have no local transform and no parent perspective, we can effectively just point to the parent transform instead of copying it. const TransformState& parent_state = *parent->transform_state; if (auto parent_perspective = parent_state.GetLocalPerspective()) { transform = *parent_perspective * transform; have_transform = true; } if (auto parent_transform = parent_state.GetTransform()) { transform = *parent_transform * transform; have_transform = true; } } if (have_transform) { if (!transform_state) transform_state = std::make_unique(); perspective_or_transform_changed |= transform_state->SetTransform(&transform); } else if (transform_state) transform_state->SetTransform(nullptr); perspective_or_transform_changed |= (had_transform != have_transform); } // A change in perspective or transform will require an update to children transforms as well. if (perspective_or_transform_changed) { for (size_t i = 0; i < children.size(); i++) children[i]->DirtyTransformState(false, true); } // No reason to keep the transform state around if transform and perspective have been removed. if (transform_state && !transform_state->GetTransform() && !transform_state->GetLocalPerspective()) { transform_state.reset(); } } } }