/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "../../Include/RmlUi/Core/Math.h"
#include
#include
#include
namespace Rml {
namespace Core {
namespace Math {
const float RMLUI_PI = 3.141592653f;
static constexpr float FZERO = 0.0001f;
// Evaluates if a number is, or close to, zero.
RMLUICORE_API bool IsZero(float value)
{
return AbsoluteValue(value) < FZERO;
}
// Evaluates if two floating-point numbers are equal, or so similar that they could be considered
// so.
RMLUICORE_API bool AreEqual(float value_0, float value_1)
{
return IsZero(value_1 - value_0);
}
// Calculates the absolute value of a number.
RMLUICORE_API float AbsoluteValue(float value)
{
return fabsf(value);
}
// Calculates the cosine of an angle.
RMLUICORE_API float Cos(float angle)
{
return cosf(angle);
}
// Calculates the arc-cosine of an value.
RMLUICORE_API float ACos(float value)
{
return acosf(value);
}
// Calculates the sine of an angle.
RMLUICORE_API float Sin(float angle)
{
return sinf(angle);
}
// Calculates the arc-sine of an value.
RMLUICORE_API float ASin(float angle)
{
return asinf(angle);
}
// Calculates the tangent of an angle.
RMLUICORE_API float Tan(float angle)
{
return tanf(angle);
}
// Calculates the angle of a two-dimensional line.
RMLUICORE_API float ATan2(float y, float x)
{
return atan2f(y, x);
}
// Evaluates the natural exponential function on a value.
RMLUICORE_API float Exp(float value)
{
return expf(value);
}
// Converts an angle from radians to degrees.
RMLUICORE_API float RadiansToDegrees(float angle)
{
return angle * (180.0f / RMLUI_PI);
}
// Converts an angle from degrees to radians.
RMLUICORE_API float DegreesToRadians(float angle)
{
return angle * (RMLUI_PI / 180.0f);
}
// Normalises an angle in radians
RMLUICORE_API float NormaliseAngle(float angle)
{
return fmodf(angle, RMLUI_PI * 2.0f);
}
// Calculates the square root of a value.
RMLUICORE_API float SquareRoot(float value)
{
return sqrtf(value);
}
// Rounds a floating-point value to the nearest integer.
RMLUICORE_API float RoundFloat(float value)
{
return roundf(value);
}
// Rounds a floating-point value to the nearest integer.
RMLUICORE_API double RoundFloat(double value)
{
return round(value);
}
// Rounds a floating-point value to the nearest integer.
RMLUICORE_API int RoundToInteger(float value)
{
if (value > 0.0f)
return RealToInteger(value + 0.5f);
return RealToInteger(value - 0.5f);
}
// Rounds a floating-point value up to the nearest integer.
RMLUICORE_API int RoundUpToInteger(float value)
{
return RealToInteger(ceilf(value));
}
// Rounds a floating-point value down to the nearest integer.
RMLUICORE_API int RoundDownToInteger(float value)
{
return RealToInteger(floorf(value));
}
// Efficiently truncates a floating-point value into an integer.
RMLUICORE_API int RealToInteger(float value)
{
return int(value);
}
// Converts the given number to a power of two, rounding up if necessary.
RMLUICORE_API int ToPowerOfTwo(int number)
{
// Check if the number is already a power of two.
if ((number & (number - 1)) == 0)
return number;
// Assuming 31 useful bits in an int here ... !
for (int i = 31; i >= 0; i--)
{
if (number & (1 << i))
{
if (i == 31)
return 1 << 31;
else
return 1 << (i + 1);
}
}
return 0;
}
// Converts from a hexadecimal digit to decimal.
RMLUICORE_API int HexToDecimal(char hex_digit)
{
if (hex_digit >= '0' && hex_digit <= '9')
return hex_digit - '0';
else if (hex_digit >= 'a' && hex_digit <= 'f')
return 10 + (hex_digit - 'a');
else if (hex_digit >= 'A' && hex_digit <= 'F')
return 10 + (hex_digit - 'A');
return -1;
}
// Generates a random floating-point value between 0 and a user-specified value.
RMLUICORE_API float RandomReal(float max_value)
{
return (rand() / (float) RAND_MAX) * max_value;
}
// Generates a random integer value between 0 and a user-specified value.
RMLUICORE_API int RandomInteger(int max_value)
{
return (rand() % max_value);
}
// Generates a random boolean value, with equal chance of true or false.
RMLUICORE_API bool RandomBool()
{
return RandomInteger(2) == 1;
}
}
}
}