/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "LayoutTable.h" #include "LayoutDetails.h" #include "LayoutEngine.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/Profiling.h" #include "../../Include/RmlUi/Core/Types.h" #include #include #include namespace Rml { Vector2f LayoutTable::FormatTable(Box& box, Vector2f min_size, Vector2f max_size, Element* element_table) { const ComputedValues& computed_table = element_table->GetComputedValues(); Vector2f table_content_offset = box.GetPosition(); Vector2f table_initial_content_size = Vector2f(box.GetSize().x, Math::Max(0.0f, box.GetSize().y)); // When width or height is set, they act as minimum width or height, just as in CSS. if (computed_table.width.type != Style::Width::Auto) min_size.x = Math::Max(min_size.x, table_initial_content_size.x); if (computed_table.height.type != Style::Height::Auto) min_size.y = Math::Max(min_size.y, table_initial_content_size.y); Math::SnapToPixelGrid(table_content_offset, table_initial_content_size); const Vector2f table_gap = Vector2f( ResolveValue(computed_table.column_gap, table_initial_content_size.x), ResolveValue(computed_table.row_gap, table_initial_content_size.y) ); // Construct the layout object and format the table. LayoutTable layout_table(element_table, table_gap, table_content_offset, table_initial_content_size, min_size, max_size); layout_table.FormatTable(); // Update the box size based on the new table size. box.SetContent(layout_table.table_resulting_content_size); return layout_table.table_content_overflow_size; } LayoutTable::LayoutTable(Element* element_table, Vector2f table_gap, Vector2f table_content_offset, Vector2f table_initial_content_size, Vector2f table_min_size, Vector2f table_max_size) : element_table(element_table), table_min_size(table_min_size), table_max_size(table_max_size), table_gap(table_gap), table_content_offset(table_content_offset), table_initial_content_size(table_initial_content_size) { table_resulting_content_size = table_initial_content_size; } void LayoutTable::FormatTable() { DetermineColumnWidths(); // Now that we have the size of each column, we can move on to formatting the elements. // After we format and size an element, we record its height as well, and keep the maximum_height over all cells in the current row. // At the end of a row, we then know the height of the row, and we can proceed by positioning the cells. float table_cursor_y = table_content_offset.y; cells.reserve(columns.size()); const int num_table_children = element_table->GetNumChildren(); // Iterate through the table rows and row groups, and format them. for (int i = 0, row = -1; i < num_table_children; i++) { using Display = Style::Display; Element* element = element_table->GetChild(i); const Display display = element->GetDisplay(); if (display != Display::TableRow && display != Display::TableRowGroup) { if (row >= 0 && (display == Display::TableColumn || display == Display::TableColumnGroup)) { Log::Message(Log::LT_WARNING, "Table columns and column groups must precede any table rows. Ignoring element %s.", element->GetAddress().c_str()); } else if (display != Display::TableColumn && display != Display::TableColumnGroup && display != Display::None) { Log::Message(Log::LT_WARNING, "Only table columns, column groups, rows, and row groups are valid children of tables. Ignoring element %s.", element->GetAddress().c_str()); } continue; } if (display == Display::TableRow) { row += 1; table_cursor_y = FormatTableRow(row, element, table_cursor_y); } else if (display == Display::TableRowGroup) { const int num_row_group_children = element->GetNumChildren(); Box row_group_box; LayoutDetails::BuildBox(row_group_box, table_initial_content_size, element, false, 0.f); table_cursor_y += row_group_box.GetEdge(Box::MARGIN, Box::TOP); const float pos_border_y = table_cursor_y; table_cursor_y += row_group_box.GetEdge(Box::BORDER, Box::TOP) + row_group_box.GetEdge(Box::PADDING, Box::TOP); const float pos_content_y = table_cursor_y; for (int j = 0; j < num_row_group_children; j++) { using Display = Style::Display; Element* element_row = element->GetChild(j); const Display display_row = element_row->GetDisplay(); if (display_row != Display::TableRow) { if (display_row != Display::None) { Log::Message(Log::LT_WARNING, "Only table rows are valid children of table row groups. Ignoring element %s.", element_row->GetAddress().c_str()); } continue; } row += 1; table_cursor_y = FormatTableRow(row, element_row, table_cursor_y); } // Size and position the row group element const Vector2f row_group_element_content_size( table_resulting_content_size.x - row_group_box.GetSizeAcross(Box::HORIZONTAL, Box::MARGIN, Box::PADDING), Math::Max(row_group_box.GetSize().y, table_cursor_y - pos_content_y) ); row_group_box.SetContent(row_group_element_content_size); const Vector2f row_group_offset = Vector2f(table_content_offset.x + row_group_box.GetEdge(Box::MARGIN, Box::LEFT), pos_border_y); element->SetOffset(row_group_offset, element_table); element->SetBox(row_group_box); table_cursor_y += row_group_box.GetEdge(Box::MARGIN, Box::BOTTOM) + row_group_box.GetEdge(Box::BORDER, Box::BOTTOM) + row_group_box.GetEdge(Box::PADDING, Box::BOTTOM); } } table_resulting_content_size.y = Math::Clamp(table_cursor_y - table_content_offset.y, table_min_size.y, table_max_size.y); // Size and position the column and column group elements. auto FormatColumn = [this](Element* element, float content_width, float offset_x) { Box box; LayoutDetails::BuildBox(box, table_initial_content_size, element, false, 0.0f); const Vector2f content_size( content_width, table_resulting_content_size.y - box.GetSizeAcross(Box::VERTICAL, Box::MARGIN, Box::PADDING) ); box.SetContent(content_size); element->SetBox(box); element->SetOffset(table_content_offset + Vector2f(offset_x, box.GetEdge(Box::MARGIN, Box::TOP)), element_table); }; for (const Column& column : columns) { if (column.element_column) FormatColumn(column.element_column, column.column_width, column.column_offset); if (column.element_group) FormatColumn(column.element_group, column.group_width, column.group_offset); } if (!cells.empty()) { Log::Message(Log::LT_WARNING, "One or more cells span below the last row in table %s. They will not be formatted. Add additional rows, or adjust the rowspan attribute.", element_table->GetAddress().c_str()); } } void LayoutTable::DetermineColumnWidths() { // The column widths are determined entirely by any elements preceding the first row, and elements in the first row. // If has a fixed width, that is used. Otherwise, if has a fixed width, that is used. Otherwise the column is 'flexible' width. // All flexible widths are then sized to evenly fill the width of the table. // Both and can have border/padding which extend beyond the size of and , respectively. // Margins for , , are merged to produce a single left/right margin for each column, located outside . struct ColumnMetric { // All widths are defined in terms of the border width of cells in the column. bool has_fixed_width = false; float fixed_width = 0; float flex_width = 0; float min_width = 0; float max_width = 0; // The following are used for elements. // If the element spans multiple columns, only the first column it begins at has the element set. Element* element_column = nullptr; int column_span = 0; float column_padding_border_left = 0; float column_padding_border_right = 0; // The following are used for elements. // If the element spans multiple columns, only the first column it begins at has the element set. Element* element_group = nullptr; int group_span = 0; float group_padding_border_left = 0; float group_padding_border_right = 0; // The margins are the sum of the margins from all , , elements. float sum_margin_left = 0; float sum_margin_right = 0; }; Vector column_metrics; Element* element_row = nullptr; const int num_table_children = element_table->GetNumChildren(); // First, we find any and elements preceding the first table row. For each such element, // add the corresponding number of entries to 'column_metrics'. for (int i = 0, column_index = 0; i < num_table_children; i++) { Element* element = element_table->GetChild(i); const Style::Display display = element->GetDisplay(); auto PushGroup = [&column_metrics](Element* element_group, int group_span) { column_metrics.emplace_back(); ColumnMetric& metric = column_metrics.back(); metric.element_group = element_group; metric.group_span = group_span; for (int j = 1; j < group_span; j++) column_metrics.emplace_back(); }; auto PushColumn = [&column_metrics](Element* element_column, int column_span) { column_metrics.emplace_back(); ColumnMetric& metric = column_metrics.back(); metric.element_column = element_column; metric.column_span = column_span; for (int j = 1; j < column_span; j++) column_metrics.emplace_back(); }; if (display == Style::Display::TableColumn) { const int span = Math::Max(1, element->GetAttribute("span", 1)); PushColumn(element, span); column_index += span; } else if (display == Style::Display::TableColumnGroup) { const size_t column_begin = column_metrics.size(); int group_span = Math::Max(0, element->GetAttribute("span", 0)); if (group_span == 0) { // Look through the column group to find all its column children. const int num_column_group_children = element->GetNumChildren(); for (int j = 0; j < num_column_group_children; j++) { Element* child = element->GetChild(j); if (child->GetDisplay() == Style::Display::TableColumn) { const int column_span = Math::Max(1, child->GetAttribute("span", 1)); PushColumn(child, column_span); group_span += column_span; } } } else { PushGroup(element, group_span); } if (group_span > 0) { RMLUI_ASSERT(column_begin + size_t(group_span - 1) < column_metrics.size()); column_metrics[column_begin].element_group = element; column_metrics[column_begin].group_span = group_span; column_index += group_span; } } else if (display == Style::Display::TableRow) { // We found the first table row. Any columns found after this are considered invalid, break now. element_row = element; break; } else if (display == Style::Display::TableRowGroup) { // Look through the row group to find the first table row. const int num_row_group_children = element->GetNumChildren(); for (int j = 0; j < num_row_group_children; j++) { Element* child = element->GetChild(j); if (child->GetDisplay() == Style::Display::TableRow) { element_row = child; break; } } // If we found our first visible row, we are done with processing columns. Otherwise, keep looking. if (element_row) break; else continue; } } auto GetEdgeWidths = [this](float& margin_left, float& margin_right, float& padding_border_left, float& padding_border_right, const ComputedValues& computed) { margin_left = ResolveValue(computed.margin_left, table_initial_content_size.x); margin_right = ResolveValue(computed.margin_right, table_initial_content_size.x); padding_border_left = Math::Max(0.0f, ResolveValue(computed.padding_left, table_initial_content_size.x)) + Math::Max(0.0f, computed.border_left_width); padding_border_right = Math::Max(0.0f, ResolveValue(computed.padding_right, table_initial_content_size.x)) + Math::Max(0.0f, computed.border_right_width); }; // Fill the column metric with fixed, flexible and min/max widths, based on the element's computed values. auto InitializeColumnWidths = [this, GetEdgeWidths](ColumnMetric& metric, float& margin_left, float& margin_right, float& padding_border_left, float& padding_border_right, const ComputedValues& computed, int span, Style::BoxSizing column_target_box) { RMLUI_ASSERT(span >= 1); GetEdgeWidths(margin_left, margin_right, padding_border_left, padding_border_right, computed); const float padding_border_sum = padding_border_left + padding_border_right; // Find the min/max width. metric.min_width = ResolveValue(computed.min_width, table_initial_content_size.x); metric.max_width = (computed.max_width.value < 0.f ? FLT_MAX : ResolveValue(computed.max_width, table_initial_content_size.x)); if (column_target_box == Style::BoxSizing::ContentBox && computed.box_sizing == Style::BoxSizing::BorderBox) { metric.min_width = Math::Max(0.0f, metric.min_width - padding_border_sum); if (metric.max_width < FLT_MAX) metric.max_width = Math::Max(0.0f, metric.max_width - padding_border_sum); } else if (column_target_box == Style::BoxSizing::BorderBox && computed.box_sizing == Style::BoxSizing::ContentBox) { if (metric.min_width > 0) metric.min_width += padding_border_sum; if (metric.max_width < FLT_MAX) metric.max_width += padding_border_sum; } // Find fixed and flexible widths. if (computed.width.type == Style::Width::Auto) { metric.flex_width = 1; } else if (computed.width.type == Style::Width::Percentage && computed.width.value >= 100.f) { // Percentages >= 100% are resolved as flexible widths. metric.flex_width = Math::Max(0.01f * computed.width.value / float(span), 0.f); } else { float width = ResolveValue(computed.width, table_initial_content_size.x); if (column_target_box == Style::BoxSizing::ContentBox && computed.box_sizing == Style::BoxSizing::BorderBox) width = Math::Max(0.f, width - padding_border_sum); else if (column_target_box == Style::BoxSizing::BorderBox && computed.box_sizing == Style::BoxSizing::ContentBox) width += padding_border_sum; metric.flex_width = 0; metric.fixed_width = Math::Clamp(width, metric.min_width, metric.max_width); metric.min_width = metric.fixed_width; metric.max_width = metric.fixed_width; metric.has_fixed_width = true; } if (span > 1) { // Account for distribution of fixed widths over the columns we are spanning. const float width_factor = 1.f / float(span); metric.fixed_width *= width_factor; metric.min_width *= width_factor; if (metric.max_width < FLT_MAX) metric.max_width *= width_factor; } }; // First look for any and elements preceding any elements, use them for initializing the respective columns. for (int i = 0; i < (int)column_metrics.size(); i++) { if (Element* element_group = column_metrics[i].element_group) { // The padding/border/margin of column groups are used, but their widths are ignored. const ComputedValues& computed = element_group->GetComputedValues(); const int span = column_metrics[i].group_span; RMLUI_ASSERT(i + span - 1 < (int)column_metrics.size()); float margin_left, margin_right; float padding_border_left, padding_border_right; GetEdgeWidths(margin_left, margin_right, padding_border_left, padding_border_right, computed); // Add left edges. ColumnMetric& metric_begin = column_metrics[i]; metric_begin.group_padding_border_left = padding_border_left; metric_begin.sum_margin_left = margin_left; // Add right edges. ColumnMetric& metric_last = column_metrics[i + span - 1]; metric_last.group_padding_border_right = padding_border_right; metric_last.sum_margin_right = margin_right; // Set the width to flexible by default. This may be overrided later by or elements. for (int j = 0; j < span; j++) { ColumnMetric& metric = column_metrics[i + j]; metric.flex_width = 1; metric.max_width = FLT_MAX; } } if (Element* element_column = column_metrics[i].element_column) { // The padding/border/margin and widths of columns are used. const ComputedValues& computed = element_column->GetComputedValues(); const int span = column_metrics[i].column_span; RMLUI_ASSERT(i + span - 1 < (int)column_metrics.size()); float margin_left, margin_right; float padding_border_left, padding_border_right; ColumnMetric& metric_begin = column_metrics[i]; InitializeColumnWidths(metric_begin, margin_left, margin_right, padding_border_left, padding_border_right, computed, span, Style::BoxSizing::ContentBox); // Add left edges. Increment the values because the edges may already have been sized from . metric_begin.column_padding_border_left += padding_border_left; metric_begin.sum_margin_left += margin_left; // Add right edges. ColumnMetric& metric_last = column_metrics[i + span - 1]; metric_last.column_padding_border_right += padding_border_right; metric_last.sum_margin_right += margin_right; // The widths of all spanning columns are distributed equally. for (int j = 1; j < span; j++) { ColumnMetric& metric = column_metrics[i + j]; metric.has_fixed_width = metric_begin.has_fixed_width; metric.fixed_width = metric_begin.fixed_width; metric.flex_width = metric_begin.flex_width; metric.min_width = metric_begin.min_width; metric.max_width = metric_begin.max_width; } } } const int num_row_children = (!element_row ? 0 : element_row->GetNumChildren()); column_metrics.reserve(num_row_children); // Next, walk through the cells in the first table row. // - We add new columns here if they are not already represented by a or element. // - Otherwise, we merge the metrics of the cell with the existing column: If the existing column // has auto min-/max-/width, we use the cell's min-/max-/width if it has any. // Note: Cells use their border width to line up the column, while use their content width. for (int i = 0, column = 0; i < num_row_children; i++) { Element* element = element_row->GetChild(i); const ComputedValues& computed = element->GetComputedValues(); if (computed.display != Style::Display::TableCell) continue; const int colspan = Math::Max(1, element->GetAttribute("colspan", 1)); float margin_left, margin_right; float padding_border_left, padding_border_right; ColumnMetric column_metric; InitializeColumnWidths(column_metric, margin_left, margin_right, padding_border_left, padding_border_right, computed, colspan, Style::BoxSizing::BorderBox); column_metric.sum_margin_left = margin_left; // Merge with existing columns if they exist, or add new columns. for (int j = 0; j < colspan; j++) { if (j == 1) column_metric.sum_margin_left = 0; if (j == colspan - 1) column_metric.sum_margin_right = margin_right; if (j + column < (int)column_metrics.size()) { // Merge the existing column with the cell sizing data. ColumnMetric& destination = column_metrics[j + column]; if (!destination.has_fixed_width && column_metric.has_fixed_width) { destination.fixed_width = column_metric.fixed_width; destination.flex_width = 0; destination.has_fixed_width = true; } if (destination.min_width == 0) destination.min_width = column_metric.min_width; if (destination.max_width == FLT_MAX) destination.max_width = column_metric.max_width; destination.sum_margin_left += column_metric.sum_margin_left; destination.sum_margin_right += column_metric.sum_margin_right; } else { // No existing column, add a new one. column_metrics.emplace_back(column_metric); } } column += colspan; } if (column_metrics.empty()) { // No columns found in this table. return; } // The fixed spacing includes column gaps and the column and column group elements' padding, border, and margins. float sum_fixed_spacing = table_gap.x * float((int)column_metrics.size() - 1); for (const ColumnMetric& metric : column_metrics) { sum_fixed_spacing += metric.column_padding_border_left + metric.column_padding_border_right; sum_fixed_spacing += metric.group_padding_border_left + metric.group_padding_border_left; sum_fixed_spacing += metric.sum_margin_left + metric.sum_margin_right; } float table_available_width = 0.0f; // Now all the widths are determined in terms of fixed or flexible widths. // Next, convert any flexible widths to fixed widths by filling up the table width. for (bool continue_iteration = true; continue_iteration; ) { continue_iteration = false; float fr_to_px_ratio = 0; // Calculate the fr/px-ratio. [fr] is here the unit for flexible width. { float sum_fixed_width = sum_fixed_spacing; // [px] float sum_flex_width = 0; // [fr] for (const ColumnMetric& metric : column_metrics) { sum_flex_width += metric.flex_width; sum_fixed_width += (metric.flex_width == 0.f ? metric.fixed_width : 0.0f); } sum_flex_width = Math::Max(1.f, sum_flex_width); table_available_width = table_initial_content_size.x - sum_fixed_width; fr_to_px_ratio = Math::Max(0.0f, table_available_width) / sum_flex_width; } // Iterate through the columns and convert flexible widths to fixed widths. for (auto& metric : column_metrics) { if (metric.flex_width > 0) { const float fixed_flex_width = metric.flex_width * fr_to_px_ratio; metric.fixed_width = Math::Clamp(fixed_flex_width, metric.min_width, metric.max_width); table_available_width -= metric.fixed_width; if (metric.fixed_width != fixed_flex_width) { // We met a min/max-constraint, fix the size of this column. Start over with the procedure once we are done with all the columns. metric.flex_width = 0.0f; continue_iteration = true; } } } } // If we have distributed all the flexible space, and there is still space available, then distribute the available space over // the column widths while respecting max-widths. if (table_available_width > 0.5f) { const int num_columns = (int)column_metrics.size(); struct ColumnAvailableWidth { int column; float available_width; }; Vector col_available_widths(num_columns); // Find the available width of all columns. for (int i = 0; i < num_columns; i++) { col_available_widths[i].column = i; col_available_widths[i].available_width = column_metrics[i].max_width - column_metrics[i].fixed_width; } // Sort the columns by available width, smallest to largest. This lets us "fill up" the most constrained columns first. std::sort(col_available_widths.begin(), col_available_widths.end(), [](const ColumnAvailableWidth& c1, const ColumnAvailableWidth& c2) { return c1.available_width < c2.available_width; }); for (int i = 0; i < num_columns; i++) { const int column = col_available_widths[i].column; const int num_columns_remaining = num_columns - i; const float ideal_add_column_width = table_available_width / float(num_columns_remaining); const float add_column_width = Math::Min(ideal_add_column_width, col_available_widths[i].available_width); if (add_column_width > 0) { column_metrics[column].fixed_width += add_column_width; table_available_width = Math::Max(0.0f, table_available_width - add_column_width); } } } // Generate the column results based on the metrics. columns.resize(column_metrics.size()); float cursor_x = 0; for (size_t i = 0; i < column_metrics.size(); i++) { Column& col = columns[i]; const ColumnMetric& metric = column_metrics[i]; col.element_column = metric.element_column; col.element_group = metric.element_group; col.group_offset = cursor_x + metric.sum_margin_left; col.column_offset = col.group_offset + metric.group_padding_border_left; col.cell_offset = col.column_offset + metric.column_padding_border_left; // The group and column width will be extended if they span multiple columns (see next loop). col.group_width = metric.fixed_width + metric.column_padding_border_left + metric.column_padding_border_right; col.column_width = metric.fixed_width; col.cell_width = metric.fixed_width; cursor_x = col.cell_offset + metric.fixed_width + metric.column_padding_border_right + metric.group_padding_border_right + metric.sum_margin_right; if (i != column_metrics.size() - 1) cursor_x += table_gap.x; } // Adjust the table content width based on the accumulated column widths and spacing. table_resulting_content_size.x = Math::Clamp(cursor_x, table_min_size.x, table_max_size.x); // Extend column and column group widths to cover multiple columns for spanning column (group) elements. for (size_t i = 0; i < column_metrics.size(); i++) { const ColumnMetric& metric = column_metrics[i]; if (metric.element_column && metric.column_span > 1 && i + metric.column_span - 1 < column_metrics.size()) { Column& col = columns[i]; Column& col_last_span = columns[i + metric.column_span - 1]; col.column_width = col_last_span.cell_width + (col_last_span.cell_offset - col.cell_offset); } if (metric.element_group && metric.group_span > 1 && i + metric.group_span - 1 < column_metrics.size()) { Column& col = columns[i]; Column& col_last_span = columns[i + metric.group_span - 1]; col.group_width = col_last_span.group_width + (col_last_span.column_offset - col.column_offset); } } // Finally, snap boxes to the pixel grid. for (Column& col : columns) { Math::SnapToPixelGrid(col.cell_offset, col.cell_width); Math::SnapToPixelGrid(col.column_offset, col.column_width); Math::SnapToPixelGrid(col.group_offset, col.group_width); } } float LayoutTable::FormatTableRow(int row_index, Element* element_row, float row_position_y) { // First, determine the row height, then format all cells ending at this row. if (row_index > 0) row_position_y += table_gap.y; const ComputedValues& computed_row = element_row->GetComputedValues(); Vector2f table_cursor = Vector2f(table_content_offset.x, row_position_y); Box row_box; float row_min_height, row_max_height; LayoutDetails::BuildBox(row_box, table_initial_content_size, element_row, false, 0.f); LayoutDetails::GetMinMaxHeight(row_min_height, row_max_height, computed_row, row_box, table_initial_content_size.y); // Add the row top spacing to the cursor and row-spanning elements. table_cursor.y += row_box.GetEdge(Box::MARGIN, Box::TOP) + row_box.GetEdge(Box::BORDER, Box::TOP) + row_box.GetEdge(Box::PADDING, Box::TOP); const int num_cells_spanning_this_row = (int)cells.size(); const int num_row_children = element_row->GetNumChildren(); // For all child cell elements of this row, add them to the list of cells and determine their position. for (int j = 0, column = 0; j < num_row_children; j++) { Element* element_cell = element_row->GetChild(j); const ComputedValues& computed_cell = element_cell->GetComputedValues(); if (computed_cell.display != Style::Display::TableCell) { if (computed_cell.display != Style::Display::None) Log::Message(Log::LT_WARNING, "Only table cells are allowed as children of table rows. %s", element_cell->GetAddress().c_str()); continue; } const int row_span = Math::Max(1, element_cell->GetAttribute("rowspan", 1)); const int col_span = Math::Max(1, element_cell->GetAttribute("colspan", 1)); // Offset the column if we have any rowspan elements from previous rows overlapping with the current column. for (bool continue_offset_column = true; continue_offset_column; ) { continue_offset_column = false; for (int k = 0; k < num_cells_spanning_this_row; k++) { if (column >= cells[k].column_begin && column <= cells[k].column_last) { column = cells[k].column_last + 1; continue_offset_column = true; break; } } } const int column_last = column + col_span - 1; if (column_last >= (int)columns.size()) { Log::Message(Log::LT_WARNING, "Too many columns in table row %d: %s\nThe number of columns is %d, as determined by the table columns or the first table row.", row_index + 1, element_row->GetAddress().c_str(), (int)columns.size()); break; } // Find the horizontal offset for this cell. table_cursor.x = table_content_offset.x + columns[column].cell_offset; // Add the new cell to our list. cells.emplace_back(); Cell& cell = cells.back(); cell.row_last = row_index + row_span - 1; cell.column_begin = column; cell.column_last = column_last; cell.element_cell = element_cell; cell.table_offset = table_cursor; // Determine the cell's box for formatting later, we may get an indefinite (-1) vertical content size. Box& box = cell.box; LayoutDetails::BuildBox(box, table_initial_content_size, element_cell, false, 0.f); // Determine the cell's content width. Include any spanning columns in the cell width. const float cell_border_width = columns[column_last].cell_width + (columns[column_last].cell_offset - columns[column].cell_offset); const float content_width = Math::Max(0.0f, cell_border_width - box.GetSizeAcross(Box::HORIZONTAL, Box::BORDER, Box::PADDING)); box.SetContent(Vector2f(content_width, box.GetSize().y)); column += col_span; } // Partition the cells to determine those who end at this row. const auto it_cells_in_row_end = std::partition(cells.begin(), cells.end(), [row_index](const Cell& cell) { return cell.row_last == row_index; }); // Determine the row height. float row_content_height = 0; if (row_box.GetSize().y >= 0) { // The row has a definite size, use that. row_content_height = row_box.GetSize().y; } else { // The row does not have a definite size, we will use the maximum height of all its cells to determine the row height. // For each cell in this row, or spanning onto this row from any previous rows, increase the row height as necessary to make the cell fit. for (auto it = cells.begin(); it != it_cells_in_row_end; ++it) { Cell& cell = *it; Element* element_cell = cell.element_cell; Box& box = cell.box; // If the cell's height is also indefinite, we need to format it to get its height. if (box.GetSize().y < 0) { LayoutEngine::FormatElement(element_cell, table_initial_content_size, &box); box.SetContent(element_cell->GetBox().GetSize()); } const float cell_inrow_height = box.GetSizeAcross(Box::VERTICAL, Box::BORDER) - (table_cursor.y - cell.table_offset.y); row_content_height = Math::Max(row_content_height, cell_inrow_height); } } row_content_height = Math::Clamp(row_content_height, row_min_height, row_max_height); table_cursor.y += row_content_height; // Now we have the height of the row, position and format each cell. // Loop through every cell ending at this row. for (auto it = cells.begin(); it != it_cells_in_row_end; ++it) { Cell& cell = *it; Element* element_cell = cell.element_cell; Box& box = cell.box; Style::VerticalAlign vertical_align = cell.element_cell->GetComputedValues().vertical_align; const float cell_border_height = table_cursor.y - cell.table_offset.y; if (box.GetSize().y < 0) { const bool is_aligned = (vertical_align.type == Style::VerticalAlign::Middle || vertical_align.type == Style::VerticalAlign::Bottom); if (is_aligned) { // The size of the cell is indefinite, we need to get the height by formatting the cell. LayoutEngine::FormatElement(element_cell, table_initial_content_size, &box); box.SetContent(element_cell->GetBox().GetSize()); } else { box.SetContent(Vector2f(box.GetSize().x, Math::Max(0.0f, cell_border_height - box.GetSizeAcross(Box::VERTICAL, Box::BORDER, Box::PADDING)))); } } const float available_height = cell_border_height - box.GetSizeAcross(Box::VERTICAL, Box::BORDER); if (available_height > 0) { // Pad the cell for vertical alignment float add_padding_top; float add_padding_bottom; switch (vertical_align.type) { case Style::VerticalAlign::Bottom: add_padding_top = available_height; add_padding_bottom = 0; break; case Style::VerticalAlign::Middle: add_padding_top = 0.5f * available_height; add_padding_bottom = 0.5f * available_height; break; case Style::VerticalAlign::Top: default: add_padding_top = 0.0f; add_padding_bottom = available_height; } box.SetEdge(Box::PADDING, Box::TOP, box.GetEdge(Box::PADDING, Box::TOP) + add_padding_top); box.SetEdge(Box::PADDING, Box::BOTTOM, box.GetEdge(Box::PADDING, Box::BOTTOM) + add_padding_bottom); } // Format the cell in a new block formatting context. // @performance: We may have already formatted the element during the above procedure without the extra padding. In that case, we may // instead set the new box and offset all descending elements whose offset parent is the cell, to account for the new padding box. // That should be faster than formatting the element again, but there may be edge-cases not accounted for. Vector2f cell_visible_overflow_size; LayoutEngine::FormatElement(element_cell, table_initial_content_size, &box, &cell_visible_overflow_size); // Set the position of the element within the the table container element_cell->SetOffset(cell.table_offset, element_table); // The cell contents may overflow, propagate this to the table. table_content_overflow_size.x = Math::Max(table_content_overflow_size.x, cell.table_offset.x - table_content_offset.x + cell_visible_overflow_size.x); table_content_overflow_size.y = Math::Max(table_content_overflow_size.y, cell.table_offset.y - table_content_offset.y + cell_visible_overflow_size.y); } // Remove the formatted cells from pending cells.erase(cells.begin(), it_cells_in_row_end); // Size and position the row element const Vector2f row_element_content_size( table_resulting_content_size.x - row_box.GetSizeAcross(Box::HORIZONTAL, Box::MARGIN, Box::PADDING), Math::Max(row_box.GetSize().y, row_content_height) ); row_box.SetContent(row_element_content_size); const Vector2f row_element_offset = Vector2f(table_content_offset.x, row_position_y) + Vector2f(row_box.GetEdge(Box::MARGIN, Box::LEFT), row_box.GetEdge(Box::MARGIN, Box::TOP)); element_row->SetOffset(row_element_offset, element_table); element_row->SetBox(row_box); // Add the row bottom spacing to the cursor and any row-spanning cells. const float row_bottom_spacing = row_box.GetEdge(Box::MARGIN, Box::BOTTOM) + row_box.GetEdge(Box::BORDER, Box::BOTTOM) + row_box.GetEdge(Box::PADDING, Box::BOTTOM); table_cursor.y += row_bottom_spacing; return table_cursor.y; } } // namespace Rml