/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019-2023 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "DecoratorGradient.h"
#include "../../Include/RmlUi/Core/ComputedValues.h"
#include "../../Include/RmlUi/Core/Element.h"
#include "../../Include/RmlUi/Core/ElementUtilities.h"
#include "../../Include/RmlUi/Core/Geometry.h"
#include "../../Include/RmlUi/Core/GeometryUtilities.h"
#include "../../Include/RmlUi/Core/Math.h"
#include "../../Include/RmlUi/Core/PropertyDefinition.h"
#include "ComputeProperty.h"
#include "DecoratorShader.h"
namespace Rml {
// Returns the point along the input line ('line_point', 'line_vector') closest to the input 'point'.
static Vector2f IntersectionPointToLineNormal(const Vector2f point, const Vector2f line_point, const Vector2f line_vector)
{
const Vector2f delta = line_point - point;
return line_point - delta.DotProduct(line_vector) * line_vector;
}
/// Convert all color stop positions to normalized numbers.
/// @param[in] element The element to resolve lengths against.
/// @param[in] gradient_line_length The length of the gradient line, along which color stops are placed.
/// @param[in] soft_spacing The desired minimum distance between stops to avoid aliasing, in normalized number units.
/// @param[in] unresolved_stops
/// @return A list of resolved color stops, all in number units.
static ColorStopList ResolveColorStops(Element* element, const float gradient_line_length, const float soft_spacing,
const ColorStopList& unresolved_stops)
{
ColorStopList stops = unresolved_stops;
const int num_stops = (int)stops.size();
// Resolve all lengths, percentages, and angles to numbers. After this step all stops with a unit other than Number are considered as Auto.
for (ColorStop& stop : stops)
{
if (Any(stop.position.unit & Unit::LENGTH))
{
const float resolved_position = element->ResolveLength(stop.position);
stop.position = NumericValue(resolved_position / gradient_line_length, Unit::NUMBER);
}
else if (stop.position.unit == Unit::PERCENT)
{
stop.position = NumericValue(stop.position.number * 0.01f, Unit::NUMBER);
}
else if (Any(stop.position.unit & Unit::ANGLE))
{
stop.position = NumericValue(ComputeAngle(stop.position) * (1.f / (2.f * Math::RMLUI_PI)), Unit::NUMBER);
}
}
// Resolve auto positions of the first and last color stops.
auto resolve_edge_stop = [](ColorStop& stop, float auto_to_number) {
if (stop.position.unit != Unit::NUMBER)
stop.position = NumericValue(auto_to_number, Unit::NUMBER);
};
resolve_edge_stop(stops[0], 0.f);
resolve_edge_stop(stops[num_stops - 1], 1.f);
// Ensures that color stop positions are strictly increasing, and have at least 1px spacing to avoid aliasing.
auto nudge_stop = [prev_position = stops[0].position.number](ColorStop& stop, bool update_prev = true) mutable {
stop.position.number = Math::Max(stop.position.number, prev_position);
if (update_prev)
prev_position = stop.position.number;
};
int auto_begin_i = -1;
// Evenly space stops with sequential auto indices, and nudge stop positions to ensure strictly increasing positions.
for (int i = 1; i < num_stops; i++)
{
ColorStop& stop = stops[i];
if (stop.position.unit != Unit::NUMBER)
{
// Mark the first of any consecutive auto stops.
if (auto_begin_i < 0)
auto_begin_i = i;
}
else if (auto_begin_i < 0)
{
// The stop has a definite position and there are no previous autos to handle, just ensure it is properly spaced.
nudge_stop(stop);
}
else
{
// Space out all the previous auto stops, indices [auto_begin_i, i).
nudge_stop(stop, false);
const int num_auto_stops = i - auto_begin_i;
const float t0 = stops[auto_begin_i - 1].position.number;
const float t1 = stop.position.number;
for (int j = 0; j < num_auto_stops; j++)
{
const float fraction_along_t0_t1 = float(j + 1) / float(num_auto_stops + 1);
stops[j + auto_begin_i].position = NumericValue(t0 + (t1 - t0) * fraction_along_t0_t1, Unit::NUMBER);
nudge_stop(stops[j + auto_begin_i]);
}
nudge_stop(stop);
auto_begin_i = -1;
}
}
// Ensures that stops are placed some minimum distance from each other to avoid aliasing, if possible.
for (int i = 1; i < num_stops - 1; i++)
{
const float p0 = stops[i - 1].position.number;
const float p1 = stops[i].position.number;
const float p2 = stops[i + 1].position.number;
float& new_position = stops[i].position.number;
if (p1 - p0 < soft_spacing)
{
if (p2 - p0 < 2.f * soft_spacing)
new_position = 0.5f * (p2 + p0);
else
new_position = p0 + soft_spacing;
}
}
RMLUI_ASSERT(std::all_of(stops.begin(), stops.end(), [](auto&& stop) { return stop.position.unit == Unit::NUMBER; }));
return stops;
}
// Compute a 2d-position property value into a percentage-length vector.
static Vector2Numeric ComputePosition(const Property* p_position[2])
{
Vector2Numeric position;
for (int dimension = 0; dimension < 2; dimension++)
{
NumericValue& value = position[dimension];
const Property& property = *p_position[dimension];
if (property.unit == Unit::KEYWORD)
{
enum { TOP_LEFT, CENTER, BOTTOM_RIGHT };
switch (property.Get())
{
case TOP_LEFT: value = NumericValue(0.f, Unit::PERCENT); break;
case CENTER: value = NumericValue(50.f, Unit::PERCENT); break;
case BOTTOM_RIGHT: value = NumericValue(100.f, Unit::PERCENT); break;
}
}
else
{
value = property.GetNumericValue();
}
}
return position;
}
DecoratorStraightGradient::DecoratorStraightGradient() {}
DecoratorStraightGradient::~DecoratorStraightGradient() {}
bool DecoratorStraightGradient::Initialise(const Direction in_direction, const Colourb in_start, const Colourb in_stop)
{
direction = in_direction;
start = in_start;
stop = in_stop;
return true;
}
DecoratorDataHandle DecoratorStraightGradient::GenerateElementData(Element* element, BoxArea paint_area) const
{
Geometry* geometry = new Geometry();
const Box& box = element->GetBox();
const ComputedValues& computed = element->GetComputedValues();
const float opacity = computed.opacity();
GeometryUtilities::GenerateBackground(geometry, element->GetBox(), Vector2f(0), computed.border_radius(), ColourbPremultiplied(), paint_area);
ColourbPremultiplied colour_start = start.ToPremultiplied(opacity);
ColourbPremultiplied colour_stop = stop.ToPremultiplied(opacity);
const Vector2f offset = box.GetPosition(paint_area);
const Vector2f size = box.GetSize(paint_area);
Vector& vertices = geometry->GetVertices();
if (direction == Direction::Horizontal)
{
for (int i = 0; i < (int)vertices.size(); i++)
{
const float t = Math::Clamp((vertices[i].position.x - offset.x) / size.x, 0.0f, 1.0f);
vertices[i].colour = Math::RoundedLerp(t, colour_start, colour_stop);
}
}
else if (direction == Direction::Vertical)
{
for (int i = 0; i < (int)vertices.size(); i++)
{
const float t = Math::Clamp((vertices[i].position.y - offset.y) / size.y, 0.0f, 1.0f);
vertices[i].colour = Math::RoundedLerp(t, colour_start, colour_stop);
}
}
return reinterpret_cast(geometry);
}
void DecoratorStraightGradient::ReleaseElementData(DecoratorDataHandle element_data) const
{
delete reinterpret_cast(element_data);
}
void DecoratorStraightGradient::RenderElement(Element* element, DecoratorDataHandle element_data) const
{
auto* data = reinterpret_cast(element_data);
data->Render(element->GetAbsoluteOffset(BoxArea::Border));
}
DecoratorStraightGradientInstancer::DecoratorStraightGradientInstancer()
{
ids.direction = RegisterProperty("direction", "horizontal").AddParser("keyword", "horizontal, vertical").GetId();
ids.start = RegisterProperty("start-color", "#ffffff").AddParser("color").GetId();
ids.stop = RegisterProperty("stop-color", "#ffffff").AddParser("color").GetId();
RegisterShorthand("decorator", "direction, start-color, stop-color", ShorthandType::FallThrough);
}
DecoratorStraightGradientInstancer::~DecoratorStraightGradientInstancer() {}
SharedPtr DecoratorStraightGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_,
const DecoratorInstancerInterface& /*interface_*/)
{
using Direction = DecoratorStraightGradient::Direction;
Direction direction;
if (name == "horizontal-gradient")
direction = Direction::Horizontal;
else if (name == "vertical-gradient")
direction = Direction::Vertical;
else
{
direction = (Direction)properties_.GetProperty(ids.direction)->Get();
Log::Message(Log::LT_WARNING,
"Decorator syntax 'gradient(horizontal|vertical ...)' is deprecated, please replace with 'horizontal-gradient(...)' or "
"'vertical-gradient(...)'");
}
Colourb start = properties_.GetProperty(ids.start)->Get();
Colourb stop = properties_.GetProperty(ids.stop)->Get();
auto decorator = MakeShared();
if (decorator->Initialise(direction, start, stop))
return decorator;
return nullptr;
}
DecoratorLinearGradient::DecoratorLinearGradient() {}
DecoratorLinearGradient::~DecoratorLinearGradient() {}
bool DecoratorLinearGradient::Initialise(bool in_repeating, Corner in_corner, float in_angle, const ColorStopList& in_color_stops)
{
repeating = in_repeating;
corner = in_corner;
angle = in_angle;
color_stops = in_color_stops;
return !color_stops.empty();
}
DecoratorDataHandle DecoratorLinearGradient::GenerateElementData(Element* element, BoxArea paint_area) const
{
RenderInterface* render_interface = GetRenderInterface();
if (!render_interface)
return INVALID_DECORATORDATAHANDLE;
RMLUI_ASSERT(!color_stops.empty());
const Box& box = element->GetBox();
const Vector2f dimensions = box.GetSize(paint_area);
LinearGradientShape gradient_shape = CalculateShape(dimensions);
// One-pixel minimum color stop spacing to avoid aliasing.
const float soft_spacing = 1.f / gradient_shape.length;
ColorStopList resolved_stops = ResolveColorStops(element, gradient_shape.length, soft_spacing, color_stops);
CompiledShaderHandle shader_handle = render_interface->CompileShader("linear-gradient",
Dictionary{
{"angle", Variant(angle)},
{"p0", Variant(gradient_shape.p0)},
{"p1", Variant(gradient_shape.p1)},
{"length", Variant(gradient_shape.length)},
{"repeating", Variant(repeating)},
{"color_stop_list", Variant(std::move(resolved_stops))},
});
if (!shader_handle)
return INVALID_DECORATORDATAHANDLE;
Geometry geometry;
const ComputedValues& computed = element->GetComputedValues();
const byte alpha = byte(computed.opacity() * 255.f);
GeometryUtilities::GenerateBackground(&geometry, box, Vector2f(), computed.border_radius(), ColourbPremultiplied(alpha, alpha), paint_area);
const Vector2f render_offset = box.GetPosition(paint_area);
for (Vertex& vertex : geometry.GetVertices())
vertex.tex_coord = vertex.position - render_offset;
ShaderElementData* element_data = GetShaderElementDataPool().AllocateAndConstruct(std::move(geometry), shader_handle);
return reinterpret_cast(element_data);
}
void DecoratorLinearGradient::ReleaseElementData(DecoratorDataHandle handle) const
{
ShaderElementData* element_data = reinterpret_cast(handle);
GetRenderInterface()->ReleaseCompiledShader(element_data->shader);
GetShaderElementDataPool().DestroyAndDeallocate(element_data);
}
void DecoratorLinearGradient::RenderElement(Element* element, DecoratorDataHandle handle) const
{
ShaderElementData* element_data = reinterpret_cast(handle);
element_data->geometry.RenderWithShader(element_data->shader, element->GetAbsoluteOffset(BoxArea::Border));
}
DecoratorLinearGradient::LinearGradientShape DecoratorLinearGradient::CalculateShape(Vector2f dim) const
{
using uint = unsigned int;
const Vector2f corners[(int)Corner::Count] = {Vector2f(dim.x, 0), dim, Vector2f(0, dim.y), Vector2f(0, 0)};
const Vector2f center = 0.5f * dim;
uint quadrant = 0;
Vector2f line_vector;
if (corner == Corner::None)
{
// Find the target quadrant and unit vector for the given angle.
quadrant = uint(Math::NormaliseAngle(angle) * (4.f / (2.f * Math::RMLUI_PI))) % 4u;
line_vector = Vector2f(Math::Sin(angle), -Math::Cos(angle));
}
else
{
// Quadrant given by the corner, need to find the vector perpendicular to the line connecting the neighboring corners.
quadrant = uint(corner);
const Vector2f v_neighbors = (corners[(quadrant + 1u) % 4u] - corners[(quadrant + 3u) % 4u]).Normalise();
line_vector = {v_neighbors.y, -v_neighbors.x};
}
const uint quadrant_opposite = (quadrant + 2u) % 4u;
const Vector2f starting_point = IntersectionPointToLineNormal(corners[quadrant_opposite], center, line_vector);
const Vector2f ending_point = IntersectionPointToLineNormal(corners[quadrant], center, line_vector);
const float length = Math::Absolute(dim.x * line_vector.x) + Math::Absolute(-dim.y * line_vector.y);
return LinearGradientShape{starting_point, ending_point, length};
}
DecoratorLinearGradientInstancer::DecoratorLinearGradientInstancer()
{
ids.angle = RegisterProperty("angle", "180deg").AddParser("angle").GetId();
ids.direction_to = RegisterProperty("to", "unspecified").AddParser("keyword", "unspecified, to").GetId();
// See Direction enum for keyword values.
ids.direction_x = RegisterProperty("direction-x", "unspecified").AddParser("keyword", "unspecified=0, left=8, right=2").GetId();
ids.direction_y = RegisterProperty("direction-y", "unspecified").AddParser("keyword", "unspecified=0, top=1, bottom=4").GetId();
ids.color_stop_list = RegisterProperty("color-stops", "").AddParser("color_stop_list").GetId();
RegisterShorthand("direction", "angle, to, direction-x, direction-y, direction-x", ShorthandType::FallThrough);
RegisterShorthand("decorator", "direction?, color-stops#", ShorthandType::RecursiveCommaSeparated);
}
DecoratorLinearGradientInstancer::~DecoratorLinearGradientInstancer() {}
SharedPtr DecoratorLinearGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_,
const DecoratorInstancerInterface& /*interface_*/)
{
const Property* p_angle = properties_.GetProperty(ids.angle);
const Property* p_direction_to = properties_.GetProperty(ids.direction_to);
const Property* p_direction_x = properties_.GetProperty(ids.direction_x);
const Property* p_direction_y = properties_.GetProperty(ids.direction_y);
const Property* p_color_stop_list = properties_.GetProperty(ids.color_stop_list);
if (!p_angle || !p_direction_to || !p_direction_x || !p_direction_y || !p_color_stop_list)
return nullptr;
using Corner = DecoratorLinearGradient::Corner;
Corner corner = Corner::None;
float angle = 0.f;
if (p_direction_to->Get())
{
const Direction direction = (Direction)(p_direction_x->Get() | p_direction_y->Get());
switch (direction)
{
case Direction::Top: angle = 0.f; break;
case Direction::Right: angle = 0.5f * Math::RMLUI_PI; break;
case Direction::Bottom: angle = Math::RMLUI_PI; break;
case Direction::Left: angle = 1.5f * Math::RMLUI_PI; break;
case Direction::TopLeft: corner = Corner::TopLeft; break;
case Direction::TopRight: corner = Corner::TopRight; break;
case Direction::BottomRight: corner = Corner::BottomRight; break;
case Direction::BottomLeft: corner = Corner::BottomLeft; break;
case Direction::None:
default: return nullptr; break;
}
}
else
{
angle = ComputeAngle(p_angle->GetNumericValue());
}
if (p_color_stop_list->unit != Unit::COLORSTOPLIST)
return nullptr;
const ColorStopList& color_stop_list = p_color_stop_list->value.GetReference();
const bool repeating = (name == "repeating-linear-gradient");
auto decorator = MakeShared();
if (decorator->Initialise(repeating, corner, angle, color_stop_list))
return decorator;
return nullptr;
}
DecoratorRadialGradient::DecoratorRadialGradient() {}
DecoratorRadialGradient::~DecoratorRadialGradient() {}
bool DecoratorRadialGradient::Initialise(bool in_repeating, Shape in_shape, SizeType in_size_type, Vector2Numeric in_size, Vector2Numeric in_position,
const ColorStopList& in_color_stops)
{
repeating = in_repeating;
shape = in_shape;
size_type = in_size_type;
size = in_size;
position = in_position;
color_stops = in_color_stops;
return !color_stops.empty();
}
DecoratorDataHandle DecoratorRadialGradient::GenerateElementData(Element* element, BoxArea box_area) const
{
RenderInterface* render_interface = GetRenderInterface();
if (!render_interface)
return INVALID_DECORATORDATAHANDLE;
RMLUI_ASSERT(!color_stops.empty() && (shape == Shape::Circle || shape == Shape::Ellipse));
const Box& box = element->GetBox();
const Vector2f dimensions = box.GetSize(box_area);
RadialGradientShape gradient_shape = CalculateRadialGradientShape(element, dimensions);
// One-pixel minimum color stop spacing to avoid aliasing.
const float soft_spacing = 1.f / Math::Min(gradient_shape.radius.x, gradient_shape.radius.y);
ColorStopList resolved_stops = ResolveColorStops(element, gradient_shape.radius.x, soft_spacing, color_stops);
CompiledShaderHandle shader_handle = render_interface->CompileShader("radial-gradient",
Dictionary{
{"center", Variant(gradient_shape.center)},
{"radius", Variant(gradient_shape.radius)},
{"repeating", Variant(repeating)},
{"color_stop_list", Variant(std::move(resolved_stops))},
});
Geometry geometry;
const ComputedValues& computed = element->GetComputedValues();
const byte alpha = byte(computed.opacity() * 255.f);
GeometryUtilities::GenerateBackground(&geometry, box, Vector2f(), computed.border_radius(), ColourbPremultiplied(alpha, alpha), box_area);
const Vector2f render_offset = box.GetPosition(box_area);
for (Vertex& vertex : geometry.GetVertices())
vertex.tex_coord = vertex.position - render_offset;
ShaderElementData* element_data = GetShaderElementDataPool().AllocateAndConstruct(std::move(geometry), shader_handle);
return reinterpret_cast(element_data);
}
void DecoratorRadialGradient::ReleaseElementData(DecoratorDataHandle handle) const
{
ShaderElementData* element_data = reinterpret_cast(handle);
GetRenderInterface()->ReleaseCompiledShader(element_data->shader);
GetShaderElementDataPool().DestroyAndDeallocate(element_data);
}
void DecoratorRadialGradient::RenderElement(Element* element, DecoratorDataHandle handle) const
{
ShaderElementData* element_data = reinterpret_cast(handle);
element_data->geometry.RenderWithShader(element_data->shader, element->GetAbsoluteOffset(BoxArea::Border));
}
DecoratorRadialGradient::RadialGradientShape DecoratorRadialGradient::CalculateRadialGradientShape(Element* element, Vector2f dimensions) const
{
RadialGradientShape result;
result.center.x = element->ResolveNumericValue(position.x, dimensions.x);
result.center.y = element->ResolveNumericValue(position.y, dimensions.y);
const bool is_circle = (shape == Shape::Circle);
auto Abs = [](Vector2f v) { return Vector2f{Math::Absolute(v.x), Math::Absolute(v.y)}; };
auto d = dimensions;
auto c = result.center;
Vector2f r;
switch (size_type)
{
case SizeType::ClosestSide:
{
r = Abs(Math::Min(c, d - c));
result.radius = (is_circle ? Vector2f(Math::Min(r.x, r.y)) : r);
}
break;
case SizeType::FarthestSide:
{
r = Abs(Math::Max(c, d - c));
result.radius = (is_circle ? Vector2f(Math::Max(r.x, r.y)) : r);
}
break;
case SizeType::ClosestCorner:
case SizeType::FarthestCorner:
{
if (size_type == SizeType::ClosestCorner)
r = Abs(Math::Min(c, d - c)); // Same as closest-side.
else
r = Abs(Math::Max(c, d - c)); // Same as farthest-side.
if (is_circle)
{
result.radius = Vector2f(r.Magnitude());
}
else
{
r = Math::Max(r, Vector2f(1)); // In case r.x ~= 0
result.radius.x = Math::SquareRoot(2.f * r.x * r.x);
result.radius.y = result.radius.x * (r.y / r.x);
}
}
break;
case SizeType::LengthPercentage:
{
result.radius.x = element->ResolveNumericValue(size.x, d.x);
result.radius.y = (is_circle ? result.radius.x : element->ResolveNumericValue(size.y, d.y));
result.radius = Abs(result.radius);
}
break;
}
result.radius = Math::Max(result.radius, Vector2f(1.f));
return result;
}
DecoratorRadialGradientInstancer::DecoratorRadialGradientInstancer()
{
ids.ending_shape = RegisterProperty("ending-shape", "unspecified").AddParser("keyword", "circle, ellipse, unspecified").GetId();
ids.size_x = RegisterProperty("size-x", "farthest-corner")
.AddParser("keyword", "closest-side, farthest-side, closest-corner, farthest-corner")
.AddParser("length_percent")
.GetId();
ids.size_y = RegisterProperty("size-y", "unspecified").AddParser("keyword", "unspecified").AddParser("length_percent").GetId();
RegisterProperty("at", "unspecified").AddParser("keyword", "at, unspecified");
ids.position_x = RegisterProperty("position-x", "center").AddParser("keyword", "left, center, right").AddParser("length_percent").GetId();
ids.position_y = RegisterProperty("position-y", "center").AddParser("keyword", "top, center, bottom").AddParser("length_percent").GetId();
ids.color_stop_list = RegisterProperty("color-stops", "").AddParser("color_stop_list").GetId();
RegisterShorthand("shape", "ending-shape, size-x, size-y, at, position-x, position-y, position-x", ShorthandType::FallThrough);
RegisterShorthand("decorator", "shape?, color-stops#", ShorthandType::RecursiveCommaSeparated);
}
DecoratorRadialGradientInstancer::~DecoratorRadialGradientInstancer() {}
SharedPtr DecoratorRadialGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_,
const DecoratorInstancerInterface& /*interface_*/)
{
const Property* p_ending_shape = properties_.GetProperty(ids.ending_shape);
const Property* p_size_x = properties_.GetProperty(ids.size_x);
const Property* p_size_y = properties_.GetProperty(ids.size_y);
const Property* p_position[2] = {properties_.GetProperty(ids.position_x), properties_.GetProperty(ids.position_y)};
const Property* p_color_stop_list = properties_.GetProperty(ids.color_stop_list);
if (!p_ending_shape || !p_size_x || !p_size_y || !p_position[0] || !p_position[1] || !p_color_stop_list)
return nullptr;
using SizeType = DecoratorRadialGradient::SizeType;
using Shape = DecoratorRadialGradient::Shape;
Shape shape = (Shape)p_ending_shape->Get();
if (shape == Shape::Unspecified)
{
const bool circle_sized = (Any(p_size_x->unit & Unit::LENGTH_PERCENT) && p_size_y->unit == Unit::KEYWORD);
shape = (circle_sized ? Shape::Circle : Shape::Ellipse);
}
if (shape == Shape::Circle && (p_size_x->unit == Unit::PERCENT || p_size_y->unit != Unit::KEYWORD))
return nullptr;
SizeType size_type = {};
Vector2Numeric size;
if (p_size_x->unit == Unit::KEYWORD)
{
size_type = (SizeType)p_size_x->Get();
}
else
{
size_type = SizeType::LengthPercentage;
size.x = p_size_x->GetNumericValue();
size.y = (p_size_y->unit == Unit::KEYWORD ? size.x : p_size_y->GetNumericValue());
}
const Vector2Numeric position = ComputePosition(p_position);
const bool repeating = (name == "repeating-radial-gradient");
if (p_color_stop_list->unit != Unit::COLORSTOPLIST)
return nullptr;
const ColorStopList& color_stop_list = p_color_stop_list->value.GetReference();
auto decorator = MakeShared();
if (decorator->Initialise(repeating, shape, size_type, size, position, color_stop_list))
return decorator;
return nullptr;
}
DecoratorConicGradient::DecoratorConicGradient() {}
DecoratorConicGradient::~DecoratorConicGradient() {}
bool DecoratorConicGradient::Initialise(bool in_repeating, float in_angle, Vector2Numeric in_position, const ColorStopList& in_color_stops)
{
repeating = in_repeating;
angle = in_angle;
position = in_position;
color_stops = in_color_stops;
return !color_stops.empty();
}
DecoratorDataHandle DecoratorConicGradient::GenerateElementData(Element* element, BoxArea box_area) const
{
RenderInterface* render_interface = GetRenderInterface();
if (!render_interface)
return INVALID_DECORATORDATAHANDLE;
RMLUI_ASSERT(!color_stops.empty());
const Box& box = element->GetBox();
const Vector2f dimensions = box.GetSize(box_area);
const Vector2f center =
Vector2f{element->ResolveNumericValue(position.x, dimensions.x), element->ResolveNumericValue(position.y, dimensions.y)}.Round();
ColorStopList resolved_stops = ResolveColorStops(element, 1.f, 0.f, color_stops);
CompiledShaderHandle shader_handle = render_interface->CompileShader("conic-gradient",
Dictionary{
{"angle", Variant(angle)},
{"center", Variant(center)},
{"repeating", Variant(repeating)},
{"color_stop_list", Variant(std::move(resolved_stops))},
});
Geometry geometry;
const ComputedValues& computed = element->GetComputedValues();
const byte alpha = byte(computed.opacity() * 255.f);
GeometryUtilities::GenerateBackground(&geometry, box, Vector2f(), computed.border_radius(), ColourbPremultiplied(alpha, alpha), box_area);
const Vector2f render_offset = box.GetPosition(box_area);
for (Vertex& vertex : geometry.GetVertices())
vertex.tex_coord = vertex.position - render_offset;
ShaderElementData* element_data = GetShaderElementDataPool().AllocateAndConstruct(std::move(geometry), shader_handle);
return reinterpret_cast(element_data);
}
void DecoratorConicGradient::ReleaseElementData(DecoratorDataHandle handle) const
{
ShaderElementData* element_data = reinterpret_cast(handle);
GetRenderInterface()->ReleaseCompiledShader(element_data->shader);
GetShaderElementDataPool().DestroyAndDeallocate(element_data);
}
void DecoratorConicGradient::RenderElement(Element* element, DecoratorDataHandle handle) const
{
ShaderElementData* element_data = reinterpret_cast(handle);
element_data->geometry.RenderWithShader(element_data->shader, element->GetAbsoluteOffset(BoxArea::Border));
}
DecoratorConicGradientInstancer::DecoratorConicGradientInstancer()
{
RegisterProperty("from", "from").AddParser("keyword", "from");
ids.angle = RegisterProperty("angle", "0deg").AddParser("angle").GetId();
RegisterProperty("at", "unspecified").AddParser("keyword", "at, unspecified");
ids.position_x = RegisterProperty("position-x", "center").AddParser("keyword", "left, center, right").AddParser("length_percent").GetId();
ids.position_y = RegisterProperty("position-y", "center").AddParser("keyword", "top, center, bottom").AddParser("length_percent").GetId();
ids.color_stop_list = RegisterProperty("color-stops", "").AddParser("color_stop_list", "angle").GetId();
RegisterShorthand("shape", "from, angle, at, position-x, position-y, position-x", ShorthandType::FallThrough);
RegisterShorthand("decorator", "shape?, color-stops#", ShorthandType::RecursiveCommaSeparated);
}
DecoratorConicGradientInstancer::~DecoratorConicGradientInstancer() {}
SharedPtr DecoratorConicGradientInstancer::InstanceDecorator(const String& name, const PropertyDictionary& properties_,
const DecoratorInstancerInterface& /*interface_*/)
{
const Property* p_angle = properties_.GetProperty(ids.angle);
const Property* p_position[2] = {properties_.GetProperty(ids.position_x), properties_.GetProperty(ids.position_y)};
const Property* p_color_stop_list = properties_.GetProperty(ids.color_stop_list);
if (!p_angle || !p_position[0] || !p_position[1] || !p_color_stop_list)
return nullptr;
const float angle = ComputeAngle(p_angle->GetNumericValue());
const Vector2Numeric position = ComputePosition(p_position);
const bool repeating = (name == "repeating-conic-gradient");
if (p_color_stop_list->unit != Unit::COLORSTOPLIST)
return nullptr;
const ColorStopList& color_stop_list = p_color_stop_list->value.GetReference();
auto decorator = MakeShared();
if (decorator->Initialise(repeating, angle, position, color_stop_list))
return decorator;
return nullptr;
}
} // namespace Rml