/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "precompiled.h"
#include "../../Include/RmlUi/Core/Element.h"
#include "../../Include/RmlUi/Core/Dictionary.h"
#include "../../Include/RmlUi/Core/TransformPrimitive.h"
#include
#include
#include "Clock.h"
#include "ElementAnimation.h"
#include "ElementBackground.h"
#include "ElementBorder.h"
#include "ElementDefinition.h"
#include "ElementStyle.h"
#include "EventDispatcher.h"
#include "ElementDecoration.h"
#include "FontFaceHandle.h"
#include "LayoutEngine.h"
#include "PluginRegistry.h"
#include "StyleSheetParser.h"
#include "XMLParseTools.h"
#include "../../Include/RmlUi/Core/Core.h"
namespace Rml {
namespace Core {
/**
STL function object for sorting elements by z-type (ie, float-types before general types, etc).
@author Peter Curry
*/
class ElementSortZOrder
{
public:
bool operator()(const std::pair< Element*, float >& lhs, const std::pair< Element*, float >& rhs) const
{
return lhs.second < rhs.second;
}
};
/**
STL function object for sorting elements by z-index property.
@author Peter Curry
*/
class ElementSortZIndex
{
public:
bool operator()(const Element* lhs, const Element* rhs) const
{
// Check the z-index.
return lhs->GetZIndex() < rhs->GetZIndex();
}
};
/// Constructs a new RmlUi element.
Element::Element(const String& _tag) : relative_offset_base(0, 0), relative_offset_position(0, 0), absolute_offset(0, 0), scroll_offset(0, 0), boxes(1), content_offset(0, 0), content_box(0, 0),
transform_state(), transform_state_perspective_dirty(true), transform_state_transform_dirty(true), transform_state_parent_transform_dirty(true), dirty_animation(false)
{
tag = _tag.ToLower();
parent = NULL;
focus = NULL;
instancer = NULL;
owner_document = NULL;
offset_fixed = false;
offset_parent = NULL;
offset_dirty = true;
client_area = Box::PADDING;
num_non_dom_children = 0;
visible = true;
z_index = 0;
local_stacking_context = false;
local_stacking_context_forced = false;
stacking_context_dirty = false;
font_face_handle = NULL;
clipping_ignore_depth = 0;
clipping_enabled = false;
clipping_state_dirty = true;
event_dispatcher = new EventDispatcher(this);
style = new ElementStyle(this);
background = new ElementBackground(this);
border = new ElementBorder(this);
decoration = new ElementDecoration(this);
scroll = new ElementScroll(this);
}
Element::~Element()
{
RMLUI_ASSERT(parent == NULL);
PluginRegistry::NotifyElementDestroy(this);
// Delete the scroll funtionality before we delete the children!
delete scroll;
while (!children.empty())
{
// A simplified version of RemoveChild() for destruction.
Element* child = children.front();
child->OnChildRemove(child);
if (num_non_dom_children > 0)
num_non_dom_children--;
deleted_children.push_back(child);
children.erase(children.begin());
}
// Release all deleted children.
ReleaseElements(deleted_children);
delete decoration;
delete border;
delete background;
delete style;
delete event_dispatcher;
if (font_face_handle != NULL)
font_face_handle->RemoveReference();
if (instancer)
instancer->RemoveReference();
}
void Element::Update()
{
ReleaseElements(deleted_children);
active_children = children;
for (size_t i = 0; i < active_children.size(); i++)
active_children[i]->Update();
// Force a definition reload, if necessary.
style->GetDefinition();
scroll->Update();
// Update and advance animations, if necessary.
UpdateAnimation();
AdvanceAnimations();
// Update the transform state, if necessary.
UpdateTransformState();
OnUpdate();
}
void Element::Render()
{
// Rebuild our stacking context if necessary.
if (stacking_context_dirty)
BuildLocalStackingContext();
// Apply our transform
ElementUtilities::ApplyTransform(*this);
// Render all elements in our local stacking context that have a z-index beneath our local index of 0.
size_t i = 0;
for (; i < stacking_context.size() && stacking_context[i]->z_index < 0; ++i)
stacking_context[i]->Render();
// Set up the clipping region for this element.
if (ElementUtilities::SetClippingRegion(this))
{
background->RenderBackground();
border->RenderBorder();
decoration->RenderDecorators();
OnRender();
}
// Render the rest of the elements in the stacking context.
for (; i < stacking_context.size(); ++i)
stacking_context[i]->Render();
// Unapply our transform
ElementUtilities::UnapplyTransform(*this);
}
// Clones this element, returning a new, unparented element.
Element* Element::Clone() const
{
Element* clone = NULL;
if (instancer != NULL)
{
clone = instancer->InstanceElement(NULL, GetTagName(), attributes);
if (clone != NULL)
clone->SetInstancer(instancer);
}
else
clone = Factory::InstanceElement(NULL, GetTagName(), GetTagName(), attributes);
if (clone != NULL)
{
String inner_rml;
GetInnerRML(inner_rml);
clone->SetInnerRML(inner_rml);
}
return clone;
}
// Sets or removes a class on the element.
void Element::SetClass(const String& class_name, bool activate)
{
style->SetClass(class_name, activate);
}
// Checks if a class is set on the element.
bool Element::IsClassSet(const String& class_name) const
{
return style->IsClassSet(class_name);
}
// Specifies the entire list of classes for this element. This will replace any others specified.
void Element::SetClassNames(const String& class_names)
{
SetAttribute("class", class_names);
}
/// Return the active class list
String Element::GetClassNames() const
{
return style->GetClassNames();
}
// Returns the active style sheet for this element. This may be NULL.
StyleSheet* Element::GetStyleSheet() const
{
return style->GetStyleSheet();
}
// Returns the element's definition, updating if necessary.
const ElementDefinition* Element::GetDefinition()
{
return style->GetDefinition();
}
// Fills an String with the full address of this element.
String Element::GetAddress(bool include_pseudo_classes) const
{
// Add the tag name onto the address.
String address(tag);
// Add the ID if we have one.
if (!id.Empty())
{
address += "#";
address += id;
}
String classes = style->GetClassNames();
if (!classes.Empty())
{
classes = classes.Replace(".", " ");
address += ".";
address += classes;
}
if (include_pseudo_classes)
{
const PseudoClassList& pseudo_classes = style->GetActivePseudoClasses();
for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i)
{
address += ":";
address += (*i);
}
}
if (parent)
{
address.Append(" < ");
return address + parent->GetAddress(true);
}
else
return address;
}
// Sets the position of this element, as a two-dimensional offset from another element.
void Element::SetOffset(const Vector2f& offset, Element* _offset_parent, bool _offset_fixed)
{
_offset_fixed |= GetPosition() == POSITION_FIXED;
// If our offset has definitely changed, or any of our parenting has, then these are set and
// updated based on our left / right / top / bottom properties.
if (relative_offset_base != offset ||
offset_parent != _offset_parent ||
offset_fixed != _offset_fixed)
{
relative_offset_base = offset;
offset_fixed = _offset_fixed;
offset_parent = _offset_parent;
UpdateOffset();
DirtyOffset();
}
// Otherwise, our offset is updated in case left / right / top / bottom will have an impact on
// our final position, and our children are dirtied if they do.
else
{
Vector2f& old_base = relative_offset_base;
Vector2f& old_position = relative_offset_position;
UpdateOffset();
if (old_base != relative_offset_base ||
old_position != relative_offset_position)
DirtyOffset();
}
}
// Returns the position of the top-left corner of one of the areas of this element's primary box.
Vector2f Element::GetRelativeOffset(Box::Area area)
{
UpdateLayout();
return relative_offset_base + relative_offset_position + GetBox().GetPosition(area);
}
// Returns the position of the top-left corner of one of the areas of this element's primary box.
Vector2f Element::GetAbsoluteOffset(Box::Area area)
{
UpdateLayout();
if (offset_dirty)
{
offset_dirty = false;
if (offset_parent != NULL)
absolute_offset = offset_parent->GetAbsoluteOffset(Box::BORDER) + relative_offset_base + relative_offset_position;
else
absolute_offset = relative_offset_base + relative_offset_position;
// Add any parent scrolling onto our position as well. Could cache this if required.
if (!offset_fixed)
{
Element* scroll_parent = parent;
while (scroll_parent != NULL)
{
absolute_offset -= (scroll_parent->scroll_offset + scroll_parent->content_offset);
if (scroll_parent == offset_parent)
break;
else
scroll_parent = scroll_parent->parent;
}
}
}
return absolute_offset + GetBox().GetPosition(area);
}
// Sets an alternate area to use as the client area.
void Element::SetClientArea(Box::Area _client_area)
{
client_area = _client_area;
}
// Returns the area the element uses as its client area.
Box::Area Element::GetClientArea() const
{
return client_area;
}
// Sets the dimensions of the element's internal content.
void Element::SetContentBox(const Vector2f& _content_offset, const Vector2f& _content_box)
{
if (content_offset != _content_offset ||
content_box != _content_box)
{
// Seems to be jittering a wee bit; might need to be looked at.
scroll_offset.x += (content_offset.x - _content_offset.x);
scroll_offset.y += (content_offset.y - _content_offset.y);
content_offset = _content_offset;
content_box = _content_box;
scroll_offset.x = Math::Min(scroll_offset.x, GetScrollWidth() - GetClientWidth());
scroll_offset.y = Math::Min(scroll_offset.y, GetScrollHeight() - GetClientHeight());
DirtyOffset();
}
}
// Sets the box describing the size of the element.
void Element::SetBox(const Box& box)
{
if (box != boxes[0] ||
boxes.size() > 1)
{
boxes[0] = box;
boxes.resize(1);
background->DirtyBackground();
border->DirtyBorder();
decoration->ReloadDecorators();
DispatchEvent(RESIZE, Dictionary());
}
}
// Adds a box to the end of the list describing this element's geometry.
void Element::AddBox(const Box& box)
{
boxes.push_back(box);
DispatchEvent(RESIZE, Dictionary());
background->DirtyBackground();
border->DirtyBorder();
decoration->ReloadDecorators();
}
// Returns one of the boxes describing the size of the element.
const Box& Element::GetBox(int index)
{
UpdateLayout();
if (index < 0)
return boxes[0];
else if (index >= GetNumBoxes())
return boxes.back();
return boxes[index];
}
// Returns the number of boxes making up this element's geometry.
int Element::GetNumBoxes()
{
UpdateLayout();
return (int) boxes.size();
}
// Returns the baseline of the element, in pixels offset from the bottom of the element's content area.
float Element::GetBaseline() const
{
return 0;
}
// Gets the intrinsic dimensions of this element, if it is of a type that has an inherent size.
bool Element::GetIntrinsicDimensions(Vector2f& RMLUI_UNUSED_PARAMETER(dimensions))
{
RMLUI_UNUSED(dimensions);
return false;
}
// Checks if a given point in screen coordinates lies within the bordered area of this element.
bool Element::IsPointWithinElement(const Vector2f& point)
{
Vector2f position = GetAbsoluteOffset(Box::BORDER);
for (int i = 0; i < GetNumBoxes(); ++i)
{
const Box& box = GetBox(i);
Vector2f box_position = position + box.GetOffset();
Vector2f box_dimensions = box.GetSize(Box::BORDER);
if (point.x >= box_position.x &&
point.x <= (box_position.x + box_dimensions.x) &&
point.y >= box_position.y &&
point.y <= (box_position.y + box_dimensions.y))
{
return true;
}
}
return false;
}
// Returns the visibility of the element.
bool Element::IsVisible() const
{
return visible;
}
// Returns the z-index of the element.
float Element::GetZIndex() const
{
return z_index;
}
// Returns the element's font face handle.
FontFaceHandle* Element::GetFontFaceHandle() const
{
return font_face_handle;
}
// Sets a local property override on the element.
bool Element::SetProperty(const String& name, const String& value)
{
return style->SetProperty(name, value);
}
// Removes a local property override on the element.
void Element::RemoveProperty(const String& name)
{
style->RemoveProperty(name);
}
// Sets a local property override on the element to a pre-parsed value.
bool Element::SetProperty(const String& name, const Property& property)
{
return style->SetProperty(name, property);
}
// Returns one of this element's properties.
const Property* Element::GetProperty(const String& name)
{
return style->GetProperty(name);
}
// Returns one of this element's properties.
const Property* Element::GetLocalProperty(const String& name)
{
return style->GetLocalProperty(name);
}
const PropertyMap * Element::GetLocalProperties()
{
return style->GetLocalProperties();
}
// Resolves one of this element's style.
float Element::ResolveProperty(const String& name, float base_value)
{
return style->ResolveProperty(name, base_value);
}
// Resolves one of this element's style.
float Element::ResolveProperty(const Property *property, float base_value)
{
return style->ResolveProperty(property, base_value);
}
void Element::GetOffsetProperties(const Property **top, const Property **bottom, const Property **left, const Property **right )
{
style->GetOffsetProperties(top, bottom, left, right);
}
void Element::GetBorderWidthProperties(const Property **border_top, const Property **border_bottom, const Property **border_left, const Property **bottom_right)
{
style->GetBorderWidthProperties(border_top, border_bottom, border_left, bottom_right);
}
void Element::GetMarginProperties(const Property **margin_top, const Property **margin_bottom, const Property **margin_left, const Property **margin_right)
{
style->GetMarginProperties(margin_top, margin_bottom, margin_left, margin_right);
}
void Element::GetPaddingProperties(const Property **padding_top, const Property **padding_bottom, const Property **padding_left, const Property **padding_right)
{
style->GetPaddingProperties(padding_top, padding_bottom, padding_left, padding_right);
}
void Element::GetDimensionProperties(const Property **width, const Property **height)
{
style->GetDimensionProperties(width, height);
}
void Element::GetLocalDimensionProperties(const Property **width, const Property **height)
{
style->GetLocalDimensionProperties(width, height);
}
Vector2f Element::GetContainingBlock()
{
Vector2f containing_block(0, 0);
if (offset_parent != NULL)
{
int position_property = GetPosition();
const Box& parent_box = offset_parent->GetBox();
if (position_property == POSITION_STATIC || position_property == POSITION_RELATIVE)
{
containing_block = parent_box.GetSize();
}
else if(position_property == POSITION_ABSOLUTE || position_property == POSITION_FIXED)
{
containing_block = parent_box.GetSize(Box::PADDING);
}
}
return containing_block;
}
void Element::GetOverflow(int *overflow_x, int *overflow_y)
{
style->GetOverflow(overflow_x, overflow_y);
}
int Element::GetPosition()
{
return style->GetPosition();
}
int Element::GetFloat()
{
return style->GetFloat();
}
int Element::GetDisplay()
{
return style->GetDisplay();
}
int Element::GetWhitespace()
{
return style->GetWhitespace();
}
int Element::GetPointerEvents()
{
return style->GetPointerEvents();
}
const Property *Element::GetLineHeightProperty()
{
return style->GetLineHeightProperty();
}
int Element::GetTextAlign()
{
return style->GetTextAlign();
}
int Element::GetTextTransform()
{
return style->GetTextTransform();
}
const Property *Element::GetVerticalAlignProperty()
{
return style->GetVerticalAlignProperty();
}
// Returns 'perspective' property value from element's style or local cache.
const Property *Element::GetPerspective()
{
return style->GetPerspective();
}
// Returns 'perspective-origin-x' property value from element's style or local cache.
const Property *Element::GetPerspectiveOriginX()
{
return style->GetPerspectiveOriginX();
}
// Returns 'perspective-origin-y' property value from element's style or local cache.
const Property *Element::GetPerspectiveOriginY()
{
return style->GetPerspectiveOriginY();
}
// Returns 'transform' property value from element's style or local cache.
const Property *Element::GetTransform()
{
return style->GetTransform();
}
// Returns 'transform-origin-x' property value from element's style or local cache.
const Property *Element::GetTransformOriginX()
{
return style->GetTransformOriginX();
}
// Returns 'transform-origin-y' property value from element's style or local cache.
const Property *Element::GetTransformOriginY()
{
return style->GetTransformOriginY();
}
// Returns 'transform-origin-z' property value from element's style or local cache.
const Property *Element::GetTransformOriginZ()
{
return style->GetTransformOriginZ();
}
// Returns this element's TransformState
const TransformState *Element::GetTransformState() const noexcept
{
return transform_state.get();
}
// Returns the TransformStates that are effective for this element.
void Element::GetEffectiveTransformState(
const TransformState **local_perspective,
const TransformState **perspective,
const TransformState **transform
) noexcept
{
UpdateTransformState();
if (local_perspective)
{
*local_perspective = 0;
}
if (perspective)
{
*perspective = 0;
}
if (transform)
{
*transform = 0;
}
Element *perspective_node = 0, *transform_node = 0;
// Find the TransformState to use for unprojecting.
if (transform_state.get() && transform_state->GetLocalPerspective(0))
{
if (local_perspective)
{
*local_perspective = transform_state.get();
}
}
else
{
Element *node = 0;
for (node = parent; node; node = node->parent)
{
if (node->transform_state.get() && node->transform_state->GetPerspective(0))
{
if (perspective)
{
*perspective = node->transform_state.get();
}
perspective_node = node;
break;
}
}
}
// Find the TransformState to use for transforming.
Element *node = 0;
for (node = this; node; node = node->parent)
{
if (node->transform_state.get() && node->transform_state->GetRecursiveTransform(0))
{
if (transform)
{
*transform = node->transform_state.get();
}
transform_node = node;
break;
}
}
}
// Project a 2D point in pixel coordinates onto the element's plane.
const Vector2f Element::Project(const Vector2f& point) noexcept
{
UpdateTransformState();
Context *context = GetContext();
if (!context)
{
return point;
}
const TransformState *local_perspective, *perspective, *transform;
GetEffectiveTransformState(&local_perspective, &perspective, &transform);
Vector2i view_pos(0, 0);
Vector2i view_size = context->GetDimensions();
// Compute the line segment for ray picking, one point on the near and one on the far plane.
// These need to be in clip space coordinates ([-1; 1]³) so that we an unproject them.
Vector3f line_segment[2] =
{
// When unprojected, the intersection point on the near plane
Vector3f(
(point.x - view_pos.x) / (0.5f * view_size.x) - 1.0f,
(view_size.y - point.y - view_pos.y) / (0.5f * view_size.y) - 1.0f,
-1
),
// When unprojected, the intersection point on the far plane
Vector3f(
(point.x - view_pos.x) / (0.5f * view_size.x) - 1.0f,
(view_size.y - point.y - view_pos.y) / (0.5f * view_size.y) - 1.0f,
1
)
};
// Find the TransformState to use for unprojecting.
if (local_perspective)
{
TransformState::LocalPerspective the_local_perspective;
local_perspective->GetLocalPerspective(&the_local_perspective);
line_segment[0] = the_local_perspective.Unproject(line_segment[0]);
line_segment[1] = the_local_perspective.Unproject(line_segment[1]);
}
else if (perspective)
{
TransformState::Perspective the_perspective;
perspective->GetPerspective(&the_perspective);
line_segment[0] = the_perspective.Unproject(line_segment[0]);
line_segment[1] = the_perspective.Unproject(line_segment[1]);
}
else
{
line_segment[0] = context->GetViewState().Unproject(line_segment[0]);
line_segment[1] = context->GetViewState().Unproject(line_segment[1]);
}
// Compute three points on the context's corners to define the element's plane.
// It may seem elegant to base this computation on the element's size, but
// there are elements with zero length or height.
Vector3f element_rect[3] =
{
// Top-left corner
Vector3f(0, 0, 0),
// Top-right corner
Vector3f((float)view_size.x, 0, 0),
// Bottom-left corner
Vector3f(0, (float)view_size.y, 0)
};
// Transform by the correct matrix
if (transform)
{
element_rect[0] = transform->Transform(element_rect[0]);
element_rect[1] = transform->Transform(element_rect[1]);
element_rect[2] = transform->Transform(element_rect[2]);
}
Vector3f u = line_segment[0] - line_segment[1];
Vector3f v = element_rect[1] - element_rect[0];
Vector3f w = element_rect[2] - element_rect[0];
// Now compute the intersection point of the line segment and the element's rectangle.
// This is based on the algorithm discussed at Wikipedia
// (http://en.wikipedia.org/wiki/Line-plane_intersection).
Matrix4f A = Matrix4f::FromColumns(
Vector4f(u, 0),
Vector4f(v, 0),
Vector4f(w, 0),
Vector4f(0, 0, 0, 1)
);
if (A.Invert())
{
Vector3f factors = A * (line_segment[0] - element_rect[0]);
Vector3f intersection3d = element_rect[0] + v * factors[1] + w * factors[2];
Vector3f projected;
if (transform)
{
projected = transform->Untransform(intersection3d);
//RMLUI_ASSERT(fabs(projected.z) < 0.0001);
}
else
{
// FIXME: Is this correct?
projected = intersection3d;
}
return Vector2f(projected.x, projected.y);
}
else
{
// The line segment is parallel to the element's plane.
// Although, mathematically, it could also lie within the plane
// (yielding infinitely many intersection points), we still
// return a value that's pretty sure to not match anything,
// since this case has nothing to do with the user `picking'
// anything.
float inf = std::numeric_limits< float >::infinity();
return Vector2f(-inf, -inf);
}
}
// Iterates over the properties defined on this element.
bool Element::IterateProperties(int& index, PseudoClassList& pseudo_classes, String& name, const Property*& property) const
{
return style->IterateProperties(index, pseudo_classes, name, property);
}
// Sets or removes a pseudo-class on the element.
void Element::SetPseudoClass(const String& pseudo_class, bool activate)
{
style->SetPseudoClass(pseudo_class, activate);
}
// Checks if a specific pseudo-class has been set on the element.
bool Element::IsPseudoClassSet(const String& pseudo_class) const
{
return style->IsPseudoClassSet(pseudo_class);
}
// Checks if a complete set of pseudo-classes are set on the element.
bool Element::ArePseudoClassesSet(const PseudoClassList& pseudo_classes) const
{
for (PseudoClassList::const_iterator i = pseudo_classes.begin(); i != pseudo_classes.end(); ++i)
{
if (!IsPseudoClassSet(*i))
return false;
}
return true;
}
// Gets a list of the current active pseudo classes
const PseudoClassList& Element::GetActivePseudoClasses() const
{
return style->GetActivePseudoClasses();
}
/// Get the named attribute
Variant* Element::GetAttribute(const String& name) const
{
return attributes.Get(name);
}
// Checks if the element has a certain attribute.
bool Element::HasAttribute(const String& name)
{
return attributes.Get(name) != NULL;
}
// Removes an attribute from the element
void Element::RemoveAttribute(const String& name)
{
if (attributes.Remove(name))
{
AttributeNameList changed_attributes;
changed_attributes.insert(name);
OnAttributeChange(changed_attributes);
}
}
// Gets the outer most focus element down the tree from this node
Element* Element::GetFocusLeafNode()
{
// If there isn't a focus, then we are the leaf.
if (!focus)
{
return this;
}
// Recurse down the tree until we found the leaf focus element
Element* focus_element = focus;
while (focus_element->focus)
focus_element = focus_element->focus;
return focus_element;
}
// Returns the element's context.
Context* Element::GetContext()
{
ElementDocument* document = GetOwnerDocument();
if (document != NULL)
return document->GetContext();
return NULL;
}
// Set a group of attributes
void Element::SetAttributes(const ElementAttributes* _attributes)
{
int index = 0;
String key;
Variant* value;
AttributeNameList changed_attributes;
while (_attributes->Iterate(index, key, value))
{
changed_attributes.insert(key);
attributes.Set(key, *value);
}
OnAttributeChange(changed_attributes);
}
// Returns the number of attributes on the element.
int Element::GetNumAttributes() const
{
return attributes.Size();
}
// Iterates over all decorators attached to the element.
bool Element::IterateDecorators(int& index, PseudoClassList& pseudo_classes, String& name, Decorator*& decorator, DecoratorDataHandle& decorator_data)
{
return decoration->IterateDecorators(index, pseudo_classes, name, decorator, decorator_data);
}
// Gets the name of the element.
const String& Element::GetTagName() const
{
return tag;
}
// Gets the ID of the element.
const String& Element::GetId() const
{
return id;
}
// Sets the ID of the element.
void Element::SetId(const String& _id)
{
SetAttribute("id", _id);
}
// Gets the horizontal offset from the context's left edge to element's left border edge.
float Element::GetAbsoluteLeft()
{
return GetAbsoluteOffset(Box::BORDER).x;
}
// Gets the vertical offset from the context's top edge to element's top border edge.
float Element::GetAbsoluteTop()
{
return GetAbsoluteOffset(Box::BORDER).y;
}
// Gets the width of the left border of an element.
float Element::GetClientLeft()
{
UpdateLayout();
return GetBox().GetPosition(client_area).x;
}
// Gets the height of the top border of an element.
float Element::GetClientTop()
{
UpdateLayout();
return GetBox().GetPosition(client_area).y;
}
// Gets the inner width of the element.
float Element::GetClientWidth()
{
UpdateLayout();
return GetBox().GetSize(client_area).x - scroll->GetScrollbarSize(ElementScroll::VERTICAL);
}
// Gets the inner height of the element.
float Element::GetClientHeight()
{
UpdateLayout();
return GetBox().GetSize(client_area).y - scroll->GetScrollbarSize(ElementScroll::HORIZONTAL);
}
// Returns the element from which all offset calculations are currently computed.
Element* Element::GetOffsetParent()
{
return offset_parent;
}
// Gets the distance from this element's left border to its offset parent's left border.
float Element::GetOffsetLeft()
{
UpdateLayout();
return relative_offset_base.x + relative_offset_position.x;
}
// Gets the distance from this element's top border to its offset parent's top border.
float Element::GetOffsetTop()
{
UpdateLayout();
return relative_offset_base.y + relative_offset_position.y;
}
// Gets the width of the element, including the client area, padding, borders and scrollbars, but not margins.
float Element::GetOffsetWidth()
{
UpdateLayout();
return GetBox().GetSize(Box::BORDER).x;
}
// Gets the height of the element, including the client area, padding, borders and scrollbars, but not margins.
float Element::GetOffsetHeight()
{
UpdateLayout();
return GetBox().GetSize(Box::BORDER).y;
}
// Gets the left scroll offset of the element.
float Element::GetScrollLeft()
{
UpdateLayout();
return scroll_offset.x;
}
// Sets the left scroll offset of the element.
void Element::SetScrollLeft(float scroll_left)
{
scroll_offset.x = Math::Clamp(scroll_left, 0.0f, GetScrollWidth() - GetClientWidth());
scroll->UpdateScrollbar(ElementScroll::HORIZONTAL);
DirtyOffset();
DispatchEvent("scroll", Dictionary());
}
// Gets the top scroll offset of the element.
float Element::GetScrollTop()
{
UpdateLayout();
return scroll_offset.y;
}
// Sets the top scroll offset of the element.
void Element::SetScrollTop(float scroll_top)
{
scroll_offset.y = Math::Clamp(scroll_top, 0.0f, GetScrollHeight() - GetClientHeight());
scroll->UpdateScrollbar(ElementScroll::VERTICAL);
DirtyOffset();
DispatchEvent("scroll", Dictionary());
}
// Gets the width of the scrollable content of the element; it includes the element padding but not its margin.
float Element::GetScrollWidth()
{
return Math::Max(content_box.x, GetClientWidth());
}
// Gets the height of the scrollable content of the element; it includes the element padding but not its margin.
float Element::GetScrollHeight()
{
return Math::Max(content_box.y, GetClientHeight());
}
// Gets the object representing the declarations of an element's style attributes.
ElementStyle* Element::GetStyle()
{
return style;
}
// Gets the document this element belongs to.
ElementDocument* Element::GetOwnerDocument()
{
if (parent == NULL)
return NULL;
if (!owner_document)
{
owner_document = parent->GetOwnerDocument();
}
return owner_document;
}
// Gets this element's parent node.
Element* Element::GetParentNode() const
{
return parent;
}
// Gets the element immediately following this one in the tree.
Element* Element::GetNextSibling() const
{
if (parent == NULL)
return NULL;
for (size_t i = 0; i < parent->children.size() - (parent->num_non_dom_children + 1); i++)
{
if (parent->children[i] == this)
return parent->children[i + 1];
}
return NULL;
}
// Gets the element immediately preceding this one in the tree.
Element* Element::GetPreviousSibling() const
{
if (parent == NULL)
return NULL;
for (size_t i = 1; i < parent->children.size() - parent->num_non_dom_children; i++)
{
if (parent->children[i] == this)
return parent->children[i - 1];
}
return NULL;
}
// Returns the first child of this element.
Element* Element::GetFirstChild() const
{
if (GetNumChildren() > 0)
return children[0];
return NULL;
}
// Gets the last child of this element.
Element* Element::GetLastChild() const
{
if (GetNumChildren() > 0)
return *(children.end() - (num_non_dom_children + 1));
return NULL;
}
Element* Element::GetChild(int index) const
{
if (index < 0 || index >= (int) children.size())
return NULL;
return children[index];
}
int Element::GetNumChildren(bool include_non_dom_elements) const
{
return (int) children.size() - (include_non_dom_elements ? 0 : num_non_dom_children);
}
// Gets the markup and content of the element.
void Element::GetInnerRML(String& content) const
{
for (int i = 0; i < GetNumChildren(); i++)
{
children[i]->GetRML(content);
}
}
// Gets the markup and content of the element.
String Element::GetInnerRML() const {
String result;
GetInnerRML(result);
return result;
}
// Sets the markup and content of the element. All existing children will be replaced.
void Element::SetInnerRML(const String& rml)
{
// Remove all DOM children.
while ((int) children.size() > num_non_dom_children)
RemoveChild(children.front());
Factory::InstanceElementText(this, rml);
}
// Sets the current element as the focus object.
bool Element::Focus()
{
// Are we allowed focus?
int focus_property = GetProperty< int >(FOCUS);
if (focus_property == FOCUS_NONE)
return false;
// Ask our context if we can switch focus.
Context* context = GetContext();
if (context == NULL)
return false;
if (!context->OnFocusChange(this))
return false;
// Set this as the end of the focus chain.
focus = NULL;
// Update the focus chain up the hierarchy.
Element* element = this;
while (element->GetParentNode())
{
element->GetParentNode()->focus = element;
element = element->GetParentNode();
}
return true;
}
// Removes focus from from this element.
void Element::Blur()
{
if (parent)
{
Context* context = GetContext();
if (context == NULL)
return;
if (context->GetFocusElement() == this)
{
parent->Focus();
}
else if (parent->focus == this)
{
parent->focus = NULL;
}
}
}
// Fakes a mouse click on this element.
void Element::Click()
{
Context* context = GetContext();
if (context == NULL)
return;
context->GenerateClickEvent(this);
}
// Adds an event listener
void Element::AddEventListener(const String& event, EventListener* listener, bool in_capture_phase)
{
event_dispatcher->AttachEvent(event, listener, in_capture_phase);
}
// Removes an event listener from this element.
void Element::RemoveEventListener(const String& event, EventListener* listener, bool in_capture_phase)
{
event_dispatcher->DetachEvent(event, listener, in_capture_phase);
}
// Dispatches the specified event
bool Element::DispatchEvent(const String& event, const Dictionary& parameters, bool interruptible)
{
return event_dispatcher->DispatchEvent(this, event, parameters, interruptible);
}
// Scrolls the parent element's contents so that this element is visible.
void Element::ScrollIntoView(bool align_with_top)
{
Vector2f size(0, 0);
if (!align_with_top &&
!boxes.empty())
{
size.y = boxes.back().GetOffset().y +
boxes.back().GetSize(Box::BORDER).y;
}
Element* scroll_parent = parent;
while (scroll_parent != NULL)
{
int overflow_x_property = scroll_parent->GetProperty< int >(OVERFLOW_X);
int overflow_y_property = scroll_parent->GetProperty< int >(OVERFLOW_Y);
if ((overflow_x_property != OVERFLOW_VISIBLE &&
scroll_parent->GetScrollWidth() > scroll_parent->GetClientWidth()) ||
(overflow_y_property != OVERFLOW_VISIBLE &&
scroll_parent->GetScrollHeight() > scroll_parent->GetClientHeight()))
{
Vector2f offset = scroll_parent->GetAbsoluteOffset(Box::BORDER) - GetAbsoluteOffset(Box::BORDER);
Vector2f scroll_offset(scroll_parent->GetScrollLeft(), scroll_parent->GetScrollTop());
scroll_offset -= offset;
scroll_offset.x += scroll_parent->GetClientLeft();
scroll_offset.y += scroll_parent->GetClientTop();
if (!align_with_top)
scroll_offset.y -= (scroll_parent->GetClientHeight() - size.y);
if (overflow_x_property != OVERFLOW_VISIBLE)
scroll_parent->SetScrollLeft(scroll_offset.x);
if (overflow_y_property != OVERFLOW_VISIBLE)
scroll_parent->SetScrollTop(scroll_offset.y);
}
scroll_parent = scroll_parent->GetParentNode();
}
}
// Appends a child to this element
void Element::AppendChild(Element* child, bool dom_element)
{
LockLayout(true);
child->AddReference();
child->SetParent(this);
if (dom_element)
children.insert(children.end() - num_non_dom_children, child);
else
{
children.push_back(child);
num_non_dom_children++;
}
child->GetStyle()->DirtyDefinition();
child->GetStyle()->DirtyProperties();
child->OnChildAdd(child);
DirtyStackingContext();
DirtyStructure();
if (dom_element)
DirtyLayout();
LockLayout(false);
}
// Adds a child to this element, directly after the adjacent element. Inherits
// the dom/non-dom status from the adjacent element.
void Element::InsertBefore(Element* child, Element* adjacent_element)
{
// Find the position in the list of children of the adjacent element. If
// it's NULL or we can't find it, then we insert it at the end of the dom
// children, as a dom element.
size_t child_index = 0;
bool found_child = false;
if (adjacent_element)
{
for (child_index = 0; child_index < children.size(); child_index++)
{
if (children[child_index] == adjacent_element)
{
found_child = true;
break;
}
}
}
if (found_child)
{
LockLayout(true);
child->AddReference();
child->SetParent(this);
if ((int) child_index >= GetNumChildren())
num_non_dom_children++;
else
DirtyLayout();
children.insert(children.begin() + child_index, child);
child->GetStyle()->DirtyDefinition();
child->GetStyle()->DirtyProperties();
child->OnChildAdd(child);
DirtyStackingContext();
DirtyStructure();
LockLayout(false);
}
else
{
AppendChild(child);
}
}
// Replaces the second node with the first node.
bool Element::ReplaceChild(Element* inserted_element, Element* replaced_element)
{
inserted_element->AddReference();
inserted_element->SetParent(this);
ElementList::iterator insertion_point = children.begin();
while (insertion_point != children.end() && *insertion_point != replaced_element)
{
++insertion_point;
}
if (insertion_point == children.end())
{
AppendChild(inserted_element);
return false;
}
LockLayout(true);
children.insert(insertion_point, inserted_element);
RemoveChild(replaced_element);
inserted_element->GetStyle()->DirtyDefinition();
inserted_element->GetStyle()->DirtyProperties();
inserted_element->OnChildAdd(inserted_element);
LockLayout(false);
return true;
}
// Removes the specified child
bool Element::RemoveChild(Element* child)
{
size_t child_index = 0;
for (ElementList::iterator itr = children.begin(); itr != children.end(); ++itr)
{
// Add the element to the delete list
if ((*itr) == child)
{
LockLayout(true);
// Inform the context of the element's pending removal (if we have a valid context).
Context* context = GetContext();
if (context)
context->OnElementRemove(child);
child->OnChildRemove(child);
if (child_index >= children.size() - num_non_dom_children)
num_non_dom_children--;
deleted_children.push_back(child);
children.erase(itr);
// Remove the child element as the focussed child of this element.
if (child == focus)
{
focus = NULL;
// If this child (or a descendant of this child) is the context's currently
// focussed element, set the focus to us instead.
Context* context = GetContext();
if (context != NULL)
{
Element* focus_element = context->GetFocusElement();
while (focus_element != NULL)
{
if (focus_element == child)
{
Focus();
break;
}
focus_element = focus_element->GetParentNode();
}
}
}
DirtyLayout();
DirtyStackingContext();
DirtyStructure();
LockLayout(false);
return true;
}
child_index++;
}
return false;
}
bool Element::HasChildNodes() const
{
return (int) children.size() > num_non_dom_children;
}
Element* Element::GetElementById(const String& id)
{
// Check for special-case tokens.
if (id == "#self")
return this;
else if (id == "#document")
return GetOwnerDocument();
else if (id == "#parent")
return this->parent;
else
{
Element* search_root = GetOwnerDocument();
if (search_root == NULL)
search_root = this;
return ElementUtilities::GetElementById(search_root, id);
}
}
// Get all elements with the given tag.
void Element::GetElementsByTagName(ElementList& elements, const String& tag)
{
return ElementUtilities::GetElementsByTagName(elements, this, tag);
}
// Get all elements with the given class set on them.
void Element::GetElementsByClassName(ElementList& elements, const String& class_name)
{
return ElementUtilities::GetElementsByClassName(elements, this, class_name);
}
// Access the event dispatcher
EventDispatcher* Element::GetEventDispatcher() const
{
return event_dispatcher;
}
String Element::GetEventDispatcherSummary() const
{
return event_dispatcher->ToString();
}
// Access the element background.
ElementBackground* Element::GetElementBackground() const
{
return background;
}
// Access the element border.
ElementBorder* Element::GetElementBorder() const
{
return border;
}
// Access the element decorators
ElementDecoration* Element::GetElementDecoration() const
{
return decoration;
}
// Returns the element's scrollbar functionality.
ElementScroll* Element::GetElementScroll() const
{
return scroll;
}
int Element::GetClippingIgnoreDepth()
{
if (clipping_state_dirty)
{
IsClippingEnabled();
}
return clipping_ignore_depth;
}
bool Element::IsClippingEnabled()
{
if (clipping_state_dirty)
{
// Is clipping enabled for this element, yes unless both overlow properties are set to visible
clipping_enabled = style->GetProperty(OVERFLOW_X)->Get< int >() != OVERFLOW_VISIBLE
|| style->GetProperty(OVERFLOW_Y)->Get< int >() != OVERFLOW_VISIBLE;
// Get the clipping ignore depth from the clip property
clipping_ignore_depth = 0;
const Property* clip_property = GetProperty(CLIP);
if (clip_property->unit == Property::NUMBER)
clipping_ignore_depth = clip_property->Get< int >();
else if (clip_property->Get< int >() == CLIP_NONE)
clipping_ignore_depth = -1;
clipping_state_dirty = false;
}
return clipping_enabled;
}
// Gets the render interface owned by this element's context.
RenderInterface* Element::GetRenderInterface()
{
Context* context = GetContext();
if (context != NULL)
return context->GetRenderInterface();
return Rml::Core::GetRenderInterface();
}
void Element::SetInstancer(ElementInstancer* _instancer)
{
// Only record the first instancer being set as some instancers call other instancers to do their dirty work, in
// which case we don't want to update the lowest level instancer.
if (instancer == NULL)
{
instancer = _instancer;
instancer->AddReference();
}
}
// Forces the element to generate a local stacking context, regardless of the value of its z-index property.
void Element::ForceLocalStackingContext()
{
local_stacking_context_forced = true;
local_stacking_context = true;
DirtyStackingContext();
}
// Called during the update loop after children are rendered.
void Element::OnUpdate()
{
}
// Called during render after backgrounds, borders, decorators, but before children, are rendered.
void Element::OnRender()
{
}
// Called during a layout operation, when the element is being positioned and sized.
void Element::OnLayout()
{
}
// Called when attributes on the element are changed.
void Element::OnAttributeChange(const AttributeNameList& changed_attributes)
{
if (changed_attributes.find("id") != changed_attributes.end())
{
id = GetAttribute< String >("id", "");
style->DirtyDefinition();
}
if (changed_attributes.find("class") != changed_attributes.end())
{
style->SetClassNames(GetAttribute< String >("class", ""));
}
// Add any inline style declarations.
if (changed_attributes.find("style") != changed_attributes.end())
{
PropertyDictionary properties;
StyleSheetParser parser;
parser.ParseProperties(properties, GetAttribute< String >("style", ""));
Rml::Core::PropertyMap property_map = properties.GetProperties();
for (Rml::Core::PropertyMap::iterator i = property_map.begin(); i != property_map.end(); ++i)
{
SetProperty((*i).first, (*i).second);
}
}
}
// Called when properties on the element are changed.
void Element::OnPropertyChange(const PropertyNameList& changed_properties)
{
bool all_dirty = false;
{
auto& registered_properties = StyleSheetSpecification::GetRegisteredProperties();
if (®istered_properties == &changed_properties || registered_properties == changed_properties)
all_dirty = true;
}
if (!IsLayoutDirty())
{
if (all_dirty)
{
DirtyLayout();
}
else
{
// Force a relayout if any of the changed properties require it.
for (PropertyNameList::const_iterator i = changed_properties.begin(); i != changed_properties.end(); ++i)
{
const PropertyDefinition* property_definition = StyleSheetSpecification::GetProperty(*i);
if (property_definition)
{
if (property_definition->IsLayoutForced())
{
DirtyLayout();
break;
}
}
}
}
}
// Update the visibility.
if (all_dirty || changed_properties.find(VISIBILITY) != changed_properties.end() ||
changed_properties.find(DISPLAY) != changed_properties.end())
{
bool new_visibility = GetDisplay() != DISPLAY_NONE &&
GetProperty< int >(VISIBILITY) == VISIBILITY_VISIBLE;
if (visible != new_visibility)
{
visible = new_visibility;
if (parent != NULL)
parent->DirtyStackingContext();
}
if (all_dirty ||
changed_properties.find(DISPLAY) != changed_properties.end())
{
if (parent != NULL)
parent->DirtyStructure();
}
}
// Update the position.
if (all_dirty ||
changed_properties.find(LEFT) != changed_properties.end() ||
changed_properties.find(RIGHT) != changed_properties.end() ||
changed_properties.find(TOP) != changed_properties.end() ||
changed_properties.find(BOTTOM) != changed_properties.end())
{
UpdateOffset();
DirtyOffset();
}
// Update the z-index.
if (all_dirty ||
changed_properties.find(Z_INDEX) != changed_properties.end())
{
const Property* z_index_property = GetProperty(Z_INDEX);
if (z_index_property->unit == Property::KEYWORD &&
z_index_property->value.Get< int >() == Z_INDEX_AUTO)
{
if (local_stacking_context &&
!local_stacking_context_forced)
{
// We're no longer acting as a stacking context.
local_stacking_context = false;
stacking_context_dirty = false;
stacking_context.clear();
}
// If our old z-index was not zero, then we must dirty our stacking context so we'll be re-indexed.
if (z_index != 0)
{
z_index = 0;
DirtyStackingContext();
}
}
else
{
float new_z_index;
if (z_index_property->unit == Property::KEYWORD)
{
if (z_index_property->value.Get< int >() == Z_INDEX_TOP)
new_z_index = FLT_MAX;
else
new_z_index = -FLT_MAX;
}
else
new_z_index = z_index_property->value.Get< float >();
if (new_z_index != z_index)
{
z_index = new_z_index;
if (parent != NULL)
parent->DirtyStackingContext();
}
if (!local_stacking_context)
{
local_stacking_context = true;
stacking_context_dirty = true;
}
}
}
// Dirty the background if it's changed.
if (all_dirty ||
changed_properties.find(BACKGROUND_COLOR) != changed_properties.end() ||
changed_properties.find(OPACITY) != changed_properties.end() ||
changed_properties.find(IMAGE_COLOR) != changed_properties.end()) {
background->DirtyBackground();
decoration->ReloadDecorators();
}
// Dirty the border if it's changed.
if (all_dirty ||
changed_properties.find(BORDER_TOP_WIDTH) != changed_properties.end() ||
changed_properties.find(BORDER_RIGHT_WIDTH) != changed_properties.end() ||
changed_properties.find(BORDER_BOTTOM_WIDTH) != changed_properties.end() ||
changed_properties.find(BORDER_LEFT_WIDTH) != changed_properties.end() ||
changed_properties.find(BORDER_TOP_COLOR) != changed_properties.end() ||
changed_properties.find(BORDER_RIGHT_COLOR) != changed_properties.end() ||
changed_properties.find(BORDER_BOTTOM_COLOR) != changed_properties.end() ||
changed_properties.find(BORDER_LEFT_COLOR) != changed_properties.end() ||
changed_properties.find(OPACITY) != changed_properties.end())
border->DirtyBorder();
// Fetch a new font face if it has been changed.
if (all_dirty ||
changed_properties.find(FONT_FAMILY) != changed_properties.end() ||
changed_properties.find(FONT_CHARSET) != changed_properties.end() ||
changed_properties.find(FONT_WEIGHT) != changed_properties.end() ||
changed_properties.find(FONT_STYLE) != changed_properties.end() ||
changed_properties.find(FONT_SIZE) != changed_properties.end())
{
// Store the old em; if it changes, then we need to dirty all em-relative properties.
int old_em = -1;
if (font_face_handle != NULL)
old_em = font_face_handle->GetLineHeight();
// Fetch the new font face.
FontFaceHandle* new_font_face_handle = ElementUtilities::GetFontFaceHandle(this);
// If this is different from our current font face, then we've got to nuke
// all our characters and tell our parent that we have to be re-laid out.
if (new_font_face_handle != font_face_handle)
{
if (font_face_handle)
font_face_handle->RemoveReference();
font_face_handle = new_font_face_handle;
// Our font face has changed; odds are, so has our em. All of our em-relative values
// have therefore probably changed as well, so we'll need to dirty them.
int new_em = -1;
if (font_face_handle != NULL)
new_em = font_face_handle->GetLineHeight();
if (old_em != new_em)
{
style->DirtyEmProperties();
}
}
else if (new_font_face_handle != NULL)
new_font_face_handle->RemoveReference();
}
// Check for clipping state changes
if (all_dirty ||
changed_properties.find(CLIP) != changed_properties.end() ||
changed_properties.find(OVERFLOW_X) != changed_properties.end() ||
changed_properties.find(OVERFLOW_Y) != changed_properties.end())
{
clipping_state_dirty = true;
}
// Check for `perspective' and `perspective-origin' changes
if (all_dirty ||
changed_properties.find(PERSPECTIVE) != changed_properties.end() ||
changed_properties.find(PERSPECTIVE_ORIGIN_X) != changed_properties.end() ||
changed_properties.find(PERSPECTIVE_ORIGIN_Y) != changed_properties.end())
{
DirtyTransformState(true, false, false);
}
// Check for `transform' and `transform-origin' changes
if (all_dirty ||
changed_properties.find(TRANSFORM) != changed_properties.end() ||
changed_properties.find(TRANSFORM_ORIGIN_X) != changed_properties.end() ||
changed_properties.find(TRANSFORM_ORIGIN_Y) != changed_properties.end() ||
changed_properties.find(TRANSFORM_ORIGIN_Z) != changed_properties.end())
{
DirtyTransformState(false, true, false);
}
// Check for `animation' changes
if (all_dirty || changed_properties.find(ANIMATION) != changed_properties.end())
{
DirtyAnimation();
}
}
// Called when a child node has been added somewhere in the hierarchy
void Element::OnChildAdd(Element* child)
{
if (parent)
parent->OnChildAdd(child);
}
// Called when a child node has been removed somewhere in the hierarchy
void Element::OnChildRemove(Element* child)
{
if (parent)
parent->OnChildRemove(child);
}
// Update the element's layout if required.
void Element::UpdateLayout()
{
ElementDocument* document = GetOwnerDocument();
if (document != NULL)
document->UpdateLayout();
}
// Forces a re-layout of this element, and any other children required.
void Element::DirtyLayout()
{
Element* document = GetOwnerDocument();
if (document != NULL)
document->DirtyLayout();
}
/// Increment/Decrement the layout lock
void Element::LockLayout(bool lock)
{
Element* document = GetOwnerDocument();
if (document != NULL)
document->LockLayout(lock);
}
// Forces a re-layout of this element, and any other children required.
bool Element::IsLayoutDirty()
{
Element* document = GetOwnerDocument();
if (document != NULL)
return document->IsLayoutDirty();
return false;
}
// Forces a reevaluation of applicable font effects.
void Element::DirtyFont()
{
for (size_t i = 0; i < children.size(); ++i)
children[i]->DirtyFont();
}
void Element::OnReferenceDeactivate()
{
if (instancer)
{
instancer->ReleaseElement(this);
}
else
{
// Hopefully we can just delete ourselves.
//delete this;
Log::Message(Log::LT_WARNING, "Leak detected: element %s not instanced via RmlUi Factory. Unable to release.", GetAddress().CString());
}
}
void Element::ProcessEvent(Event& event)
{
if (event == MOUSEDOWN && IsPointWithinElement(Vector2f(event.GetParameter< float >("mouse_x", 0), event.GetParameter< float >("mouse_y", 0))) &&
event.GetParameter< int >("button", 0) == 0)
SetPseudoClass("active", true);
if (event == MOUSESCROLL)
{
if (GetScrollHeight() > GetClientHeight())
{
int overflow_property = GetProperty< int >(OVERFLOW_Y);
if (overflow_property == OVERFLOW_AUTO ||
overflow_property == OVERFLOW_SCROLL)
{
// Stop the propagation if the current element has scrollbars.
// This prevents scrolling in parent elements, which is often unintended. If instead desired behavior is
// to scroll in parent elements when reaching top/bottom, move StopPropagation inside the next if statement.
event.StopPropagation();
int wheel_delta = event.GetParameter< int >("wheel_delta", 0);
if ((wheel_delta < 0 && GetScrollTop() > 0) ||
(wheel_delta > 0 && GetScrollHeight() > GetScrollTop() + GetClientHeight()))
{
SetScrollTop(GetScrollTop() + wheel_delta * (GetFontFaceHandle() ? ElementUtilities::GetLineHeight(this) : (GetProperty(SCROLL_DEFAULT_STEP_SIZE) ? GetProperty< int >(SCROLL_DEFAULT_STEP_SIZE) : 0)));
}
}
}
return;
}
if (event.GetTargetElement() == this)
{
if (event == MOUSEOVER)
SetPseudoClass("hover", true);
else if (event == MOUSEOUT)
SetPseudoClass("hover", false);
else if (event == FOCUS)
SetPseudoClass(FOCUS, true);
else if (event == BLUR)
SetPseudoClass(FOCUS, false);
}
}
void Element::GetRML(String& content)
{
// First we start the open tag, add the attributes then close the open tag.
// Then comes the children in order, then we add our close tag.
content.Append("<");
content.Append(tag);
int index = 0;
String name;
String value;
while (IterateAttributes(index, name, value))
{
size_t length = name.Length() + value.Length() + 8;
String attribute(length, " %s=\"%s\"", name.CString(), value.CString());
content.Append(attribute);
}
if (HasChildNodes())
{
content.Append(">");
GetInnerRML(content);
content.Append("");
content.Append(tag);
content.Append(">");
}
else
{
content.Append(" />");
}
}
void Element::SetParent(Element* _parent)
{
// If there's an old parent, detach from it first.
if (parent &&
parent != _parent)
parent->RemoveChild(this);
// Save our parent
parent = _parent;
}
void Element::ReleaseDeletedElements()
{
for (size_t i = 0; i < active_children.size(); i++)
{
active_children[i]->ReleaseDeletedElements();
}
ReleaseElements(deleted_children);
active_children = children;
}
void Element::ReleaseElements(ElementList& released_elements)
{
// Remove deleted children from this element.
while (!released_elements.empty())
{
Element* element = released_elements.back();
released_elements.pop_back();
// If this element has been added back into our list, then we remove our previous oustanding reference on it
// and continue.
if (std::find(children.begin(), children.end(), element) != children.end())
{
element->RemoveReference();
continue;
}
// Set the parent to NULL unless it's been reparented already.
if (element->GetParentNode() == this)
element->parent = NULL;
element->RemoveReference();
}
}
void Element::DirtyOffset()
{
offset_dirty = true;
if(transform_state)
DirtyTransformState(true, true, false);
// Not strictly true ... ?
for (size_t i = 0; i < children.size(); i++)
children[i]->DirtyOffset();
}
void Element::UpdateOffset()
{
int position_property = GetPosition();
if (position_property == POSITION_ABSOLUTE ||
position_property == POSITION_FIXED)
{
if (offset_parent != NULL)
{
const Box& parent_box = offset_parent->GetBox();
Vector2f containing_block = parent_box.GetSize(Box::PADDING);
const Property *left = GetLocalProperty(LEFT);
const Property *right = GetLocalProperty(RIGHT);
// If the element is anchored left, then the position is offset by that resolved value.
if (left != NULL && left->unit != Property::KEYWORD)
relative_offset_base.x = parent_box.GetEdge(Box::BORDER, Box::LEFT) + (ResolveProperty(LEFT, containing_block.x) + GetBox().GetEdge(Box::MARGIN, Box::LEFT));
// If the element is anchored right, then the position is set first so the element's right-most edge
// (including margins) will render up against the containing box's right-most content edge, and then
// offset by the resolved value.
else if (right != NULL && right->unit != Property::KEYWORD)
relative_offset_base.x = containing_block.x + parent_box.GetEdge(Box::BORDER, Box::LEFT) - (ResolveProperty(RIGHT, containing_block.x) + GetBox().GetSize(Box::BORDER).x + GetBox().GetEdge(Box::MARGIN, Box::RIGHT));
const Property *top = GetLocalProperty(TOP);
const Property *bottom = GetLocalProperty(BOTTOM);
// If the element is anchored top, then the position is offset by that resolved value.
if (top != NULL && top->unit != Property::KEYWORD)
relative_offset_base.y = parent_box.GetEdge(Box::BORDER, Box::TOP) + (ResolveProperty(TOP, containing_block.y) + GetBox().GetEdge(Box::MARGIN, Box::TOP));
// If the element is anchored bottom, then the position is set first so the element's right-most edge
// (including margins) will render up against the containing box's right-most content edge, and then
// offset by the resolved value.
else if (bottom != NULL && bottom->unit != Property::KEYWORD)
relative_offset_base.y = containing_block.y + parent_box.GetEdge(Box::BORDER, Box::TOP) - (ResolveProperty(BOTTOM, containing_block.y) + GetBox().GetSize(Box::BORDER).y + GetBox().GetEdge(Box::MARGIN, Box::BOTTOM));
}
}
else if (position_property == POSITION_RELATIVE)
{
if (offset_parent != NULL)
{
const Box& parent_box = offset_parent->GetBox();
Vector2f containing_block = parent_box.GetSize();
const Property *left = GetLocalProperty(LEFT);
const Property *right = GetLocalProperty(RIGHT);
if (left != NULL && left->unit != Property::KEYWORD)
relative_offset_position.x = ResolveProperty(LEFT, containing_block.x);
else if (right != NULL && right->unit != Property::KEYWORD)
relative_offset_position.x = -1 * ResolveProperty(RIGHT, containing_block.x);
else
relative_offset_position.x = 0;
const Property *top = GetLocalProperty(TOP);
const Property *bottom = GetLocalProperty(BOTTOM);
if (top != NULL && top->unit != Property::KEYWORD)
relative_offset_position.y = ResolveProperty(TOP, containing_block.y);
else if (bottom != NULL && bottom->unit != Property::KEYWORD)
relative_offset_position.y = -1 * ResolveProperty(BOTTOM, containing_block.y);
else
relative_offset_position.y = 0;
}
}
else
{
relative_offset_position.x = 0;
relative_offset_position.y = 0;
}
}
void Element::BuildLocalStackingContext()
{
stacking_context_dirty = false;
stacking_context.clear();
BuildStackingContext(&stacking_context);
std::stable_sort(stacking_context.begin(), stacking_context.end(), ElementSortZIndex());
}
void Element::BuildStackingContext(ElementList* new_stacking_context)
{
// Build the list of ordered children. Our child list is sorted within the stacking context so stacked elements
// will render in the right order; ie, positioned elements will render on top of inline elements, which will render
// on top of floated elements, which will render on top of block elements.
std::vector< std::pair< Element*, float > > ordered_children;
for (size_t i = 0; i < children.size(); ++i)
{
Element* child = children[i];
if (!child->IsVisible())
continue;
std::pair< Element*, float > ordered_child;
ordered_child.first = child;
if (child->GetPosition() != POSITION_STATIC)
ordered_child.second = 3;
else if (child->GetFloat() != FLOAT_NONE)
ordered_child.second = 1;
else if (child->GetDisplay() == DISPLAY_BLOCK)
ordered_child.second = 0;
else
ordered_child.second = 2;
ordered_children.push_back(ordered_child);
}
// Sort the list!
std::stable_sort(ordered_children.begin(), ordered_children.end(), ElementSortZOrder());
// Add the list of ordered children into the stacking context in order.
for (size_t i = 0; i < ordered_children.size(); ++i)
{
new_stacking_context->push_back(ordered_children[i].first);
if (!ordered_children[i].first->local_stacking_context)
ordered_children[i].first->BuildStackingContext(new_stacking_context);
}
}
void Element::DirtyStackingContext()
{
// The first ancestor of ours that doesn't have an automatic z-index is the ancestor that is establishing our local
// stacking context.
Element* stacking_context_parent = this;
while (stacking_context_parent != NULL &&
!stacking_context_parent->local_stacking_context)
stacking_context_parent = stacking_context_parent->GetParentNode();
if (stacking_context_parent != NULL)
stacking_context_parent->stacking_context_dirty = true;
}
void Element::DirtyStructure()
{
// Clear the cached owner document
owner_document = NULL;
// Inform all children that the structure is drity
for (size_t i = 0; i < children.size(); ++i)
{
const ElementDefinition* element_definition = children[i]->GetStyle()->GetDefinition();
if (element_definition != NULL &&
element_definition->IsStructurallyVolatile())
{
children[i]->GetStyle()->DirtyDefinition();
}
children[i]->DirtyStructure();
}
}
bool Element::Animate(const String & property_name, const Property & target_value, float duration, Tween tween, int num_iterations, bool alternate_direction, float delay, const Property* start_value)
{
bool result = false;
auto it_animation = StartAnimation(property_name, start_value, num_iterations, alternate_direction, delay);
if (it_animation != animations.end())
{
result = it_animation->AddKey(duration, target_value, *this, tween, true);
if (!result)
animations.erase(it_animation);
}
return result;
}
bool Element::AddAnimationKey(const String & property_name, const Property & target_value, float duration, Tween tween)
{
ElementAnimation* animation = nullptr;
for (auto& existing_animation : animations) {
if (existing_animation.GetPropertyName() == property_name) {
animation = &existing_animation;
break;
}
}
if (!animation)
return false;
bool result = animation->AddKey(animation->GetDuration() + duration, target_value, *this, tween, true);
return result;
}
ElementAnimationList::iterator Element::StartAnimation(const String & property_name, const Property* start_value, int num_iterations, bool alternate_direction, float delay)
{
auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyName() == property_name; });
if (it == animations.end())
{
animations.emplace_back();
it = animations.end() - 1;
}
Property value;
if (start_value)
{
value = *start_value;
if (!value.definition)
if(auto default_value = GetProperty(property_name))
value.definition = default_value->definition;
}
else if (auto default_value = GetProperty(property_name))
{
value = *default_value;
}
if (value.definition)
{
double start_time = Clock::GetElapsedTime() + (double)delay;
*it = ElementAnimation{ property_name, value, start_time, 0.0f, num_iterations, alternate_direction, false };
}
else
{
animations.erase(it);
it = animations.end();
}
return it;
}
bool Element::AddAnimationKeyTime(const String & property_name, const Property* target_value, float time, Tween tween)
{
if (!target_value)
target_value = GetProperty(property_name);
if (!target_value)
return false;
ElementAnimation* animation = nullptr;
for (auto& existing_animation : animations) {
if (existing_animation.GetPropertyName() == property_name) {
animation = &existing_animation;
break;
}
}
if (!animation)
return false;
bool result = animation->AddKey(time, *target_value, *this, tween, true);
return result;
}
bool Element::StartTransition(const Transition & transition, const Property& start_value, const Property & target_value)
{
auto it = std::find_if(animations.begin(), animations.end(), [&](const ElementAnimation& el) { return el.GetPropertyName() == transition.name; });
if (it != animations.end() && !it->IsTransition())
return false;
float duration = transition.duration;
double start_time = Clock::GetElapsedTime() + (double)transition.delay;
if (it == animations.end())
{
// Add transition as new animation
animations.push_back(
ElementAnimation{ transition.name, start_value, start_time, 0.0f, 1, false, true }
);
it = (animations.end() - 1);
}
else
{
// Compress the duration based on the progress of the current animation
float f = it->GetInterpolationFactor();
f = 1.0f - (1.0f - f)*transition.reverse_adjustment_factor;
duration = duration * f;
// Replace old transition
*it = ElementAnimation{ transition.name, start_value, start_time, 0.0f, 1, false, true };
}
bool result = it->AddKey(duration, target_value, *this, transition.tween, true);
if (result)
SetProperty(transition.name, start_value);
else
animations.erase(it);
return result;
}
void Element::DirtyAnimation()
{
dirty_animation = true;
}
void Element::UpdateAnimation()
{
if (dirty_animation)
{
const Property* property = style->GetLocalProperty(ANIMATION);
StyleSheet* stylesheet = nullptr;
if (property && (stylesheet = GetStyleSheet()))
{
auto animation_list = property->Get();
for (auto& animation : animation_list)
{
Keyframes* keyframes_ptr = stylesheet->GetKeyframes(animation.name);
if (keyframes_ptr && keyframes_ptr->blocks.size() >= 1 && !animation.paused)
{
auto& property_names = keyframes_ptr->property_names;
auto& blocks = keyframes_ptr->blocks;
bool has_from_key = (blocks[0].normalized_time == 0);
bool has_to_key = (blocks.back().normalized_time == 1);
// If the first key defines initial conditions for a given property, use those values, else, use this element's current values.
for (auto& property : property_names)
StartAnimation(property, (has_from_key ? blocks[0].properties.GetProperty(property) : nullptr), animation.num_iterations, animation.alternate, animation.delay);
// Need to skip the first and last keys if they set the initial and end conditions, respectively.
for (int i = (has_from_key ? 1 : 0); i < (int)blocks.size() + (has_to_key ? -1 : 0); i++)
{
// Add properties of current key to animation
float time = blocks[i].normalized_time * animation.duration;
for (auto& property : blocks[i].properties.GetProperties())
AddAnimationKeyTime(property.first, &property.second, time, animation.tween);
}
// If the last key defines end conditions for a given property, use those values, else, use this element's current values.
float time = animation.duration;
for (auto& property : property_names)
AddAnimationKeyTime(property, (has_to_key ? blocks.back().properties.GetProperty(property) : nullptr), time, animation.tween);
}
}
}
dirty_animation = false;
}
}
void Element::AdvanceAnimations()
{
if (!animations.empty())
{
double time = Clock::GetElapsedTime();
for (auto& animation : animations)
{
Property property = animation.UpdateAndGetProperty(time, *this);
if (property.unit != Property::UNKNOWN)
SetProperty(animation.GetPropertyName(), property);
}
auto it_completed = std::remove_if(animations.begin(), animations.end(), [](const ElementAnimation& animation) { return animation.IsComplete(); });
std::vector dictionary_list;
std::vector is_transition;
dictionary_list.reserve(animations.end() - it_completed);
is_transition.reserve(animations.end() - it_completed);
for (auto it = it_completed; it != animations.end(); ++it)
{
dictionary_list.emplace_back();
dictionary_list.back().Set("property", it->GetPropertyName());
is_transition.push_back(it->IsTransition());
}
// Need to erase elements before submitting event, as iterators might be invalidated when calling external code.
animations.erase(it_completed, animations.end());
for (size_t i = 0; i < dictionary_list.size(); i++)
DispatchEvent(is_transition[i] ? TRANSITIONEND : ANIMATIONEND, dictionary_list[i]);
}
}
void Element::DirtyTransformState(bool perspective_changed, bool transform_changed, bool parent_transform_changed)
{
for (size_t i = 0; i < children.size(); ++i)
{
children[i]->DirtyTransformState(false, false, transform_changed || parent_transform_changed);
}
if (perspective_changed)
{
this->transform_state_perspective_dirty = true;
}
if (transform_changed)
{
this->transform_state_transform_dirty = true;
}
if (parent_transform_changed)
{
this->transform_state_parent_transform_dirty = true;
}
}
void Element::UpdateTransformState()
{
if (!(transform_state_perspective_dirty || transform_state_transform_dirty || transform_state_parent_transform_dirty))
{
return;
}
if(transform_state_perspective_dirty || transform_state_transform_dirty)
{
Context *context = GetContext();
Vector2f pos = GetAbsoluteOffset(Box::BORDER);
Vector2f size = GetBox().GetSize(Box::BORDER);
if (transform_state_perspective_dirty)
{
bool have_perspective = false;
TransformState::Perspective perspective_value;
perspective_value.vanish = Vector2f(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f);
const Property *perspective = GetPerspective();
if (perspective && (perspective->unit != Property::KEYWORD || perspective->value.Get< int >() != PERSPECTIVE_NONE))
{
have_perspective = true;
// Compute the perspective value
perspective_value.distance = ResolveProperty(perspective, Math::Max(size.x, size.y));
// Compute the perspective origin, if necessary
if (perspective_value.distance > 0)
{
const Property *perspective_origin_x = GetPerspectiveOriginX();
if (perspective_origin_x)
{
if (perspective_origin_x->unit == Property::KEYWORD)
{
switch (perspective_origin_x->value.Get< int >())
{
case PERSPECTIVE_ORIGIN_X_LEFT:
perspective_value.vanish.x = pos.x;
break;
case PERSPECTIVE_ORIGIN_X_CENTER:
perspective_value.vanish.x = pos.x + size.x * 0.5f;
break;
case PERSPECTIVE_ORIGIN_X_RIGHT:
perspective_value.vanish.x = pos.x + size.x;
break;
}
}
else
{
perspective_value.vanish.x = pos.x + ResolveProperty(perspective_origin_x, size.x);
}
}
const Property *perspective_origin_y = GetPerspectiveOriginY();
if (perspective_origin_y)
{
if (perspective_origin_y->unit == Property::KEYWORD)
{
switch (perspective_origin_y->value.Get< int >())
{
case PERSPECTIVE_ORIGIN_Y_TOP:
perspective_value.vanish.y = pos.y;
break;
case PERSPECTIVE_ORIGIN_Y_CENTER:
perspective_value.vanish.y = pos.y + size.y * 0.5f;
break;
case PERSPECTIVE_ORIGIN_Y_BOTTOM:
perspective_value.vanish.y = pos.y + size.y;
break;
}
}
else
{
perspective_value.vanish.y = pos.y + ResolveProperty(perspective_origin_y, size.y);
}
}
}
}
if (have_perspective && context)
{
if (!transform_state)
transform_state.reset(new TransformState);
perspective_value.view_size = context->GetDimensions();
transform_state->SetPerspective(&perspective_value);
}
else if (transform_state)
{
transform_state->SetPerspective(0);
}
transform_state_perspective_dirty = false;
}
if (transform_state_transform_dirty)
{
bool have_local_perspective = false;
TransformState::LocalPerspective local_perspective;
bool have_transform = false;
Matrix4f transform_value = Matrix4f::Identity();
Vector3f transform_origin(pos.x + size.x * 0.5f, pos.y + size.y * 0.5f, 0);
const Property *transform_property = GetTransform();
TransformRef transforms;
if (transform_property && (transforms = transform_property->value.Get()))
{
int n = transforms->GetNumPrimitives();
for (int i = 0; i < n; ++i)
{
const Transforms::Primitive &primitive = transforms->GetPrimitive(i);
if (primitive.ResolvePerspective(local_perspective.distance, *this))
{
have_local_perspective = true;
}
Matrix4f matrix;
if (primitive.ResolveTransform(matrix, *this))
{
transform_value *= matrix;
have_transform = true;
}
}
// Compute the transform origin
const Property *transform_origin_x = GetTransformOriginX();
if (transform_origin_x)
{
if (transform_origin_x->unit == Property::KEYWORD)
{
switch (transform_origin_x->value.Get< int >())
{
case TRANSFORM_ORIGIN_X_LEFT:
transform_origin.x = pos.x;
break;
case TRANSFORM_ORIGIN_X_CENTER:
transform_origin.x = pos.x + size.x * 0.5f;
break;
case TRANSFORM_ORIGIN_X_RIGHT:
transform_origin.x = pos.x + size.x;
break;
}
}
else
{
transform_origin.x = pos.x + ResolveProperty(transform_origin_x, size.x);
}
}
const Property *transform_origin_y = GetTransformOriginY();
if (transform_origin_y)
{
if (transform_origin_y->unit == Property::KEYWORD)
{
switch (transform_origin_y->value.Get< int >())
{
case TRANSFORM_ORIGIN_Y_TOP:
transform_origin.y = pos.y;
break;
case TRANSFORM_ORIGIN_Y_CENTER:
transform_origin.y = pos.y + size.y * 0.5f;
break;
case TRANSFORM_ORIGIN_Y_BOTTOM:
transform_origin.y = pos.y + size.y;
break;
}
}
else
{
transform_origin.y = pos.y + ResolveProperty(transform_origin_y, size.y);
}
}
const Property *transform_origin_z = GetTransformOriginZ();
if (transform_origin_z)
{
transform_origin.z = ResolveProperty(transform_origin_z, Math::Max(size.x, size.y));
}
}
if (have_local_perspective && context)
{
if (!transform_state)
transform_state.reset(new TransformState);
local_perspective.view_size = context->GetDimensions();
transform_state->SetLocalPerspective(&local_perspective);
}
else if(transform_state)
{
transform_state->SetLocalPerspective(0);
}
if (have_transform)
{
// TODO: If we're using the global projection matrix
// (perspective < 0), then scale the coordinates from
// pixel space to 3D unit space.
// Transform the RmlUi context so that the computed `transform_origin'
// lies at the coordinate system origin.
transform_value =
Matrix4f::Translate(transform_origin)
* transform_value
* Matrix4f::Translate(-transform_origin);
if (!transform_state)
transform_state.reset(new TransformState);
transform_state->SetTransform(&transform_value);
}
else if (transform_state)
{
transform_state->SetTransform(0);
}
transform_state_transform_dirty = false;
}
}
if (transform_state_parent_transform_dirty)
{
// We need to clean up from the top-most to the bottom-most dirt.
if (parent)
{
parent->UpdateTransformState();
}
if (transform_state)
{
// Store the parent's new full transform as our parent transform
Element *node = 0;
Matrix4f parent_transform;
for (node = parent; node; node = node->parent)
{
if (node->GetTransformState() && node->GetTransformState()->GetRecursiveTransform(&parent_transform))
{
transform_state->SetParentRecursiveTransform(&parent_transform);
break;
}
}
if (!node)
{
transform_state->SetParentRecursiveTransform(0);
}
}
transform_state_parent_transform_dirty = false;
}
// If we neither have a local perspective, nor a perspective nor a
// transform, we don't need to keep the large TransformState object
// around. GetEffectiveTransformState() will then recursively visit
// parents in order to find a non-trivial TransformState.
if (transform_state && !transform_state->GetLocalPerspective(0) && !transform_state->GetPerspective(0) && !transform_state->GetTransform(0))
{
transform_state.reset();
}
}
}
}