/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2018 Michael R. P. Ragazzon
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "ElementAnimation.h"
#include "ElementStyle.h"
#include "TransformUtilities.h"
#include "../../Include/RmlUi/Core/Element.h"
#include "../../Include/RmlUi/Core/PropertyDefinition.h"
#include "../../Include/RmlUi/Core/StyleSheetSpecification.h"
#include "../../Include/RmlUi/Core/Transform.h"
#include "../../Include/RmlUi/Core/TransformPrimitive.h"
namespace Rml {
static Colourf ColourToLinearSpace(Colourb c)
{
Colourf result;
// Approximate inverse sRGB function
result.red = c.red / 255.f;
result.red *= result.red;
result.green = c.green / 255.f;
result.green *= result.green;
result.blue = c.blue / 255.f;
result.blue *= result.blue;
result.alpha = c.alpha / 255.f;
return result;
}
static Colourb ColourFromLinearSpace(Colourf c)
{
Colourb result;
result.red = (byte)Math::Clamp(Math::SquareRoot(c.red)*255.f, 0.0f, 255.f);
result.green = (byte)Math::Clamp(Math::SquareRoot(c.green)*255.f, 0.0f, 255.f);
result.blue = (byte)Math::Clamp(Math::SquareRoot(c.blue)*255.f, 0.0f, 255.f);
result.alpha = (byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f);
return result;
}
// Merges all the primitives to a single DecomposedMatrix4 primitive
static bool CombineAndDecompose(Transform& t, Element& e)
{
Matrix4f m = Matrix4f::Identity();
for (TransformPrimitive& primitive : t.GetPrimitives())
{
Matrix4f m_primitive = TransformUtilities::ResolveTransform(primitive, e);
m *= m_primitive;
}
Transforms::DecomposedMatrix4 decomposed;
if (!TransformUtilities::Decompose(decomposed, m))
return false;
t.ClearPrimitives();
t.AddPrimitive(decomposed);
return true;
}
static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition)
{
if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT))
{
if (p0.unit == p1.unit || !definition)
{
// If we have the same units, we can just interpolate regardless of what the value represents.
// Or if we have distinct units but no definition, all bets are off. This shouldn't occur, just interpolate values.
float f0 = p0.value.Get();
float f1 = p1.value.Get();
float f = (1.0f - alpha) * f0 + alpha * f1;
return Property{ f, p0.unit };
}
else
{
// Otherwise, convert units to pixels.
float f0 = element.GetStyle()->ResolveLength(&p0, definition->GetRelativeTarget());
float f1 = element.GetStyle()->ResolveLength(&p1, definition->GetRelativeTarget());
float f = (1.0f - alpha) * f0 + alpha * f1;
return Property{ f, Property::PX };
}
}
if (p0.unit == Property::KEYWORD && p1.unit == Property::KEYWORD)
{
// Discrete interpolation, swap at alpha = 0.5.
// Special case for the 'visibility' property as in the CSS specs:
// Apply the visible property if present during the entire transition period, ie. alpha (0,1).
if (definition && definition->GetId() == PropertyId::Visibility)
{
if (p0.Get() == (int)Style::Visibility::Visible)
return alpha < 1.f ? p0 : p1;
else if (p1.Get() == (int)Style::Visibility::Visible)
return alpha <= 0.f ? p0 : p1;
}
return alpha < 0.5f ? p0 : p1;
}
if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR)
{
Colourf c0 = ColourToLinearSpace(p0.value.Get());
Colourf c1 = ColourToLinearSpace(p1.value.Get());
Colourf c = c0 * (1.0f - alpha) + c1 * alpha;
return Property{ ColourFromLinearSpace(c), Property::COLOUR };
}
if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM)
{
auto& t0 = p0.value.GetReference();
auto& t1 = p1.value.GetReference();
const auto& prim0 = t0->GetPrimitives();
const auto& prim1 = t1->GetPrimitives();
if (prim0.size() != prim1.size())
{
RMLUI_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?");
return Property{ t0, Property::TRANSFORM };
}
// Build the new, interpolating transform
UniquePtr t(new Transform);
t->GetPrimitives().reserve(t0->GetPrimitives().size());
for (size_t i = 0; i < prim0.size(); i++)
{
TransformPrimitive p = prim0[i];
if (!TransformUtilities::InterpolateWith(p, prim1[i], alpha))
{
RMLUI_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?");
return Property{ t0, Property::TRANSFORM };
}
t->AddPrimitive(p);
}
return Property{ TransformPtr(std::move(t)), Property::TRANSFORM };
}
// Fall back to discrete interpolation for incompatible units.
return alpha < 0.5f ? p0 : p1;
}
enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 };
static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element)
{
using namespace Transforms;
// Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives.
// Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
auto& prims0 = t0.GetPrimitives();
auto& prims1 = t1.GetPrimitives();
// Check for trivial case where they contain the same primitives
if (prims0.size() == prims1.size())
{
PrepareTransformResult result = PrepareTransformResult::Unchanged;
bool same_primitives = true;
for (size_t i = 0; i < prims0.size(); i++)
{
auto p0_type = prims0[i].type;
auto p1_type = prims1[i].type;
// See if they are the same or can be converted to a matching generic type.
if (TransformUtilities::TryConvertToMatchingGenericType(prims0[i], prims1[i]))
{
if (prims0[i].type != p0_type)
result = PrepareTransformResult((int)result | (int)PrepareTransformResult::ChangedT0);
if (prims1[i].type != p1_type)
result = PrepareTransformResult((int)result | (int)PrepareTransformResult::ChangedT1);
}
else
{
same_primitives = false;
break;
}
}
if (same_primitives)
return result;
}
if (prims0.size() != prims1.size())
{
// Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity.
// Requirement: The small set must match types in the same order they appear in the big set.
// Example: (letter indicates type, number represents values)
// big: a0 b0 c0 b1
// ^ ^
// small: b2 b3
// ^ ^
// new small: a1 b2 c1 b3
bool prims0_smallest = (prims0.size() < prims1.size());
auto& small = (prims0_smallest ? prims0 : prims1);
auto& big = (prims0_smallest ? prims1 : prims0);
Vector matching_indices; // Indices into 'big' for matching types
matching_indices.reserve(small.size() + 1);
size_t i_big = 0;
bool match_success = true;
bool changed_big = false;
// Iterate through the small set to see if its types fit into the big set
for (size_t i_small = 0; i_small < small.size(); i_small++)
{
match_success = false;
for (; i_big < big.size(); i_big++)
{
auto big_type = big[i_big].type;
if (TransformUtilities::TryConvertToMatchingGenericType(small[i_small], big[i_big]))
{
// They matched exactly or in their more generic form. One or both primitives may have been converted.
match_success = true;
if (big[i_big].type != big_type)
changed_big = true;
}
if (match_success)
{
matching_indices.push_back(i_big);
match_success = true;
i_big += 1;
break;
}
}
if (!match_success)
break;
}
if (match_success)
{
// Success, insert the missing primitives into the small set
matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive
small.reserve(big.size());
size_t i0 = 0;
for (size_t match_index : matching_indices)
{
for (size_t i = i0; i < match_index; i++)
{
TransformPrimitive p = big[i];
TransformUtilities::SetIdentity(p);
small.insert(small.begin() + i, p);
}
// Next value to copy is one-past the matching primitive
i0 = match_index + 1;
}
// The small set has always been changed if we get here, but the big set is only changed
// if one or more of its primitives were converted to a general form.
if (changed_big)
return PrepareTransformResult::ChangedT0andT1;
return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1);
}
}
// If we get here, things get tricky. Need to do full matrix interpolation.
// In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components.
// Then, during update, interpolate these components and combine into a new transform matrix.
if (!CombineAndDecompose(t0, element))
return PrepareTransformResult::Invalid;
if (!CombineAndDecompose(t1, element))
return PrepareTransformResult::Invalid;
return PrepareTransformResult::ChangedT0andT1;
}
static bool PrepareTransforms(Vector& keys, Element& element, int start_index)
{
bool result = true;
// Prepare each transform individually.
for (int i = start_index; i < (int)keys.size(); i++)
{
Property& property = keys[i].property;
RMLUI_ASSERT(property.value.GetType() == Variant::TRANSFORMPTR);
if (!property.value.GetReference())
property.value = MakeShared();
bool must_decompose = false;
Transform& transform = *property.value.GetReference();
for (TransformPrimitive& primitive : transform.GetPrimitives())
{
if (!TransformUtilities::PrepareForInterpolation(primitive, element))
{
must_decompose = true;
break;
}
}
if (must_decompose)
result &= CombineAndDecompose(transform, element);
}
if (!result)
return false;
// We don't need to prepare the transforms pairwise if we only have a single key added so far.
if (keys.size() < 2 || start_index < 1)
return true;
// Now, prepare the transforms pair-wise so they can be interpolated.
const int N = (int)keys.size();
int count_iterations = -1;
const int max_iterations = 3 * N;
Vector dirty_list(N + 1, false);
dirty_list[start_index] = true;
// For each pair of keys, match the transform primitives such that they can be interpolated during animation update
for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++)
{
if (!dirty_list[i])
{
++i;
continue;
}
auto& prop0 = keys[i - 1].property;
auto& prop1 = keys[i].property;
if(prop0.unit != Property::TRANSFORM || prop1.unit != Property::TRANSFORM)
return false;
auto& t0 = prop0.value.GetReference();
auto& t1 = prop1.value.GetReference();
auto prepare_result = PrepareTransformPair(*t0, *t1, element);
if (prepare_result == PrepareTransformResult::Invalid)
return false;
bool changed_t0 = ((int)prepare_result & (int)PrepareTransformResult::ChangedT0);
bool changed_t1 = ((int)prepare_result & (int)PrepareTransformResult::ChangedT1);
dirty_list[i] = false;
dirty_list[i - 1] = dirty_list[i - 1] || changed_t0;
dirty_list[i + 1] = dirty_list[i + 1] || changed_t1;
if (changed_t0 && i > 1)
--i;
else
++i;
}
// Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair()
return (count_iterations < max_iterations);
}
ElementAnimation::ElementAnimation(PropertyId property_id, ElementAnimationOrigin origin, const Property& current_value, Element& element, double start_world_time, float duration, int num_iterations, bool alternate_direction)
: property_id(property_id), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction), last_update_world_time(start_world_time),
time_since_iteration_start(0.0f), current_iteration(0), reverse_direction(false), animation_complete(false), origin(origin)
{
if (!current_value.definition)
{
Log::Message(Log::LT_WARNING, "Property in animation key did not have a definition (while adding key '%s').", current_value.ToString().c_str());
}
InternalAddKey(0.0f, current_value, element, Tween{});
}
bool ElementAnimation::InternalAddKey(float time, const Property& in_property, Element& element, Tween tween)
{
int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM | Property::KEYWORD);
if (!(in_property.unit & valid_properties))
{
Log::Message(Log::LT_WARNING, "Property value '%s' is not a valid target for interpolation.", in_property.ToString().c_str());
return false;
}
keys.emplace_back(time, in_property, tween);
bool result = true;
if (keys.back().property.unit == Property::TRANSFORM)
{
result = PrepareTransforms(keys, element, (int)keys.size() - 1);
}
if (!result)
{
Log::Message(Log::LT_WARNING, "Could not add animation key with property '%s'.", in_property.ToString().c_str());
keys.pop_back();
}
return result;
}
bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration)
{
if (!IsInitalized())
{
Log::Message(Log::LT_WARNING, "Element animation was not initialized properly, can't add key.");
return false;
}
if (!InternalAddKey(target_time, in_property, element, tween))
{
return false;
}
if (extend_duration)
duration = target_time;
return true;
}
float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const
{
float t = time_since_iteration_start;
if (reverse_direction)
t = duration - t;
int key0 = -1;
int key1 = -1;
{
for (int i = 0; i < (int)keys.size(); i++)
{
if (keys[i].time >= t)
{
key1 = i;
break;
}
}
if (key1 < 0) key1 = (int)keys.size() - 1;
key0 = (key1 == 0 ? 0 : key1 - 1);
}
RMLUI_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size());
float alpha = 0.0f;
{
const float t0 = keys[key0].time;
const float t1 = keys[key1].time;
const float eps = 1e-3f;
if (t1 - t0 > eps)
alpha = (t - t0) / (t1 - t0);
alpha = Math::Clamp(alpha, 0.0f, 1.0f);
}
alpha = keys[key1].tween(alpha);
if (out_key0) *out_key0 = key0;
if (out_key1) *out_key1 = key1;
return alpha;
}
Property ElementAnimation::UpdateAndGetProperty(double world_time, Element& element)
{
float dt = float(world_time - last_update_world_time);
if (keys.size() < 2 || animation_complete || dt <= 0.0f)
return Property{};
dt = Math::Min(dt, 0.1f);
last_update_world_time = world_time;
time_since_iteration_start += dt;
if (time_since_iteration_start >= duration)
{
// Next iteration
current_iteration += 1;
if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations))
{
time_since_iteration_start -= duration;
if (alternate_direction)
reverse_direction = !reverse_direction;
}
else
{
animation_complete = true;
time_since_iteration_start = duration;
}
}
int key0 = -1;
int key1 = -1;
float alpha = GetInterpolationFactorAndKeys(&key0, &key1);
Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition);
return result;
}
} // namespace Rml