/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "LayoutDetails.h" #include "LayoutEngine.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/ElementScroll.h" #include "../../Include/RmlUi/Core/Math.h" #include "../../Include/RmlUi/Core/Profiling.h" #include namespace Rml { // Convert width or height of a border box to the width or height of its corresponding content box. static inline float BorderSizeToContentSize(float border_size, float border_padding_edges_size) { if (border_size < 0.0f || border_size == FLT_MAX) return border_size; return Math::Max(0.0f, border_size - border_padding_edges_size); } // Generates the box for an element. void LayoutDetails::BuildBox(Box& box, Vector2f containing_block, Element* element, BoxContext box_context, float override_shrink_to_fit_width) { if (!element) { box.SetContent(containing_block); return; } const ComputedValues& computed = element->GetComputedValues(); // Calculate the padding area. box.SetEdge(Box::PADDING, Box::TOP, Math::Max(0.0f, ResolveValue(computed.padding_top, containing_block.x))); box.SetEdge(Box::PADDING, Box::RIGHT, Math::Max(0.0f, ResolveValue(computed.padding_right, containing_block.x))); box.SetEdge(Box::PADDING, Box::BOTTOM, Math::Max(0.0f, ResolveValue(computed.padding_bottom, containing_block.x))); box.SetEdge(Box::PADDING, Box::LEFT, Math::Max(0.0f, ResolveValue(computed.padding_left, containing_block.x))); // Calculate the border area. box.SetEdge(Box::BORDER, Box::TOP, Math::Max(0.0f, computed.border_top_width)); box.SetEdge(Box::BORDER, Box::RIGHT, Math::Max(0.0f, computed.border_right_width)); box.SetEdge(Box::BORDER, Box::BOTTOM, Math::Max(0.0f, computed.border_bottom_width)); box.SetEdge(Box::BORDER, Box::LEFT, Math::Max(0.0f, computed.border_left_width)); // Prepare sizing of the content area. Vector2f content_area(-1, -1); Vector2f min_size = Vector2f(0, 0); Vector2f max_size = Vector2f(FLT_MAX, FLT_MAX); // Intrinsic size for replaced elements. Vector2f intrinsic_size(-1, -1); float intrinsic_ratio = -1; const bool replaced_element = element->GetIntrinsicDimensions(intrinsic_size, intrinsic_ratio); // Calculate the content area and constraints. 'auto' width and height are handled later. // For inline non-replaced elements, width and height are ignored, so we can skip the calculations. if (box_context == BoxContext::Block || box_context == BoxContext::FlexOrTable || replaced_element) { if (content_area.x < 0 && computed.width.type != Style::Width::Auto) content_area.x = ResolveValue(computed.width, containing_block.x); if (content_area.y < 0 && computed.height.type != Style::Width::Auto) content_area.y = ResolveValue(computed.height, containing_block.y); min_size = Vector2f( ResolveValue(computed.min_width, containing_block.x), ResolveValue(computed.min_height, containing_block.y) ); max_size = Vector2f( (computed.max_width.value < 0.f ? FLT_MAX : ResolveValue(computed.max_width, containing_block.x)), (computed.max_height.value < 0.f ? FLT_MAX : ResolveValue(computed.max_height, containing_block.y)) ); // Adjust sizes for the given box sizing model. if (computed.box_sizing == Style::BoxSizing::BorderBox) { const float border_padding_width = box.GetSizeAcross(Box::HORIZONTAL, Box::BORDER, Box::PADDING); const float border_padding_height = box.GetSizeAcross(Box::VERTICAL, Box::BORDER, Box::PADDING); min_size.x = BorderSizeToContentSize(min_size.x, border_padding_width); max_size.x = BorderSizeToContentSize(max_size.x, border_padding_width); content_area.x = BorderSizeToContentSize(content_area.x, border_padding_width); min_size.y = BorderSizeToContentSize(min_size.y, border_padding_height); max_size.y = BorderSizeToContentSize(max_size.y, border_padding_height); content_area.y = BorderSizeToContentSize(content_area.y, border_padding_height); } if (content_area.x >= 0) content_area.x = Math::Clamp(content_area.x, min_size.x, max_size.x); if (content_area.y >= 0) content_area.y = Math::Clamp(content_area.y, min_size.y, max_size.y); if (replaced_element) content_area = CalculateSizeForReplacedElement(content_area, min_size, max_size, intrinsic_size, intrinsic_ratio); } box.SetContent(content_area); // Evaluate the margins, and width and height if they are auto. BuildBoxSizeAndMargins(box, min_size, max_size, containing_block, element, box_context, replaced_element, override_shrink_to_fit_width); } // Generates the box for an element placed in a block box. void LayoutDetails::BuildBox(Box& box, float& min_height, float& max_height, LayoutBlockBox* containing_box, Element* element, BoxContext box_context, float override_shrink_to_fit_width) { Vector2f containing_block = LayoutDetails::GetContainingBlock(containing_box); BuildBox(box, containing_block, element, box_context, override_shrink_to_fit_width); if (element) GetDefiniteMinMaxHeight(min_height, max_height, element->GetComputedValues(), box, containing_block.y); else min_height = max_height = box.GetSize().y; } void LayoutDetails::GetMinMaxWidth(float& min_width, float& max_width, const ComputedValues& computed, const Box& box, float containing_block_width) { min_width = ResolveValue(computed.min_width, containing_block_width); max_width = (computed.max_width.value < 0.f ? FLT_MAX : ResolveValue(computed.max_width, containing_block_width)); if (computed.box_sizing == Style::BoxSizing::BorderBox) { const float border_padding_width = box.GetSizeAcross(Box::HORIZONTAL, Box::BORDER, Box::PADDING); min_width = BorderSizeToContentSize(min_width, border_padding_width); max_width = BorderSizeToContentSize(max_width, border_padding_width); } } void LayoutDetails::GetMinMaxHeight(float& min_height, float& max_height, const ComputedValues& computed, const Box& box, float containing_block_height) { min_height = ResolveValue(computed.min_height, containing_block_height); max_height = (computed.max_height.value < 0.f ? FLT_MAX : ResolveValue(computed.max_height, containing_block_height)); if (computed.box_sizing == Style::BoxSizing::BorderBox) { const float border_padding_height = box.GetSizeAcross(Box::VERTICAL, Box::BORDER, Box::PADDING); min_height = BorderSizeToContentSize(min_height, border_padding_height); max_height = BorderSizeToContentSize(max_height, border_padding_height); } } void LayoutDetails::GetDefiniteMinMaxHeight(float& min_height, float& max_height, const ComputedValues& computed, const Box& box, float containing_block_height) { const float box_height = box.GetSize().y; if (box_height < 0) { GetMinMaxHeight(min_height, max_height, computed, box, containing_block_height); } else { min_height = box_height; max_height = box_height; } } // Returns the fully-resolved, fixed-width and -height containing block from a block box. Vector2f LayoutDetails::GetContainingBlock(const LayoutBlockBox* containing_box) { RMLUI_ASSERT(containing_box); Vector2f containing_block; containing_block.x = containing_box->GetBox().GetSize(Box::CONTENT).x; if (containing_box->GetElement() != nullptr) containing_block.x -= containing_box->GetElement()->GetElementScroll()->GetScrollbarSize(ElementScroll::VERTICAL); while ((containing_block.y = containing_box->GetBox().GetSize(Box::CONTENT).y) < 0) { containing_box = containing_box->GetParent(); if (containing_box == nullptr) { RMLUI_ERROR; containing_block.y = 0; } } if (containing_box != nullptr && containing_box->GetElement() != nullptr) containing_block.y -= containing_box->GetElement()->GetElementScroll()->GetScrollbarSize(ElementScroll::HORIZONTAL); containing_block.x = Math::Max(0.0f, containing_block.x); containing_block.y = Math::Max(0.0f, containing_block.y); return containing_block; } void LayoutDetails::BuildBoxSizeAndMargins(Box& box, Vector2f min_size, Vector2f max_size, Vector2f containing_block, Element* element, BoxContext box_context, bool replaced_element, float override_shrink_to_fit_width) { const ComputedValues& computed = element->GetComputedValues(); if (box_context == BoxContext::Inline || box_context == BoxContext::FlexOrTable) { // For inline elements, their calculations are straightforward. No worrying about auto margins and dimensions, etc. // Evaluate the margins. Any declared as 'auto' will resolve to 0. box.SetEdge(Box::MARGIN, Box::TOP, ResolveValue(computed.margin_top, containing_block.x)); box.SetEdge(Box::MARGIN, Box::RIGHT, ResolveValue(computed.margin_right, containing_block.x)); box.SetEdge(Box::MARGIN, Box::BOTTOM, ResolveValue(computed.margin_bottom, containing_block.x)); box.SetEdge(Box::MARGIN, Box::LEFT, ResolveValue(computed.margin_left, containing_block.x)); } else { // The element is block, so we need to run the box through the ringer to potentially evaluate auto margins and dimensions. BuildBoxWidth(box, computed, min_size.x, max_size.x, containing_block, element, replaced_element, override_shrink_to_fit_width); BuildBoxHeight(box, computed, min_size.y, max_size.y, containing_block.y); } } float LayoutDetails::GetShrinkToFitWidth(Element* element, Vector2f containing_block) { RMLUI_ASSERT(element); Box box; float min_height, max_height; LayoutDetails::BuildBox(box, containing_block, element, BoxContext::Block, containing_block.x); LayoutDetails::GetDefiniteMinMaxHeight(min_height, max_height, element->GetComputedValues(), box, containing_block.y); // First we need to format the element, then we get the shrink-to-fit width based on the largest line or box. LayoutBlockBox containing_block_box(nullptr, nullptr, Box(containing_block), 0.0f, FLT_MAX); // Here we fix the element's width to its containing block so that any content is wrapped at this width. // We can consider to instead set this to infinity and clamp it to the available width later after formatting, // but right now the formatting procedure doesn't work well with such numbers. LayoutBlockBox* block_context_box = containing_block_box.AddBlockElement(element, box, min_height, max_height); // @performance. Some formatting can be simplified, eg. absolute elements do not contribute to the shrink-to-fit width. // Also, children of elements with a fixed width and height don't need to be formatted further. for (int i = 0; i < element->GetNumChildren(); i++) { if (!LayoutEngine::FormatElement(block_context_box, element->GetChild(i))) i = -1; } // We only do layouting to get the fit-to-shrink width here, and for this purpose we may get // away with not closing the boxes. This is avoided for performance reasons. //block_context_box->Close(); return Math::Min(containing_block.x, block_context_box->GetShrinkToFitWidth()); } ComputedAxisSize LayoutDetails::BuildComputedHorizontalSize(const ComputedValues& computed) { return ComputedAxisSize{computed.width, computed.min_width, computed.max_width, computed.padding_left, computed.padding_right, computed.margin_left, computed.margin_right, computed.border_left_width, computed.border_right_width, computed.box_sizing}; } ComputedAxisSize LayoutDetails::BuildComputedVerticalSize(const ComputedValues& computed) { return ComputedAxisSize{computed.height, computed.min_height, computed.max_height, computed.padding_top, computed.padding_bottom, computed.margin_top, computed.margin_bottom, computed.border_top_width, computed.border_bottom_width, computed.box_sizing}; } void LayoutDetails::GetEdgeSizes(float& margin_a, float& margin_b, float& padding_border_a, float& padding_border_b, const ComputedAxisSize& computed_size, const float base_value) { margin_a = ResolveValue(computed_size.margin_a, base_value); margin_b = ResolveValue(computed_size.margin_b, base_value); padding_border_a = Math::Max(0.0f, ResolveValue(computed_size.padding_a, base_value)) + Math::Max(0.0f, computed_size.border_a); padding_border_b = Math::Max(0.0f, ResolveValue(computed_size.padding_b, base_value)) + Math::Max(0.0f, computed_size.border_b); } Vector2f LayoutDetails::CalculateSizeForReplacedElement(const Vector2f specified_content_size, const Vector2f min_size, const Vector2f max_size, const Vector2f intrinsic_size, const float intrinsic_ratio) { // Start with the element's specified width and height. If any of them are auto, use the element's intrinsic // dimensions and ratio to find a suitable content size. Vector2f content_size = specified_content_size; const bool auto_width = (content_size.x < 0); const bool auto_height = (content_size.y < 0); if (auto_width) content_size.x = intrinsic_size.x; if (auto_height) content_size.y = intrinsic_size.y; // Use a fallback size if we still couldn't determine the size. if (content_size.x < 0) content_size.x = 300; if (content_size.y < 0) content_size.y = 150; // Resolve the size constraints. const float min_width = min_size.x; const float max_width = max_size.x; const float min_height = min_size.y; const float max_height = max_size.y; // If we have an intrinsic ratio and one of the dimensions is 'auto', then scale it such that the ratio is preserved. if (intrinsic_ratio > 0) { if (auto_width && !auto_height) { content_size.x = content_size.y * intrinsic_ratio; } else if (auto_height && !auto_width) { content_size.y = content_size.x / intrinsic_ratio; } else if (auto_width && auto_height) { // If both width and height are auto, try to preserve the ratio under the respective min/max constraints. const float w = content_size.x; const float h = content_size.y; if ((w < min_width && h > max_height) || (w > max_width && h < min_height)) { // Cannot preserve aspect ratio, let it be clamped. } else if (w < min_width && h < min_height) { // Increase the size such that both min-constraints are respected. The non-scaled axis will // be clamped below, preserving the aspect ratio. if (min_width <= min_height * intrinsic_ratio) content_size.x = min_height * intrinsic_ratio; else content_size.y = min_width / intrinsic_ratio; } else if (w > max_width && h > max_height) { // Shrink the size such that both max-constraints are respected. The non-scaled axis will // be clamped below, preserving the aspect ratio. if (max_width <= max_height * intrinsic_ratio) content_size.y = max_width / intrinsic_ratio; else content_size.x = max_height * intrinsic_ratio; } else { // Single constraint violations. if (w < min_width) content_size.y = min_width / intrinsic_ratio; else if (w > max_width) content_size.y = max_width / intrinsic_ratio; else if (h < min_height) content_size.x = min_height * intrinsic_ratio; else if (h > max_height) content_size.x = max_height * intrinsic_ratio; } } } content_size.x = Math::Clamp(content_size.x, min_width, max_width); content_size.y = Math::Clamp(content_size.y, min_height, max_height); return content_size; } // Builds the block-specific width and horizontal margins of a Box. void LayoutDetails::BuildBoxWidth(Box& box, const ComputedValues& computed, float min_width, float max_width, Vector2f containing_block, Element* element, bool replaced_element, float override_shrink_to_fit_width) { RMLUI_ZoneScoped; Vector2f content_area = box.GetSize(); // Determine if the element has automatic margins. bool margins_auto[2]; int num_auto_margins = 0; for (int i = 0; i < 2; ++i) { const Style::Margin& margin_value = (i == 0 ? computed.margin_left : computed.margin_right); if (margin_value.type == Style::Margin::Auto) { margins_auto[i] = true; num_auto_margins++; box.SetEdge(Box::MARGIN, i == 0 ? Box::LEFT : Box::RIGHT, 0); } else { margins_auto[i] = false; box.SetEdge(Box::MARGIN, i == 0 ? Box::LEFT : Box::RIGHT, ResolveValue(margin_value, containing_block.x)); } } const bool width_auto = (content_area.x < 0); // If the width is set to auto, we need to calculate the width if (width_auto) { // Apply the shrink-to-fit algorithm here to find the width of the element. // See CSS 2.1 section 10.3.7 for when this should be applied. const bool shrink_to_fit = !replaced_element && ( (computed.float_ != Style::Float::None) || ((computed.position == Style::Position::Absolute || computed.position == Style::Position::Fixed) && (computed.left.type == Style::Left::Auto || computed.right.type == Style::Right::Auto)) || (computed.display == Style::Display::InlineBlock) ); float left = 0.0f, right = 0.0f; // If we are dealing with an absolutely positioned element we need to // consider if the left and right properties are set, since the width can be affected. if (computed.position == Style::Position::Absolute || computed.position == Style::Position::Fixed) { if (computed.left.type != Style::Left::Auto) left = ResolveValue(computed.left, containing_block.x); if (computed.right.type != Style::Right::Auto) right = ResolveValue(computed.right, containing_block.x); } if (shrink_to_fit && override_shrink_to_fit_width < 0) { content_area.x = GetShrinkToFitWidth(element, containing_block); override_shrink_to_fit_width = content_area.x; } else if (shrink_to_fit) { content_area.x = override_shrink_to_fit_width; } else { // We resolve any auto margins to 0 and the width is set to whatever is left of the containing block. content_area.x = containing_block.x - (left + box.GetCumulativeEdge(Box::CONTENT, Box::LEFT) + box.GetCumulativeEdge(Box::CONTENT, Box::RIGHT) + right); content_area.x = Math::Max(0.0f, content_area.x); } } // Otherwise, the margins that are set to auto will pick up the remaining width of the containing block. else if (num_auto_margins > 0) { const float margin = (containing_block.x - box.GetSizeAcross(Box::HORIZONTAL, Box::MARGIN)) / float(num_auto_margins); if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::LEFT, margin); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::RIGHT, margin); } // Clamp the calculated width; if the width is changed by the clamp, then the margins need to be recalculated if // they were set to auto. const float clamped_width = Math::Clamp(content_area.x, min_width, max_width); if (clamped_width != content_area.x) { content_area.x = clamped_width; box.SetContent(content_area); if (num_auto_margins > 0) BuildBoxWidth(box, computed, min_width, max_width, containing_block, element, replaced_element, override_shrink_to_fit_width); } else box.SetContent(content_area); } // Builds the block-specific height and vertical margins of a Box. void LayoutDetails::BuildBoxHeight(Box& box, const ComputedValues& computed, float min_height, float max_height, float containing_block_height) { RMLUI_ZoneScoped; Vector2f content_area = box.GetSize(); // Determine if the element has automatic margins. bool margins_auto[2]; int num_auto_margins = 0; for (int i = 0; i < 2; ++i) { const Style::Margin& margin_value = (i == 0 ? computed.margin_top : computed.margin_bottom); if (margin_value.type == Style::Margin::Auto) { margins_auto[i] = true; num_auto_margins++; box.SetEdge(Box::MARGIN, i == 0 ? Box::TOP : Box::BOTTOM, 0); } else { margins_auto[i] = false; box.SetEdge(Box::MARGIN, i == 0 ? Box::TOP : Box::BOTTOM, ResolveValue(margin_value, containing_block_height)); } } const bool height_auto = (content_area.y < 0); // If the height is set to auto, we need to calculate the height if (height_auto) { // If the height is set to auto for a box in normal flow, the height is set to -1. content_area.y = -1; // But if we are dealing with an absolutely positioned element we need to // consider if the top and bottom properties are set, since the height can be affected. if (computed.position == Style::Position::Absolute || computed.position == Style::Position::Fixed) { float top = 0.0f, bottom = 0.0f; if (computed.top.type != Style::Top::Auto && computed.bottom.type != Style::Bottom::Auto) { top = ResolveValue(computed.top, containing_block_height ); bottom = ResolveValue(computed.bottom, containing_block_height ); // The height gets resolved to whatever is left of the containing block content_area.y = containing_block_height - (top + box.GetCumulativeEdge(Box::CONTENT, Box::TOP) + box.GetCumulativeEdge(Box::CONTENT, Box::BOTTOM) + bottom); content_area.y = Math::Max(0.0f, content_area.y); } } } // Otherwise, the margins that are set to auto will pick up the remaining width of the containing block. else if (num_auto_margins > 0) { float margin = 0; if (content_area.y >= 0) margin = (containing_block_height - box.GetSizeAcross(Box::VERTICAL, Box::MARGIN)) / num_auto_margins; if (margins_auto[0]) box.SetEdge(Box::MARGIN, Box::TOP, margin); if (margins_auto[1]) box.SetEdge(Box::MARGIN, Box::BOTTOM, margin); } if (content_area.y >= 0) { // Clamp the calculated height; if the height is changed by the clamp, then the margins need to be recalculated if // they were set to auto. float clamped_height = Math::Clamp(content_area.y, min_height, max_height); if (clamped_height != content_area.y) { content_area.y = clamped_height; box.SetContent(content_area); if (num_auto_margins > 0) BuildBoxHeight(box, computed, min_height, max_height, containing_block_height); return; } } box.SetContent(content_area); } } // namespace Rml