/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2018 Michael R. P. Ragazzon * Copyright (c) 2019 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "ElementAnimation.h" #include "../../Include/RmlUi/Core/DecoratorInstancer.h" #include "../../Include/RmlUi/Core/Factory.h" #include "../../Include/RmlUi/Core/Element.h" #include "../../Include/RmlUi/Core/PropertyDefinition.h" #include "../../Include/RmlUi/Core/PropertySpecification.h" #include "../../Include/RmlUi/Core/StyleSheetSpecification.h" #include "../../Include/RmlUi/Core/StyleSheetTypes.h" #include "../../Include/RmlUi/Core/StyleSheet.h" #include "../../Include/RmlUi/Core/Transform.h" #include "../../Include/RmlUi/Core/TransformPrimitive.h" #include "ElementStyle.h" #include "TransformUtilities.h" namespace Rml { static Colourf ColourToLinearSpace(Colourb c) { Colourf result; // Approximate inverse sRGB function result.red = c.red / 255.f; result.red *= result.red; result.green = c.green / 255.f; result.green *= result.green; result.blue = c.blue / 255.f; result.blue *= result.blue; result.alpha = c.alpha / 255.f; return result; } static Colourb ColourFromLinearSpace(Colourf c) { Colourb result; result.red = (byte)Math::Clamp(Math::SquareRoot(c.red)*255.f, 0.0f, 255.f); result.green = (byte)Math::Clamp(Math::SquareRoot(c.green)*255.f, 0.0f, 255.f); result.blue = (byte)Math::Clamp(Math::SquareRoot(c.blue)*255.f, 0.0f, 255.f); result.alpha = (byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f); return result; } // Merges all the primitives to a single DecomposedMatrix4 primitive static bool CombineAndDecompose(Transform& t, Element& e) { Matrix4f m = Matrix4f::Identity(); for (TransformPrimitive& primitive : t.GetPrimitives()) { Matrix4f m_primitive = TransformUtilities::ResolveTransform(primitive, e); m *= m_primitive; } Transforms::DecomposedMatrix4 decomposed; if (!TransformUtilities::Decompose(decomposed, m)) return false; t.ClearPrimitives(); t.AddPrimitive(decomposed); return true; } static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition) { if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT)) { if (p0.unit == p1.unit || !definition) { // If we have the same units, we can just interpolate regardless of what the value represents. // Or if we have distinct units but no definition, all bets are off. This shouldn't occur, just interpolate values. float f0 = p0.value.Get(); float f1 = p1.value.Get(); float f = (1.0f - alpha) * f0 + alpha * f1; return Property{ f, p0.unit }; } else { // Otherwise, convert units to pixels. float f0 = element.GetStyle()->ResolveLength(&p0, definition->GetRelativeTarget()); float f1 = element.GetStyle()->ResolveLength(&p1, definition->GetRelativeTarget()); float f = (1.0f - alpha) * f0 + alpha * f1; return Property{ f, Property::PX }; } } if (p0.unit == Property::KEYWORD && p1.unit == Property::KEYWORD) { // Discrete interpolation, swap at alpha = 0.5. // Special case for the 'visibility' property as in the CSS specs: // Apply the visible property if present during the entire transition period, ie. alpha (0,1). if (definition && definition->GetId() == PropertyId::Visibility) { if (p0.Get() == (int)Style::Visibility::Visible) return alpha < 1.f ? p0 : p1; else if (p1.Get() == (int)Style::Visibility::Visible) return alpha <= 0.f ? p0 : p1; } return alpha < 0.5f ? p0 : p1; } if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR) { Colourf c0 = ColourToLinearSpace(p0.value.Get()); Colourf c1 = ColourToLinearSpace(p1.value.Get()); Colourf c = c0 * (1.0f - alpha) + c1 * alpha; return Property{ ColourFromLinearSpace(c), Property::COLOUR }; } if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM) { auto& t0 = p0.value.GetReference(); auto& t1 = p1.value.GetReference(); const auto& prim0 = t0->GetPrimitives(); const auto& prim1 = t1->GetPrimitives(); if (prim0.size() != prim1.size()) { RMLUI_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?"); return Property{ t0, Property::TRANSFORM }; } // Build the new, interpolating transform UniquePtr t(new Transform); t->GetPrimitives().reserve(t0->GetPrimitives().size()); for (size_t i = 0; i < prim0.size(); i++) { TransformPrimitive p = prim0[i]; if (!TransformUtilities::InterpolateWith(p, prim1[i], alpha)) { RMLUI_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?"); return Property{ t0, Property::TRANSFORM }; } t->AddPrimitive(p); } return Property{ TransformPtr(std::move(t)), Property::TRANSFORM }; } if (p0.unit == Property::DECORATOR && p1.unit == Property::DECORATOR) { auto DiscreteInterpolation = [&]() { return alpha < 0.5f ? p0 : p1; }; // We construct DecoratorDeclarationView from declaration if it has instancer, otherwise we look for DecoratorSpecification and return DecoratorDeclarationView from it auto GetDecoratorDeclarationView = [&](const DecoratorDeclaration& declaration) -> DecoratorDeclarationView { if (declaration.instancer) return DecoratorDeclarationView{ declaration }; const StyleSheet* style_sheet = element.GetStyleSheet(); if (!style_sheet) { Log::Message(Log::LT_WARNING, "Failed to get element stylesheet for '%s' decorator rule.", declaration.type.c_str()); return DecoratorDeclarationView{ declaration }; } const DecoratorSpecification* specification = style_sheet->GetDecoratorSpecification(declaration.type); if (!specification) { Log::Message(Log::LT_WARNING, "Could not find DecoratorSpecification for '%s' decorator rule.", declaration.type.c_str()); return DecoratorDeclarationView{ declaration }; } return DecoratorDeclarationView{ specification }; }; auto& ptr0 = p0.value.GetReference(); auto& ptr1 = p1.value.GetReference(); if (!ptr0 || !ptr1) { RMLUI_ERRORMSG("Invalid decorator pointer, were the decorator keys properly prepared?"); return DiscreteInterpolation(); } const bool p0_smaller = (ptr0->list.size() < ptr1->list.size()); auto& small = (p0_smaller ? ptr0->list : ptr1->list); auto& big = (p0_smaller ? ptr1->list : ptr0->list); // Build the new, interpolated decorator. UniquePtr decorator(new DecoratorDeclarationList); decorator->list.reserve(ptr0->list.size()); // Interpolate decorators that have common types. for (size_t i = 0; i < small.size(); i++) { DecoratorDeclarationView d0_view{ GetDecoratorDeclarationView(ptr0->list[i]) }; DecoratorDeclarationView d1_view{ GetDecoratorDeclarationView(ptr1->list[i]) }; if (!d0_view.instancer || !d1_view.instancer) return DiscreteInterpolation(); if (d0_view.instancer != d1_view.instancer || d0_view.type != d1_view.type || d0_view.properties.GetNumProperties() != d1_view.properties.GetNumProperties()) { // Incompatible decorators, fall back to discrete interpolation. return DiscreteInterpolation(); } decorator->list.push_back(DecoratorDeclaration{ d0_view.type, d0_view.instancer, PropertyDictionary() }); PropertyDictionary& props = decorator->list.back().properties; const auto& props0 = d0_view.properties.GetProperties(); const auto& props1 = d1_view.properties.GetProperties(); for (const auto& pair0 : props0) { const PropertyId id = pair0.first; const Property& prop0 = pair0.second; auto it = props1.find(id); if (it == props1.end()) { RMLUI_ERRORMSG("Incompatible decorator properties."); return DiscreteInterpolation(); } const Property& prop1 = it->second; Property p = InterpolateProperties(prop0, prop1, alpha, element, prop0.definition); p.definition = prop0.definition; props.SetProperty(id, p); } } // Append any trailing decorators from the largest list and interpolate against the default values of its type. for (size_t i = small.size(); i < big.size(); i++) { DecoratorDeclarationView dbig_view{ GetDecoratorDeclarationView(big[i]) }; if (!dbig_view.instancer) return DiscreteInterpolation(); decorator->list.push_back(DecoratorDeclaration{ dbig_view.type, dbig_view.instancer, PropertyDictionary() }); DecoratorDeclaration& d_new = decorator->list.back(); const PropertySpecification& specification = d_new.instancer->GetPropertySpecification(); const PropertyMap& props_big = dbig_view.properties.GetProperties(); for (const auto& pair_big : props_big) { const PropertyId id = pair_big.first; const PropertyDefinition* underlying_definition = specification.GetProperty(id); if (!underlying_definition) return DiscreteInterpolation(); const Property& p_big = pair_big.second; const Property& p_small = *underlying_definition->GetDefaultValue(); const Property& p_interp0 = (p0_smaller ? p_small : p_big); const Property& p_interp1 = (p0_smaller ? p_big : p_small); Property p = InterpolateProperties(p_interp0, p_interp1, alpha, element, p_big.definition); p.definition = p_big.definition; d_new.properties.SetProperty(id, p); } } return Property{ DecoratorsPtr(std::move(decorator)), Property::DECORATOR }; } // Fall back to discrete interpolation for incompatible units. return alpha < 0.5f ? p0 : p1; } enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 }; static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element) { using namespace Transforms; // Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives. // Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms auto& prims0 = t0.GetPrimitives(); auto& prims1 = t1.GetPrimitives(); // Check for trivial case where they contain the same primitives if (prims0.size() == prims1.size()) { PrepareTransformResult result = PrepareTransformResult::Unchanged; bool same_primitives = true; for (size_t i = 0; i < prims0.size(); i++) { auto p0_type = prims0[i].type; auto p1_type = prims1[i].type; // See if they are the same or can be converted to a matching generic type. if (TransformUtilities::TryConvertToMatchingGenericType(prims0[i], prims1[i])) { if (prims0[i].type != p0_type) result = PrepareTransformResult((int)result | (int)PrepareTransformResult::ChangedT0); if (prims1[i].type != p1_type) result = PrepareTransformResult((int)result | (int)PrepareTransformResult::ChangedT1); } else { same_primitives = false; break; } } if (same_primitives) return result; } if (prims0.size() != prims1.size()) { // Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity. // Requirement: The small set must match types in the same order they appear in the big set. // Example: (letter indicates type, number represents values) // big: a0 b0 c0 b1 // ^ ^ // small: b2 b3 // ^ ^ // new small: a1 b2 c1 b3 bool prims0_smallest = (prims0.size() < prims1.size()); auto& small = (prims0_smallest ? prims0 : prims1); auto& big = (prims0_smallest ? prims1 : prims0); Vector matching_indices; // Indices into 'big' for matching types matching_indices.reserve(small.size() + 1); size_t i_big = 0; bool match_success = true; bool changed_big = false; // Iterate through the small set to see if its types fit into the big set for (size_t i_small = 0; i_small < small.size(); i_small++) { match_success = false; for (; i_big < big.size(); i_big++) { auto big_type = big[i_big].type; if (TransformUtilities::TryConvertToMatchingGenericType(small[i_small], big[i_big])) { // They matched exactly or in their more generic form. One or both primitives may have been converted. match_success = true; if (big[i_big].type != big_type) changed_big = true; } if (match_success) { matching_indices.push_back(i_big); match_success = true; i_big += 1; break; } } if (!match_success) break; } if (match_success) { // Success, insert the missing primitives into the small set matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive small.reserve(big.size()); size_t i0 = 0; for (size_t match_index : matching_indices) { for (size_t i = i0; i < match_index; i++) { TransformPrimitive p = big[i]; TransformUtilities::SetIdentity(p); small.insert(small.begin() + i, p); } // Next value to copy is one-past the matching primitive i0 = match_index + 1; } // The small set has always been changed if we get here, but the big set is only changed // if one or more of its primitives were converted to a general form. if (changed_big) return PrepareTransformResult::ChangedT0andT1; return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1); } } // If we get here, things get tricky. Need to do full matrix interpolation. // In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components. // Then, during update, interpolate these components and combine into a new transform matrix. if (!CombineAndDecompose(t0, element)) return PrepareTransformResult::Invalid; if (!CombineAndDecompose(t1, element)) return PrepareTransformResult::Invalid; return PrepareTransformResult::ChangedT0andT1; } static bool PrepareTransforms(Vector& keys, Element& element, int start_index) { bool result = true; // Prepare each transform individually. for (int i = start_index; i < (int)keys.size(); i++) { Property& property = keys[i].property; RMLUI_ASSERT(property.value.GetType() == Variant::TRANSFORMPTR); if (!property.value.GetReference()) property.value = MakeShared(); bool must_decompose = false; Transform& transform = *property.value.GetReference(); for (TransformPrimitive& primitive : transform.GetPrimitives()) { if (!TransformUtilities::PrepareForInterpolation(primitive, element)) { must_decompose = true; break; } } if (must_decompose) result &= CombineAndDecompose(transform, element); } if (!result) return false; // We don't need to prepare the transforms pairwise if we only have a single key added so far. if (keys.size() < 2 || start_index < 1) return true; // Now, prepare the transforms pair-wise so they can be interpolated. const int N = (int)keys.size(); int count_iterations = -1; const int max_iterations = 3 * N; Vector dirty_list(N + 1, false); dirty_list[start_index] = true; // For each pair of keys, match the transform primitives such that they can be interpolated during animation update for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++) { if (!dirty_list[i]) { ++i; continue; } auto& prop0 = keys[i - 1].property; auto& prop1 = keys[i].property; if(prop0.unit != Property::TRANSFORM || prop1.unit != Property::TRANSFORM) return false; auto& t0 = prop0.value.GetReference(); auto& t1 = prop1.value.GetReference(); auto prepare_result = PrepareTransformPair(*t0, *t1, element); if (prepare_result == PrepareTransformResult::Invalid) return false; bool changed_t0 = ((int)prepare_result & (int)PrepareTransformResult::ChangedT0); bool changed_t1 = ((int)prepare_result & (int)PrepareTransformResult::ChangedT1); dirty_list[i] = false; dirty_list[i - 1] = dirty_list[i - 1] || changed_t0; dirty_list[i + 1] = dirty_list[i + 1] || changed_t1; if (changed_t0 && i > 1) --i; else ++i; } // Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair() return (count_iterations < max_iterations); } static void PrepareDecorator(AnimationKey& key) { Property& property = key.property; RMLUI_ASSERT(property.value.GetType() == Variant::DECORATORSPTR); if (!property.value.GetReference()) property.value = MakeShared(); } ElementAnimation::ElementAnimation(PropertyId property_id, ElementAnimationOrigin origin, const Property& current_value, Element& element, double start_world_time, float duration, int num_iterations, bool alternate_direction) : property_id(property_id), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction), last_update_world_time(start_world_time), origin(origin) { if (!current_value.definition) { Log::Message(Log::LT_WARNING, "Property in animation key did not have a definition (while adding key '%s').", current_value.ToString().c_str()); } InternalAddKey(0.0f, current_value, element, Tween{}); } bool ElementAnimation::InternalAddKey(float time, const Property& in_property, Element& element, Tween tween) { int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM | Property::KEYWORD | Property::DECORATOR); if (!(in_property.unit & valid_properties)) { Log::Message(Log::LT_WARNING, "Property value '%s' is not a valid target for interpolation.", in_property.ToString().c_str()); return false; } keys.emplace_back(time, in_property, tween); bool result = true; if (keys.back().property.unit == Property::TRANSFORM) { result = PrepareTransforms(keys, element, (int)keys.size() - 1); } else if (keys.back().property.unit == Property::DECORATOR) { PrepareDecorator(keys.back()); } if (!result) { Log::Message(Log::LT_WARNING, "Could not add animation key with property '%s'.", in_property.ToString().c_str()); keys.pop_back(); } return result; } bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration) { if (!IsInitalized()) { Log::Message(Log::LT_WARNING, "Element animation was not initialized properly, can't add key."); return false; } if (!InternalAddKey(target_time, in_property, element, tween)) { return false; } if (extend_duration) duration = target_time; return true; } float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const { float t = time_since_iteration_start; if (reverse_direction) t = duration - t; int key0 = -1; int key1 = -1; { for (int i = 0; i < (int)keys.size(); i++) { if (keys[i].time >= t) { key1 = i; break; } } if (key1 < 0) key1 = (int)keys.size() - 1; key0 = (key1 == 0 ? 0 : key1 - 1); } RMLUI_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size()); float alpha = 0.0f; { const float t0 = keys[key0].time; const float t1 = keys[key1].time; const float eps = 1e-3f; if (t1 - t0 > eps) alpha = (t - t0) / (t1 - t0); alpha = Math::Clamp(alpha, 0.0f, 1.0f); } alpha = keys[key1].tween(alpha); if (out_key0) *out_key0 = key0; if (out_key1) *out_key1 = key1; return alpha; } Property ElementAnimation::UpdateAndGetProperty(double world_time, Element& element) { float dt = float(world_time - last_update_world_time); if (keys.size() < 2 || animation_complete || dt <= 0.0f) return Property{}; dt = Math::Min(dt, 0.1f); last_update_world_time = world_time; time_since_iteration_start += dt; if (time_since_iteration_start >= duration) { // Next iteration current_iteration += 1; if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations)) { time_since_iteration_start -= duration; if (alternate_direction) reverse_direction = !reverse_direction; } else { animation_complete = true; time_since_iteration_start = duration; } } int key0 = -1; int key1 = -1; float alpha = GetInterpolationFactorAndKeys(&key0, &key1); Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition); return result; } } // namespace Rml