/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "LayoutEngine.h"
#include "../../Include/RmlUi/Core/Math.h"
#include "Pool.h"
#include "LayoutBlockBoxSpace.h"
#include "LayoutInlineBoxText.h"
#include "../../Include/RmlUi/Core/Element.h"
#include "../../Include/RmlUi/Core/ElementScroll.h"
#include "../../Include/RmlUi/Core/ElementText.h"
#include "../../Include/RmlUi/Core/Property.h"
#include "../../Include/RmlUi/Core/Profiling.h"
#include "../../Include/RmlUi/Core/Types.h"
#include
#include
namespace Rml {
namespace Core {
#define MAX(a, b) (a > b ? a : b)
struct LayoutChunk
{
static const unsigned int size = MAX(sizeof(LayoutBlockBox), MAX(sizeof(LayoutInlineBox), MAX(sizeof(LayoutInlineBoxText), MAX(sizeof(LayoutLineBox), sizeof(LayoutBlockBoxSpace)))));
alignas(std::max_align_t) char buffer[size];
};
static Pool< LayoutChunk > layout_chunk_pool(200, true);
LayoutEngine::LayoutEngine()
{
block_box = nullptr;
block_context_box = nullptr;
}
LayoutEngine::~LayoutEngine()
{
}
// Formats the contents for a root-level element (usually a document or floating element).
bool LayoutEngine::FormatElement(Element* element, const Vector2f& containing_block, bool shrink_to_fit)
{
#ifdef RMLUI_ENABLE_PROFILING
RMLUI_ZoneScopedC(0xB22222);
auto name = CreateString(80, "%s %x", element->GetAddress(false, false).c_str(), element);
RMLUI_ZoneName(name.c_str(), name.size());
#endif
block_box = new LayoutBlockBox(this, nullptr, nullptr);
block_box->GetBox().SetContent(containing_block);
block_context_box = block_box->AddBlockElement(element);
for (int i = 0; i < element->GetNumChildren(); i++)
{
if (!FormatElement(element->GetChild(i)))
i = -1;
}
if (shrink_to_fit)
{
// For inline blocks with 'auto' width, we want to shrink the box back to its inner content width, recreating the LayoutBlockBox.
float content_width = block_box->InternalContentWidth();
if (content_width < containing_block.x)
{
RMLUI_ZoneScopedNC("shrink_to_fit", 0xB27222);
Vector2f shrinked_block_size(content_width, containing_block.y);
delete block_box;
block_box = new LayoutBlockBox(this, nullptr, nullptr);
block_box->GetBox().SetContent(shrinked_block_size);
block_context_box = block_box->AddBlockElement(element);
for (int i = 0; i < element->GetNumChildren(); i++)
{
if (!FormatElement(element->GetChild(i)))
i = -1;
}
}
}
block_context_box->Close();
block_context_box->CloseAbsoluteElements();
element->OnLayout();
delete block_box;
return true;
}
// Generates the box for an element.
void LayoutEngine::BuildBox(Box& box, const Vector2f& containing_block, Element* element, bool inline_element)
{
if (element == nullptr)
{
box.SetContent(containing_block);
return;
}
const ComputedValues& computed = element->GetComputedValues();
// Calculate the padding area.
float padding = ResolveValue(computed.padding_top, containing_block.x);
box.SetEdge(Box::PADDING, Box::TOP, Math::Max(0.0f, padding));
padding = ResolveValue(computed.padding_right, containing_block.x);
box.SetEdge(Box::PADDING, Box::RIGHT, Math::Max(0.0f, padding));
padding = ResolveValue(computed.padding_bottom, containing_block.x);
box.SetEdge(Box::PADDING, Box::BOTTOM, Math::Max(0.0f, padding));
padding = ResolveValue(computed.padding_left, containing_block.x);
box.SetEdge(Box::PADDING, Box::LEFT, Math::Max(0.0f, padding));
// Calculate the border area.
box.SetEdge(Box::BORDER, Box::TOP, Math::Max(0.0f, computed.border_top_width));
box.SetEdge(Box::BORDER, Box::RIGHT, Math::Max(0.0f, computed.border_right_width));
box.SetEdge(Box::BORDER, Box::BOTTOM, Math::Max(0.0f, computed.border_bottom_width));
box.SetEdge(Box::BORDER, Box::LEFT, Math::Max(0.0f, computed.border_left_width));
// Calculate the size of the content area.
Vector2f content_area(-1, -1);
bool replaced_element = false;
// If the element has intrinsic dimensions, then we use those as the basis for the content area and only adjust
// them if a non-auto style has been applied to them.
if (element->GetIntrinsicDimensions(content_area))
{
replaced_element = true;
Vector2f original_content_area = content_area;
// The element has resized itself, so we only resize it if a RCSS width or height was set explicitly. A value of
// 'auto' (or 'auto-fit', ie, both keywords) means keep (or adjust) the intrinsic dimensions.
bool auto_width = false, auto_height = false;
if (computed.width.type != Style::Width::Auto)
content_area.x = ResolveValue(computed.width, containing_block.x);
else
auto_width = true;
if (computed.height.type != Style::Height::Auto)
content_area.y = ResolveValue(computed.height, containing_block.y);
else
auto_height = true;
// If one of the dimensions is 'auto' then we need to scale it such that the original ratio is preserved.
if (auto_width && !auto_height)
content_area.x = (content_area.y / original_content_area.y) * original_content_area.x;
else if (auto_height && !auto_width)
content_area.y = (content_area.x / original_content_area.x) * original_content_area.y;
// Reduce the width and height to make up for borders and padding.
content_area.x -= (box.GetEdge(Box::BORDER, Box::LEFT) +
box.GetEdge(Box::PADDING, Box::LEFT) +
box.GetEdge(Box::BORDER, Box::RIGHT) +
box.GetEdge(Box::PADDING, Box::RIGHT));
content_area.y -= (box.GetEdge(Box::BORDER, Box::TOP) +
box.GetEdge(Box::PADDING, Box::TOP) +
box.GetEdge(Box::BORDER, Box::BOTTOM) +
box.GetEdge(Box::PADDING, Box::BOTTOM));
content_area.x = Math::Max(content_area.x, 0.0f);
content_area.y = Math::Max(content_area.y, 0.0f);
}
// If the element is inline, then its calculations are much more straightforward (no worrying about auto margins
// and dimensions, etc). All we do is calculate the margins, set the content area and bail.
if (inline_element)
{
if (replaced_element)
{
content_area.x = ClampWidth(content_area.x, computed, containing_block.x);
content_area.y = ClampHeight(content_area.y, computed, containing_block.y);
}
// If the element was not replaced, then we leave its dimension as unsized (-1, -1) and ignore the width and
// height properties.
box.SetContent(content_area);
// Evaluate the margins. Any declared as 'auto' will resolve to 0.
box.SetEdge(Box::MARGIN, Box::TOP, ResolveValue(computed.margin_top, containing_block.x));
box.SetEdge(Box::MARGIN, Box::RIGHT, ResolveValue(computed.margin_right, containing_block.x));
box.SetEdge(Box::MARGIN, Box::BOTTOM, ResolveValue(computed.margin_bottom, containing_block.x));
box.SetEdge(Box::MARGIN, Box::LEFT, ResolveValue(computed.margin_left, containing_block.x));
}
// The element is block, so we need to run the box through the ringer to potentially evaluate auto margins and
// dimensions.
else
{
box.SetContent(content_area);
BuildBoxWidth(box, computed, containing_block.x);
BuildBoxHeight(box, computed, containing_block.y);
}
}
// Generates the box for an element placed in a block box.
void LayoutEngine::BuildBox(Box& box, float& min_height, float& max_height, LayoutBlockBox* containing_box, Element* element, bool inline_element)
{
Vector2f containing_block = GetContainingBlock(containing_box);
BuildBox(box, containing_block, element, inline_element);
float box_height = box.GetSize().y;
if (box_height < 0)
{
auto& computed = element->GetComputedValues();
min_height = ResolveValue(computed.min_height, containing_block.y);
max_height = (computed.max_height.value < 0.f ? FLT_MAX : ResolveValue(computed.max_height, containing_block.y));
}
else
{
min_height = box_height;
max_height = box_height;
}
}
// Clamps the width of an element based from its min-width and max-width properties.
float LayoutEngine::ClampWidth(float width, const ComputedValues& computed, float containing_block_width)
{
float min_width = ResolveValue(computed.min_width, containing_block_width);
float max_width = (computed.max_width.value < 0.f ? FLT_MAX : ResolveValue(computed.max_width, containing_block_width));
return Math::Clamp(width, min_width, max_width);
}
// Clamps the height of an element based from its min-height and max-height properties.
float LayoutEngine::ClampHeight(float height, const ComputedValues& computed, float containing_block_height)
{
float min_height = ResolveValue(computed.min_height, containing_block_height);
float max_height = (computed.max_height.value < 0.f ? FLT_MAX : ResolveValue(computed.max_height, containing_block_height));
return Math::Clamp(height, min_height, max_height);
}
void* LayoutEngine::AllocateLayoutChunk(size_t RMLUI_UNUSED_ASSERT_PARAMETER(size))
{
RMLUI_ASSERT(size <= LayoutChunk::size);
return layout_chunk_pool.AllocateAndConstruct();
}
void LayoutEngine::DeallocateLayoutChunk(void* chunk)
{
layout_chunk_pool.DestroyAndDeallocate((LayoutChunk*) chunk);
}
// Positions a single element and its children within this layout.
bool LayoutEngine::FormatElement(Element* element)
{
#ifdef RMLUI_ENABLE_PROFILING
RMLUI_ZoneScoped;
auto name = CreateString(80, ">%s %x", element->GetAddress(false, false).c_str(), element);
RMLUI_ZoneName(name.c_str(), name.size());
#endif
auto& computed = element->GetComputedValues();
// Check if we have to do any special formatting for any elements that don't fit into the standard layout scheme.
if (FormatElementSpecial(element))
return true;
// Fetch the display property, and don't lay this element out if it is set to a display type of none.
if (computed.display == Style::Display::None)
return true;
// Check for an absolute position; if this has been set, then we remove it from the flow and add it to the current
// block box to be laid out and positioned once the block has been closed and sized.
if (computed.position == Style::Position::Absolute || computed.position == Style::Position::Fixed)
{
// Display the element as a block element.
block_context_box->AddAbsoluteElement(element);
return true;
}
// If the element is floating, we remove it from the flow.
Style::Float float_property = element->GetFloat();
if (float_property != Style::Float::None)
{
// Format the element as a block element.
LayoutEngine layout_engine;
layout_engine.FormatElement(element, GetContainingBlock(block_context_box));
return block_context_box->AddFloatElement(element);
}
// The element is nothing exceptional, so we treat it as a normal block, inline or replaced element.
switch (computed.display)
{
case Style::Display::Block: return FormatElementBlock(element); break;
case Style::Display::Inline: return FormatElementInline(element); break;
case Style::Display::InlineBlock: return FormatElementReplaced(element); break;
default: RMLUI_ERROR;
}
return true;
}
// Formats and positions an element as a block element.
bool LayoutEngine::FormatElementBlock(Element* element)
{
RMLUI_ZoneScopedC(0x2F4F4F);
LayoutBlockBox* new_block_context_box = block_context_box->AddBlockElement(element);
if (new_block_context_box == nullptr)
return false;
block_context_box = new_block_context_box;
// Format the element's children.
for (int i = 0; i < element->GetNumChildren(); i++)
{
if (!FormatElement(element->GetChild(i)))
i = -1;
}
// Close the block box, and check the return code; we may have overflowed either this element or our parent.
new_block_context_box = block_context_box->GetParent();
switch (block_context_box->Close())
{
// We need to reformat ourself; format all of our children again and close the box. No need to check for error
// codes, as we already have our vertical slider bar.
case LayoutBlockBox::LAYOUT_SELF:
{
for (int i = 0; i < element->GetNumChildren(); i++)
FormatElement(element->GetChild(i));
if (block_context_box->Close() == LayoutBlockBox::OK)
{
element->OnLayout();
break;
}
}
// We caused our parent to add a vertical scrollbar; bail out!
case LayoutBlockBox::LAYOUT_PARENT:
{
block_context_box = new_block_context_box;
return false;
}
break;
default:
element->OnLayout();
}
block_context_box = new_block_context_box;
return true;
}
// Formats and positions an element as an inline element.
bool LayoutEngine::FormatElementInline(Element* element)
{
RMLUI_ZoneScopedC(0x3F6F6F);
Box box;
float min_height, max_height;
BuildBox(box, min_height, max_height, block_context_box, element, true);
LayoutInlineBox* inline_box = block_context_box->AddInlineElement(element, box);
// Format the element's children.
for (int i = 0; i < element->GetNumChildren(); i++)
{
if (!FormatElement(element->GetChild(i)))
return false;
}
inline_box->Close();
// element->OnLayout();
return true;
}
// Positions an element as a sized inline element, formatting its internal hierarchy as a block element.
bool LayoutEngine::FormatElementReplaced(Element* element)
{
RMLUI_ZoneScopedC(0x1F2F2F);
// Format the element separately as a block element, then position it inside our own layout as an inline element.
Vector2f containing_block_size = GetContainingBlock(block_context_box);
LayoutEngine layout_engine;
bool shrink_to_width = element->GetComputedValues().width.type == Style::Width::Auto;
layout_engine.FormatElement(element, containing_block_size, shrink_to_width);
block_context_box->AddInlineElement(element, element->GetBox())->Close();
return true;
}
// Executes any special formatting for special elements.
bool LayoutEngine::FormatElementSpecial(Element* element)
{
static const String br("br");
// Check for a
tag.
if (element->GetTagName() == br)
{
block_context_box->AddBreak();
element->OnLayout();
return true;
}
return false;
}
// Returns the fully-resolved, fixed-width and -height containing block from a block box.
Vector2f LayoutEngine::GetContainingBlock(const LayoutBlockBox* containing_box)
{
Vector2f containing_block;
containing_block.x = containing_box->GetBox().GetSize(Box::CONTENT).x;
if (containing_box->GetElement() != nullptr)
containing_block.x -= containing_box->GetElement()->GetElementScroll()->GetScrollbarSize(ElementScroll::VERTICAL);
while ((containing_block.y = containing_box->GetBox().GetSize(Box::CONTENT).y) < 0)
{
containing_box = containing_box->GetParent();
if (containing_box == nullptr)
{
RMLUI_ERROR;
containing_block.y = 0;
}
}
if (containing_box != nullptr &&
containing_box->GetElement() != nullptr)
containing_block.y -= containing_box->GetElement()->GetElementScroll()->GetScrollbarSize(ElementScroll::HORIZONTAL);
containing_block.x = Math::Max(0.0f, containing_block.x);
containing_block.y = Math::Max(0.0f, containing_block.y);
return containing_block;
}
// Builds the block-specific width and horizontal margins of a Box.
void LayoutEngine::BuildBoxWidth(Box& box, const ComputedValues& computed, float containing_block_width)
{
RMLUI_ZoneScoped;
Vector2f content_area = box.GetSize();
// Determine if the element has an automatic width, and if not calculate it.
bool width_auto;
if (content_area.x >= 0)
{
width_auto = false;
}
else
{
if (computed.width.type == Style::Width::Auto)
{
width_auto = true;
}
else
{
width_auto = false;
content_area.x = ResolveValue(computed.width, containing_block_width);
}
}
// Determine if the element has automatic margins.
bool margins_auto[2];
int num_auto_margins = 0;
for (int i = 0; i < 2; ++i)
{
auto* margin_value = (i == 0 ? &computed.margin_left : &computed.margin_right);
if (margin_value->type == Style::Margin::Auto)
{
margins_auto[i] = true;
num_auto_margins++;
}
else
{
margins_auto[i] = false;
box.SetEdge(Box::MARGIN, i == 0 ? Box::LEFT : Box::RIGHT, ResolveValue(*margin_value, containing_block_width));
}
}
// If the width is set to auto, we need to calculate the width
if (width_auto)
{
float left = 0.0f, right = 0.0f;
// If we are dealing with an absolutely positioned element we need to
// consider if the left and right properties are set, since the width can be affected.
if (computed.position == Style::Position::Absolute || computed.position == Style::Position::Fixed)
{
if (computed.left.type != Style::Left::Auto)
left = ResolveValue(computed.left, containing_block_width );
if (computed.right.type != Style::Right::Auto)
right = ResolveValue(computed.right, containing_block_width);
}
// We resolve any auto margins to 0 and the width is set to whatever is left of the containing block.
if (margins_auto[0])
box.SetEdge(Box::MARGIN, Box::LEFT, 0);
if (margins_auto[1])
box.SetEdge(Box::MARGIN, Box::RIGHT, 0);
content_area.x = containing_block_width - (left +
box.GetCumulativeEdge(Box::CONTENT, Box::LEFT) +
box.GetCumulativeEdge(Box::CONTENT, Box::RIGHT) +
right);
content_area.x = Math::Max(0.0f, content_area.x);
}
// Otherwise, the margins that are set to auto will pick up the remaining width of the containing block.
else if (num_auto_margins > 0)
{
float margin = (containing_block_width - (box.GetCumulativeEdge(Box::CONTENT, Box::LEFT) +
box.GetCumulativeEdge(Box::CONTENT, Box::RIGHT) +
content_area.x)) / num_auto_margins;
if (margins_auto[0])
box.SetEdge(Box::MARGIN, Box::LEFT, margin);
if (margins_auto[1])
box.SetEdge(Box::MARGIN, Box::RIGHT, margin);
}
// Clamp the calculated width; if the width is changed by the clamp, then the margins need to be recalculated if
// they were set to auto.
float clamped_width = ClampWidth(content_area.x, computed, containing_block_width);
if (clamped_width != content_area.x)
{
content_area.x = clamped_width;
box.SetContent(content_area);
if (num_auto_margins > 0)
{
// Reset the automatic margins.
if (margins_auto[0])
box.SetEdge(Box::MARGIN, Box::LEFT, 0);
if (margins_auto[1])
box.SetEdge(Box::MARGIN, Box::RIGHT, 0);
BuildBoxWidth(box, computed, containing_block_width);
}
}
else
box.SetContent(content_area);
}
// Builds the block-specific height and vertical margins of a Box.
void LayoutEngine::BuildBoxHeight(Box& box, const ComputedValues& computed, float containing_block_height)
{
RMLUI_ZoneScoped;
Vector2f content_area = box.GetSize();
// Determine if the element has an automatic height, and if not calculate it.
bool height_auto;
if (content_area.y >= 0)
{
height_auto = false;
}
else
{
if (computed.height.type == Style::Height::Auto)
{
height_auto = true;
}
else
{
height_auto = false;
content_area.y = ResolveValue(computed.height, containing_block_height);
}
}
// Determine if the element has automatic margins.
bool margins_auto[2];
int num_auto_margins = 0;
for (int i = 0; i < 2; ++i)
{
auto* margin_value = (i == 0 ? &computed.margin_top : &computed.margin_bottom);
if (margin_value->type == Style::Margin::Auto)
{
margins_auto[i] = true;
num_auto_margins++;
}
else
{
margins_auto[i] = false;
box.SetEdge(Box::MARGIN, i == 0 ? Box::TOP : Box::BOTTOM, ResolveValue(*margin_value, containing_block_height));
}
}
// If the height is set to auto, we need to calculate the height
if (height_auto)
{
// We resolve any auto margins to 0
if (margins_auto[0])
box.SetEdge(Box::MARGIN, Box::TOP, 0);
if (margins_auto[1])
box.SetEdge(Box::MARGIN, Box::BOTTOM, 0);
// If the height is set to auto for a box in normal flow, the height is set to -1.
content_area.y = -1;
// But if we are dealing with an absolutely positioned element we need to
// consider if the top and bottom properties are set, since the height can be affected.
if (computed.position == Style::Position::Absolute || computed.position == Style::Position::Fixed)
{
float top = 0.0f, bottom = 0.0f;
if (computed.top.type != Style::Top::Auto && computed.bottom.type != Style::Bottom::Auto)
{
top = ResolveValue(computed.top, containing_block_height );
bottom = ResolveValue(computed.bottom, containing_block_height );
// The height gets resolved to whatever is left of the containing block
content_area.y = containing_block_height - (top +
box.GetCumulativeEdge(Box::CONTENT, Box::TOP) +
box.GetCumulativeEdge(Box::CONTENT, Box::BOTTOM) +
bottom);
content_area.y = Math::Max(0.0f, content_area.y);
}
}
}
// Otherwise, the margins that are set to auto will pick up the remaining width of the containing block.
else if (num_auto_margins > 0)
{
float margin;
if (content_area.y >= 0)
{
margin = (containing_block_height - (box.GetCumulativeEdge(Box::CONTENT, Box::TOP) +
box.GetCumulativeEdge(Box::CONTENT, Box::BOTTOM) +
content_area.y)) / num_auto_margins;
}
else
margin = 0;
if (margins_auto[0])
box.SetEdge(Box::MARGIN, Box::TOP, margin);
if (margins_auto[1])
box.SetEdge(Box::MARGIN, Box::BOTTOM, margin);
}
if (content_area.y >= 0)
{
// Clamp the calculated height; if the height is changed by the clamp, then the margins need to be recalculated if
// they were set to auto.
float clamped_height = ClampHeight(content_area.y, computed, containing_block_height);
if (clamped_height != content_area.y)
{
content_area.y = clamped_height;
box.SetContent(content_area);
if (num_auto_margins > 0)
{
// Reset the automatic margins.
if (margins_auto[0])
box.SetEdge(Box::MARGIN, Box::TOP, 0);
if (margins_auto[1])
box.SetEdge(Box::MARGIN, Box::BOTTOM, 0);
BuildBoxHeight(box, computed, containing_block_height);
}
return;
}
}
box.SetContent(content_area);
}
}
}