/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019-2023 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "GeometryBackgroundBorder.h"
#include "../../Include/RmlUi/Core/Box.h"
#include "../../Include/RmlUi/Core/Math.h"
#include
#include
namespace Rml {
GeometryBackgroundBorder::GeometryBackgroundBorder(Vector& vertices, Vector& indices) : vertices(vertices), indices(indices) {}
BorderMetrics GeometryBackgroundBorder::ComputeBorderMetrics(Vector2f outer_position, EdgeSizes edge_sizes, Vector2f inner_size,
CornerSizes outer_radii_def)
{
BorderMetrics metrics = {};
// -- Find the corner positions --
const Vector2f inner_position = outer_position + Vector2f(edge_sizes[LEFT], edge_sizes[TOP]);
const Vector2f outer_size = inner_size + Vector2f(edge_sizes[LEFT] + edge_sizes[RIGHT], edge_sizes[TOP] + edge_sizes[BOTTOM]);
metrics.positions_outer = {
outer_position,
outer_position + Vector2f(outer_size.x, 0),
outer_position + outer_size,
outer_position + Vector2f(0, outer_size.y),
};
metrics.positions_inner = {
inner_position,
inner_position + Vector2f(inner_size.x, 0),
inner_position + inner_size,
inner_position + Vector2f(0, inner_size.y),
};
// -- For curved borders, find the positions to draw ellipses around, and the scaled outer and inner radii --
const float sum_radius = (outer_radii_def[TOP_LEFT] + outer_radii_def[TOP_RIGHT] + outer_radii_def[BOTTOM_RIGHT] + outer_radii_def[BOTTOM_LEFT]);
const bool has_radius = (sum_radius > 1.f);
if (has_radius)
{
auto& outer_radii = metrics.outer_radii;
outer_radii = outer_radii_def;
// Scale the radii such that we have no overlapping curves.
float scale_factor = FLT_MAX;
scale_factor = Math::Min(scale_factor, inner_size.x / (outer_radii[TOP_LEFT] + outer_radii[TOP_RIGHT])); // Top
scale_factor = Math::Min(scale_factor, inner_size.y / (outer_radii[TOP_RIGHT] + outer_radii[BOTTOM_RIGHT])); // Right
scale_factor = Math::Min(scale_factor, inner_size.x / (outer_radii[BOTTOM_RIGHT] + outer_radii[BOTTOM_LEFT])); // Bottom
scale_factor = Math::Min(scale_factor, inner_size.y / (outer_radii[BOTTOM_LEFT] + outer_radii[TOP_LEFT])); // Left
scale_factor = Math::Min(1.0f, scale_factor);
for (float& radius : outer_radii)
radius = Math::Round(radius * scale_factor);
// Place the circle/ellipse centers
metrics.positions_circle_center = {
metrics.positions_outer[TOP_LEFT] + Vector2f(1, 1) * outer_radii[TOP_LEFT],
metrics.positions_outer[TOP_RIGHT] + Vector2f(-1, 1) * outer_radii[TOP_RIGHT],
metrics.positions_outer[BOTTOM_RIGHT] + Vector2f(-1, -1) * outer_radii[BOTTOM_RIGHT],
metrics.positions_outer[BOTTOM_LEFT] + Vector2f(1, -1) * outer_radii[BOTTOM_LEFT],
};
metrics.inner_radii = {
Vector2f(outer_radii[TOP_LEFT]) - Vector2f(edge_sizes[LEFT], edge_sizes[TOP]),
Vector2f(outer_radii[TOP_RIGHT]) - Vector2f(edge_sizes[RIGHT], edge_sizes[TOP]),
Vector2f(outer_radii[BOTTOM_RIGHT]) - Vector2f(edge_sizes[RIGHT], edge_sizes[BOTTOM]),
Vector2f(outer_radii[BOTTOM_LEFT]) - Vector2f(edge_sizes[LEFT], edge_sizes[BOTTOM]),
};
}
return metrics;
}
void GeometryBackgroundBorder::DrawBackground(const BorderMetrics& metrics, ColourbPremultiplied color)
{
const int offset_vertices = (int)vertices.size();
for (int corner = 0; corner < 4; corner++)
DrawBackgroundCorner(Corner(corner), metrics.positions_inner[corner], metrics.positions_circle_center[corner], metrics.outer_radii[corner],
metrics.inner_radii[corner], color);
FillBackground(offset_vertices);
}
void GeometryBackgroundBorder::DrawBorder(const BorderMetrics& metrics, EdgeSizes edge_sizes, const ColourbPremultiplied border_colors[4])
{
RMLUI_ASSERT(border_colors);
const int offset_vertices = (int)vertices.size();
const bool draw_edge[4] = {
edge_sizes[TOP] > 0 && border_colors[TOP].alpha > 0,
edge_sizes[RIGHT] > 0 && border_colors[RIGHT].alpha > 0,
edge_sizes[BOTTOM] > 0 && border_colors[BOTTOM].alpha > 0,
edge_sizes[LEFT] > 0 && border_colors[LEFT].alpha > 0,
};
const bool draw_corner[4] = {
draw_edge[TOP] || draw_edge[LEFT],
draw_edge[TOP] || draw_edge[RIGHT],
draw_edge[BOTTOM] || draw_edge[RIGHT],
draw_edge[BOTTOM] || draw_edge[LEFT],
};
for (int corner = 0; corner < 4; corner++)
{
const Edge edge0 = Edge((corner + 3) % 4);
const Edge edge1 = Edge(corner);
if (draw_corner[corner])
{
DrawBorderCorner(Corner(corner), metrics.positions_outer[corner], metrics.positions_inner[corner],
metrics.positions_circle_center[corner], metrics.outer_radii[corner], metrics.inner_radii[corner], border_colors[edge0],
border_colors[edge1]);
}
if (draw_edge[edge1])
{
RMLUI_ASSERTMSG(draw_corner[corner] && draw_corner[(corner + 1) % 4],
"Border edges can only be drawn if both of its connected corners are drawn.");
FillEdge(edge1 == LEFT ? offset_vertices : (int)vertices.size());
}
}
}
void GeometryBackgroundBorder::DrawBackgroundCorner(Corner corner, Vector2f pos_inner, Vector2f pos_circle_center, float R, Vector2f r,
ColourbPremultiplied color)
{
if (R == 0 || r.x <= 0 || r.y <= 0)
{
DrawPoint(pos_inner, color);
}
else if (r.x > 0 && r.y > 0)
{
const float a0 = float((int)corner + 2) * 0.5f * Math::RMLUI_PI;
const float a1 = float((int)corner + 3) * 0.5f * Math::RMLUI_PI;
const int num_points = GetNumPoints(R);
DrawArc(pos_circle_center, r, a0, a1, color, color, num_points);
}
}
void GeometryBackgroundBorder::DrawPoint(Vector2f pos, ColourbPremultiplied color)
{
const int offset_vertices = (int)vertices.size();
vertices.resize(offset_vertices + 1);
vertices[offset_vertices].position = pos;
vertices[offset_vertices].colour = color;
}
void GeometryBackgroundBorder::DrawArc(Vector2f pos_center, Vector2f r, float a0, float a1, ColourbPremultiplied color0, ColourbPremultiplied color1,
int num_points)
{
RMLUI_ASSERT(num_points >= 2 && r.x > 0 && r.y > 0);
const int offset_vertices = (int)vertices.size();
vertices.resize(offset_vertices + num_points);
for (int i = 0; i < num_points; i++)
{
const float t = float(i) / float(num_points - 1);
const float a = Math::Lerp(t, a0, a1);
const Vector2f unit_vector(Math::Cos(a), Math::Sin(a));
vertices[offset_vertices + i].position = unit_vector * r + pos_center;
vertices[offset_vertices + i].colour = Math::RoundedLerp(t, color0, color1);
}
}
void GeometryBackgroundBorder::FillBackground(int index_start)
{
const int num_added_vertices = (int)vertices.size() - index_start;
const int offset_indices = (int)indices.size();
const int num_triangles = (num_added_vertices - 2);
indices.resize(offset_indices + 3 * num_triangles);
for (int i = 0; i < num_triangles; i++)
{
indices[offset_indices + 3 * i] = index_start;
indices[offset_indices + 3 * i + 1] = index_start + i + 2;
indices[offset_indices + 3 * i + 2] = index_start + i + 1;
}
}
void GeometryBackgroundBorder::DrawBorderCorner(Corner corner, Vector2f pos_outer, Vector2f pos_inner, Vector2f pos_circle_center, float R,
Vector2f r, ColourbPremultiplied color0, ColourbPremultiplied color1)
{
const float a0 = float((int)corner + 2) * 0.5f * Math::RMLUI_PI;
const float a1 = float((int)corner + 3) * 0.5f * Math::RMLUI_PI;
if (R == 0)
{
DrawPointPoint(pos_outer, pos_inner, color0, color1);
}
else if (r.x > 0 && r.y > 0)
{
DrawArcArc(pos_circle_center, R, r, a0, a1, color0, color1, GetNumPoints(R));
}
else
{
DrawArcPoint(pos_circle_center, pos_inner, R, a0, a1, color0, color1, GetNumPoints(R));
}
}
void GeometryBackgroundBorder::DrawPointPoint(Vector2f pos_outer, Vector2f pos_inner, ColourbPremultiplied color0, ColourbPremultiplied color1)
{
const bool different_color = (color0 != color1);
vertices.reserve((int)vertices.size() + (different_color ? 4 : 2));
DrawPoint(pos_inner, color0);
DrawPoint(pos_outer, color0);
if (different_color)
{
DrawPoint(pos_inner, color1);
DrawPoint(pos_outer, color1);
}
}
void GeometryBackgroundBorder::DrawArcArc(Vector2f pos_center, float R, Vector2f r, float a0, float a1, ColourbPremultiplied color0,
ColourbPremultiplied color1, int num_points)
{
RMLUI_ASSERT(num_points >= 2 && R > 0 && r.x > 0 && r.y > 0);
const int num_triangles = 2 * (num_points - 1);
const int offset_vertices = (int)vertices.size();
const int offset_indices = (int)indices.size();
vertices.resize(offset_vertices + 2 * num_points);
indices.resize(offset_indices + 3 * num_triangles);
for (int i = 0; i < num_points; i++)
{
const float t = float(i) / float(num_points - 1);
const float a = Math::Lerp(t, a0, a1);
const ColourbPremultiplied color = Math::RoundedLerp(t, color0, color1);
const Vector2f unit_vector(Math::Cos(a), Math::Sin(a));
vertices[offset_vertices + 2 * i].position = unit_vector * r + pos_center;
vertices[offset_vertices + 2 * i].colour = color;
vertices[offset_vertices + 2 * i + 1].position = unit_vector * R + pos_center;
vertices[offset_vertices + 2 * i + 1].colour = color;
}
for (int i = 0; i < num_triangles; i += 2)
{
indices[offset_indices + 3 * i + 0] = offset_vertices + i + 0;
indices[offset_indices + 3 * i + 1] = offset_vertices + i + 2;
indices[offset_indices + 3 * i + 2] = offset_vertices + i + 1;
indices[offset_indices + 3 * i + 3] = offset_vertices + i + 1;
indices[offset_indices + 3 * i + 4] = offset_vertices + i + 2;
indices[offset_indices + 3 * i + 5] = offset_vertices + i + 3;
}
}
void GeometryBackgroundBorder::DrawArcPoint(Vector2f pos_center, Vector2f pos_inner, float R, float a0, float a1, ColourbPremultiplied color0,
ColourbPremultiplied color1, int num_points)
{
RMLUI_ASSERT(R > 0 && num_points >= 2);
const int offset_vertices = (int)vertices.size();
vertices.reserve(offset_vertices + num_points + 2);
// Generate the vertices. We could also split the arc mid-way to create a sharp color transition.
DrawPoint(pos_inner, color0);
DrawArc(pos_center, Vector2f(R), a0, a1, color0, color1, num_points);
DrawPoint(pos_inner, color1);
RMLUI_ASSERT((int)vertices.size() - offset_vertices == num_points + 2);
// Swap the last two vertices such that the outer edge vertex is last, see the comment for the border drawing functions. Their colors should
// already be the same.
const int last_vertex = (int)vertices.size() - 1;
std::swap(vertices[last_vertex - 1].position, vertices[last_vertex].position);
// Generate the indices
const int num_triangles = (num_points - 1);
const int i_vertex_inner0 = offset_vertices;
const int i_vertex_inner1 = last_vertex - 1;
const int offset_indices = (int)indices.size();
indices.resize(offset_indices + 3 * num_triangles);
for (int i = 0; i < num_triangles; i++)
{
indices[offset_indices + 3 * i + 0] = (i > num_triangles / 2 ? i_vertex_inner1 : i_vertex_inner0);
indices[offset_indices + 3 * i + 1] = offset_vertices + i + 2;
indices[offset_indices + 3 * i + 2] = offset_vertices + i + 1;
}
// Since we swapped the last two vertices we also need to change the last triangle.
indices[offset_indices + 3 * (num_triangles - 1) + 1] = last_vertex;
}
void GeometryBackgroundBorder::FillEdge(int index_next_corner)
{
const int offset_indices = (int)indices.size();
const int num_vertices = (int)vertices.size();
RMLUI_ASSERT(num_vertices >= 2);
indices.resize(offset_indices + 6);
indices[offset_indices + 0] = num_vertices - 2;
indices[offset_indices + 1] = index_next_corner;
indices[offset_indices + 2] = num_vertices - 1;
indices[offset_indices + 3] = num_vertices - 1;
indices[offset_indices + 4] = index_next_corner;
indices[offset_indices + 5] = index_next_corner + 1;
}
int GeometryBackgroundBorder::GetNumPoints(float R) const
{
return Math::Clamp(3 + Math::RoundToInteger(R / 6.f), 2, 100);
}
} // namespace Rml