/*
* This source file is part of RmlUi, the HTML/CSS Interface Middleware
*
* For the latest information, see http://github.com/mikke89/RmlUi
*
* Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
* Copyright (c) 2019-2023 The RmlUi Team, and contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "PropertyParserColour.h"
#include "ControlledLifetimeResource.h"
#include
#include
#include
#include
namespace Rml {
// Helper function for hsl->rgb conversion.
static float HSL_f(float h, float s, float l, float n)
{
float k = std::fmod((n + h * (1.0f / 30.0f)), 12.0f);
float a = s * std::min(l, 1.0f - l);
return l - a * std::max(-1.0f, std::min({k - 3.0f, 9.0f - k, 1.0f}));
}
// Reference: https://en.wikipedia.org/wiki/HSL_and_HSV#HSL_to_RGB_alternative
static void HSLAToRGBA(Array& vals)
{
if (vals[1] == 0.0f)
{
vals[0] = vals[1] = vals[2];
}
else
{
float h = std::fmod(vals[0], 360.0f);
if (h < 0)
h += 360.0f;
float s = vals[1];
float l = vals[2];
vals[0] = HSL_f(h, s, l, 0.0f);
vals[1] = HSL_f(h, s, l, 8.0f);
vals[2] = HSL_f(h, s, l, 4.0f);
}
}
// Reference: https://en.wikipedia.org/wiki/SRGB#Definition
static float InverseSRGBNonlinearTransfer(float channel)
{
return channel > 0.0031308f ? 1.055f * std::pow(channel, 1.0f / 2.4f) - 0.055f : 12.92f * channel;
}
// Reference: https://en.wikipedia.org/wiki/CIELAB_color_space#Converting_between_CIELAB_and_CIE_XYZ_coordinates
static void CIELABToRGBA(Array& values)
{
float y_double_prime = (values[0] + 16.0f) / 116.0f;
float x_double_prime = (values[1] / 500.0f) + y_double_prime;
float z_double_prime = y_double_prime - (values[2] / 200.0f);
float x_prime = (x_double_prime * x_double_prime * x_double_prime) > 0.008856f ? (x_double_prime * x_double_prime * x_double_prime)
: (x_double_prime - (16.0f / 116.0f)) / 7.787f;
float y_prime = (y_double_prime * y_double_prime * y_double_prime) > 0.008856f ? (y_double_prime * y_double_prime * y_double_prime)
: (y_double_prime - (16.0f / 116.0f)) / 7.787f;
float z_prime = (z_double_prime * z_double_prime * z_double_prime) > 0.008856f ? (z_double_prime * z_double_prime * z_double_prime)
: (z_double_prime - (16.0f / 116.0f)) / 7.787f;
static const Vector3f illuminant_d65_multiplicands(0.95047f, 1.0f, 1.08883f);
float x = x_prime * illuminant_d65_multiplicands.x;
float y = y_prime * illuminant_d65_multiplicands.y;
float z = z_prime * illuminant_d65_multiplicands.z;
static constexpr Array, 3> xyz_to_srgb_matrix{
Array{+3.2404548f, -1.5371389f, -0.4985315f},
Array{-0.9692664f, +1.8760109f, +0.0415561f},
Array{+0.0556434f, -0.2040259f, +1.0572252f},
};
float r = xyz_to_srgb_matrix[0][0] * x + xyz_to_srgb_matrix[0][1] * y + xyz_to_srgb_matrix[0][2] * z;
float g = xyz_to_srgb_matrix[1][0] * x + xyz_to_srgb_matrix[1][1] * y + xyz_to_srgb_matrix[1][2] * z;
float b = xyz_to_srgb_matrix[2][0] * x + xyz_to_srgb_matrix[2][1] * y + xyz_to_srgb_matrix[2][2] * z;
values[0] = Math::Clamp(InverseSRGBNonlinearTransfer(r), 0.0f, 1.0f);
values[1] = Math::Clamp(InverseSRGBNonlinearTransfer(g), 0.0f, 1.0f);
values[2] = Math::Clamp(InverseSRGBNonlinearTransfer(b), 0.0f, 1.0f);
}
// References: https://en.wikipedia.org/wiki/Oklab_color_space#Conversions_between_color_spaces and https://bottosson.github.io/posts/oklab/
static void OklabToRGBA(Array& values)
{
static constexpr Array, 3> oklab_to_lms_prime_matrix{
Array{+1.0f, +0.3963377774f, +0.2158037573f},
Array{+1.0f, -0.1055613458f, -0.0638541728f},
Array{+1.0f, -0.0894841775f, -1.2914855480f},
};
float lightness = values[0];
float a_axis = values[1];
float b_axis = values[2];
float l_prime = oklab_to_lms_prime_matrix[0][0] * lightness + oklab_to_lms_prime_matrix[0][1] * a_axis + oklab_to_lms_prime_matrix[0][2] * b_axis;
float m_prime = oklab_to_lms_prime_matrix[1][0] * lightness + oklab_to_lms_prime_matrix[1][1] * a_axis + oklab_to_lms_prime_matrix[1][2] * b_axis;
float s_prime = oklab_to_lms_prime_matrix[2][0] * lightness + oklab_to_lms_prime_matrix[2][1] * a_axis + oklab_to_lms_prime_matrix[2][2] * b_axis;
float l = l_prime * l_prime * l_prime;
float m = m_prime * m_prime * m_prime;
float s = s_prime * s_prime * s_prime;
static constexpr Array, 3> lms_to_srgb_matrix{
Array{+4.0767416621f, -3.3077115913f, +0.2309699292f},
Array{-1.2684380046f, +2.6097574011f, -0.3413193965f},
Array{-0.0041960863f, -0.7034186147f, +1.7076147010f},
};
float r = lms_to_srgb_matrix[0][0] * l + lms_to_srgb_matrix[0][1] * m + lms_to_srgb_matrix[0][2] * s;
float g = lms_to_srgb_matrix[1][0] * l + lms_to_srgb_matrix[1][1] * m + lms_to_srgb_matrix[1][2] * s;
float b = lms_to_srgb_matrix[2][0] * l + lms_to_srgb_matrix[2][1] * m + lms_to_srgb_matrix[2][2] * s;
values[0] = Math::Clamp(InverseSRGBNonlinearTransfer(r), 0.0f, 1.0f);
values[1] = Math::Clamp(InverseSRGBNonlinearTransfer(g), 0.0f, 1.0f);
values[2] = Math::Clamp(InverseSRGBNonlinearTransfer(b), 0.0f, 1.0f);
}
struct PropertyParserColourData {
const UnorderedMap html_colours = {
{"black", Colourb(0, 0, 0)},
{"silver", Colourb(192, 192, 192)},
{"gray", Colourb(128, 128, 128)},
{"grey", Colourb(128, 128, 128)},
{"white", Colourb(255, 255, 255)},
{"maroon", Colourb(128, 0, 0)},
{"red", Colourb(255, 0, 0)},
{"orange", Colourb(255, 165, 0)},
{"purple", Colourb(128, 0, 128)},
{"fuchsia", Colourb(255, 0, 255)},
{"green", Colourb(0, 128, 0)},
{"lime", Colourb(0, 255, 0)},
{"olive", Colourb(128, 128, 0)},
{"yellow", Colourb(255, 255, 0)},
{"navy", Colourb(0, 0, 128)},
{"blue", Colourb(0, 0, 255)},
{"teal", Colourb(0, 128, 128)},
{"aqua", Colourb(0, 255, 255)},
{"transparent", Colourb(0, 0, 0, 0)},
};
};
ControlledLifetimeResource PropertyParserColour::parser_data;
void PropertyParserColour::Initialize()
{
parser_data.Initialize();
}
void PropertyParserColour::Shutdown()
{
parser_data.Shutdown();
}
PropertyParserColour::PropertyParserColour() {}
PropertyParserColour::~PropertyParserColour() {}
bool PropertyParserColour::ParseValue(Property& property, const String& value, const ParameterMap& /*parameters*/) const
{
Colourb colour;
if (!ParseColour(colour, value))
return false;
property.value = Variant(colour);
property.unit = Unit::COLOUR;
return true;
}
bool PropertyParserColour::ParseColour(Colourb& colour, const String& value)
{
if (value.empty())
return false;
colour = {};
if (value[0] == '#')
{
if (!ParseHexColour(colour, value))
return false;
}
else if (value.substr(0, 3) == "rgb")
{
if (!ParseRGBColour(colour, value))
return false;
}
else if (value.substr(0, 3) == "hsl")
{
if (!ParseHSLColour(colour, value))
return false;
}
else if (value.substr(0, 3) == "lab" || value.substr(0, 3) == "lch")
{
if (!ParseCIELABColour(colour, value))
return false;
}
else if (value.substr(0, 5) == "oklab" || value.substr(0, 5) == "oklch")
{
if (!ParseOklabColour(colour, value))
return false;
}
else
{
// Check for the specification of an HTML colour.
auto it = parser_data->html_colours.find(StringUtilities::ToLower(value));
if (it == parser_data->html_colours.end())
return false;
else
colour = it->second;
}
return true;
}
bool PropertyParserColour::ParseHexColour(Colourb& colour, const String& value)
{
char hex_values[4][2] = {{'f', 'f'}, {'f', 'f'}, {'f', 'f'}, {'f', 'f'}};
switch (value.size())
{
// Single hex digit per channel, RGB and alpha.
case 5:
hex_values[3][0] = hex_values[3][1] = value[4];
//-fallthrough
// Single hex digit per channel, RGB only.
case 4:
hex_values[0][0] = hex_values[0][1] = value[1];
hex_values[1][0] = hex_values[1][1] = value[2];
hex_values[2][0] = hex_values[2][1] = value[3];
break;
// Two hex digits per channel, RGB and alpha.
case 9:
hex_values[3][0] = value[7];
hex_values[3][1] = value[8];
//-fallthrough
// Two hex digits per channel, RGB only.
case 7: memcpy(hex_values, &value.c_str()[1], sizeof(char) * 6); break;
default: return false;
}
// Parse each of the colour elements.
for (int i = 0; i < 4; i++)
{
int tens = Math::HexToDecimal(hex_values[i][0]);
int ones = Math::HexToDecimal(hex_values[i][1]);
if (tens == -1 || ones == -1)
return false;
colour[i] = (byte)(tens * 16 + ones);
}
return true;
}
bool PropertyParserColour::ParseRGBColour(Colourb& colour, const String& value)
{
StringList values;
values.reserve(4);
if (!GetColourFunctionValues(values, value, true))
return false;
// Check if we're parsing an 'rgba' or 'rgb' colour declaration.
if (value.size() > 3 && value[3] == 'a')
{
if (values.size() != 4)
return false;
}
else
{
if (values.size() != 3)
return false;
values.push_back("255");
}
// Parse the RGBA values.
for (int i = 0; i < 4; ++i)
{
int component;
// We're parsing a percentage value.
if (values[i].size() > 0 && values[i][values[i].size() - 1] == '%')
component = int((float)atof(values[i].substr(0, values[i].size() - 1).c_str()) * (255.0f / 100.0f));
// We're parsing a 0 -> 255 integer value.
else
component = atoi(values[i].c_str());
colour[i] = (byte)(Math::Clamp(component, 0, 255));
}
return true;
}
bool PropertyParserColour::ParseHSLColour(Colourb& colour, const String& value)
{
StringList values;
values.reserve(4);
if (!GetColourFunctionValues(values, value, true))
return false;
// Check if we're parsing an 'hsla' or 'hsl' colour declaration.
if (value.size() > 3 && value[3] == 'a')
{
if (values.size() != 4)
return false;
}
else
{
if (values.size() != 3)
return false;
values.push_back("1.0");
}
// Parse the HSLA values.
Array vals;
// H is a number in degrees, A is a number between 0.0 and 1.0.
for (int i : {0, 3})
vals[i] = (float)atof(values[i].c_str());
// S and L are percentage values.
for (int i : {1, 2})
if (values[i].size() > 0 && values[i][values[i].size() - 1] == '%')
vals[i] = (float)atof(values[i].substr(0, values[i].size() - 1).c_str()) * (1.0f / 100.0f);
else
return false;
HSLAToRGBA(vals);
for (int i = 0; i < 4; ++i)
colour[i] = (byte)(Math::Clamp((int)(vals[i] * 255.0f), 0, 255));
return true;
}
bool PropertyParserColour::ParseCIELABColour(Colourb& colour, const String& value)
{
StringList values;
values.reserve(5);
if (!GetColourFunctionValues(values, value, false))
return false;
// Check if we have an alpha component.
if (values.size() == 5)
{
if (values[3] != "/")
return false;
values[3] = std::move(values[4]);
values.pop_back();
}
else
{
if (values.size() != 3)
return false;
values.push_back("1.0");
}
Array lab_values;
// Parse lightness and alpha (same for both lab and lch).
for (int i : {0, 3})
{
// Value can either be 'none' (representing 0.0), a percentage between 0% and 100%, or a number (between 0.0 and 100.0 for lightness and between 0.0 and 1.0 for alpha).
if (values[i] == "none")
lab_values[i] = 0.0f;
else if (values[i][values[i].size() - 1] == '%')
{
lab_values[i] = (float)atof(values[i].substr(0, values[i].size() - 1).c_str());
if (i == 3)
lab_values[i] /= 100.0f;
}
else
lab_values[i] = (float)atof(values[i].c_str());
lab_values[i] = Math::Clamp(lab_values[i], 0.0f, i == 0 ? 100.0f : 1.0f);
}
// Determine if colour is in CIELAB or CIELCh space.
if (value.substr(0, 3) == "lab")
{
// Parse A-axis (green-to-red) and B-axis (blue-to-yellow).
for (int i : {1, 2})
{
// Value can either be 'none' (representing 0.0), a percentage between -100% and +100% (representing -125.0 to +125.0), or a number.
if (values[i] == "none")
lab_values[i] = 0.0f;
else if (values[i][values[i].size() - 1] == '%')
{
static constexpr float cielab_axis_percentage_bound = 125.0f;
lab_values[i] = (float)atof(values[i].substr(0, values[i].size() - 1).c_str()) / 100.0f * cielab_axis_percentage_bound;
}
else
lab_values[i] = (float)atof(values[i].c_str());
// Whilst the axis values are theoretically unbounded, in practice, they only exist between -160.0 and +160.0.
static constexpr float cielab_axis_bound_limit = 160.0f;
lab_values[i] = Math::Clamp(lab_values[i], -cielab_axis_bound_limit, +cielab_axis_bound_limit);
}
}
else
{
// Parse chroma; value can either be 'none' (representing 0.0), a percentage between 0% and 100% (representing 0.0 to 150.0), or a number.
float chroma = 0.0f;
if (values[1] == "none")
chroma = 0.0f;
else if (values[1][values[1].size() - 1] == '%')
{
static constexpr float cielch_maximum_percentage_chroma = 150.0f;
chroma = (float)atof(values[1].substr(0, values[1].size() - 1).c_str()) / 100.0f * cielch_maximum_percentage_chroma;
}
else
chroma = (float)atof(values[1].c_str());
// Whilst the chroma is theoretically unbounded, in practice, it does not exceed 230.0.
static constexpr float cielch_maximum_chroma = 230.0f;
chroma = Math::Clamp(chroma, 0.0f, cielch_maximum_chroma);
// Parse hue; value can either be 'none' (representing 0.0), or an angle.
float hue = 0.0f;
if (values[2] == "none")
hue = 0.0f;
else
hue = (float)atof(values[2].c_str());
// Convert LCh polar coordinates to LAB Cartesian coordinates.
lab_values[1] = chroma * Math::Cos(Math::DegreesToRadians(hue));
lab_values[2] = chroma * Math::Sin(Math::DegreesToRadians(hue));
}
CIELABToRGBA(lab_values);
for (int i = 0; i < 4; ++i)
colour[i] = (byte)(Math::Clamp((int)(lab_values[i] * 255.0f), 0, 255));
return true;
}
bool PropertyParserColour::ParseOklabColour(Colourb& colour, const String& value)
{
StringList values;
values.reserve(5);
if (!GetColourFunctionValues(values, value, false))
return false;
// Check if we have an alpha component.
if (values.size() == 5)
{
if (values[3] != "/")
return false;
values[3] = std::move(values[4]);
values.pop_back();
}
else
{
if (values.size() != 3)
return false;
values.push_back("1.0");
}
Array oklab_values;
// Parse lightness and alpha (same for both Oklab and Oklch).
for (int i : {0, 3})
{
// Value can either be 'none' (representing 0.0), a percentage between 0% and 100%, or a number between 0.0 and 1.0.
if (values[i] == "none")
oklab_values[i] = 0.0f;
else if (values[i][values[i].size() - 1] == '%')
oklab_values[i] = (float)atof(values[i].substr(0, values[i].size() - 1).c_str()) / 100.0f;
else
oklab_values[i] = (float)atof(values[i].c_str());
oklab_values[i] = Math::Clamp(oklab_values[i], 0.0f, 1.0f);
}
// Determine if colour is in Oklab or Oklch space.
if (value.substr(0, 5) == "oklab")
{
// Parse A-axis (green-to-red) and B-axis (blue-to-yellow).
for (int i : {1, 2})
{
// Value can either be 'none' (representing 0.0), a percentage between -100% and +100% (representing -0.4 to +0.4), or a number.
if (values[i] == "none")
oklab_values[i] = 0.0f;
else if (values[i][values[i].size() - 1] == '%')
{
static constexpr float oklab_axis_percentage_bound = 0.4f;
oklab_values[i] = (float)atof(values[i].substr(0, values[i].size() - 1).c_str()) / 100.0f * oklab_axis_percentage_bound;
}
else
oklab_values[i] = (float)atof(values[i].c_str());
// Whilst the axis values are theoretically unbounded, in practice, they only exist between -0.5 and +0.5.
static constexpr float oklab_axis_bound_limit = 0.5f;
oklab_values[i] = Math::Clamp(oklab_values[i], -oklab_axis_bound_limit, +oklab_axis_bound_limit);
}
}
else
{
// Parse chroma; value can either be 'none' (representing 0.0), a percentage between 0% and 100% (representing 0.0 to 0.4), or a number.
float chroma = 0.0f;
if (values[1] == "none")
chroma = 0.0f;
else if (values[1][values[1].size() - 1] == '%')
{
static constexpr float oklch_maximum_percentage_chroma = 0.4f;
chroma = (float)atof(values[1].substr(0, values[1].size() - 1).c_str()) / 100.0f * oklch_maximum_percentage_chroma;
}
else
chroma = (float)atof(values[1].c_str());
// Whilst the chroma is theoretically unbounded, in practice, it does not exceed 0.5.
static constexpr float oklch_maximum_chroma = 0.5f;
chroma = Math::Clamp(chroma, 0.0f, oklch_maximum_chroma);
// Parse hue; value can either be 'none' (representing 0.0), or an angle.
float hue = 0.0f;
if (values[2] == "none")
hue = 0.0f;
else
hue = (float)atof(values[2].c_str());
// Convert Oklch polar coordinates to Oklab Cartesian coordinates.
oklab_values[1] = chroma * Math::Cos(Math::DegreesToRadians(hue));
oklab_values[2] = chroma * Math::Sin(Math::DegreesToRadians(hue));
}
OklabToRGBA(oklab_values);
for (int i = 0; i < 4; ++i)
colour[i] = (byte)(Math::Clamp((int)(oklab_values[i] * 255.0f), 0, 255));
return true;
}
bool PropertyParserColour::GetColourFunctionValues(StringList& values, const String& value, bool is_comma_separated)
{
size_t find = value.find('(');
if (find == String::npos)
return false;
size_t begin_values = find + 1;
StringUtilities::ExpandString(values, value.substr(begin_values, value.rfind(')') - begin_values), is_comma_separated ? ',' : ' ',
!is_comma_separated);
return true;
}
} // namespace Rml