/* * This source file is part of RmlUi, the HTML/CSS Interface Middleware * * For the latest information, see http://github.com/mikke89/RmlUi * * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd * Copyright (c) 2019-2023 The RmlUi Team, and contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "TableFormattingDetails.h" #include "../../../Include/RmlUi/Core/ComputedValues.h" #include "../../../Include/RmlUi/Core/Element.h" #include "ContainerBox.h" #include "LayoutDetails.h" #include #include namespace Rml { bool TableGrid::Build(Element* element_table, TableWrapper& table_wrapper) { RMLUI_ASSERT(rows.empty() && columns.empty() && cells.empty() && open_cells.empty()); ElementList non_parented_cell_elements; const int num_table_children = element_table->GetNumChildren(); for (int i = 0; i < num_table_children; i++) { using Display = Style::Display; Element* element = element_table->GetChild(i); const Display display = element->GetDisplay(); if (display == Display::None) continue; if (!non_parented_cell_elements.empty() && display != Display::TableCell) { PushRow(nullptr, std::move(non_parented_cell_elements), table_wrapper); non_parented_cell_elements.clear(); } if (display == Display::TableCell) { non_parented_cell_elements.push_back(element); } else if (display == Display::TableRow) { PushRow(element, {}, table_wrapper); } else if (display == Display::TableRowGroup) { const int num_row_group_children = element->GetNumChildren(); const int row_group_index = (int)rows.size(); int num_rows_added = 0; for (int j = 0; j < num_row_group_children; j++) { Element* element_row = element->GetChild(j); const Display display_row = element_row->GetDisplay(); if (display_row != Display::TableRow) { if (display_row != Display::None) { Log::Message(Log::LT_WARNING, "Only table rows are valid children of table row groups. Ignoring element %s.", element_row->GetAddress().c_str()); } continue; } PushRow(element_row, {}, table_wrapper); num_rows_added += 1; } if (num_rows_added > 0) { rows[row_group_index].element_group = element; rows[row_group_index].group_span = num_rows_added; } if (element->GetPosition() == Style::Position::Relative) table_wrapper.AddRelativeElement(element); } else if (rows.empty() && display == Display::TableColumn) { const int span = Math::Max(1, element->GetAttribute("span", 1)); PushColumn(element, span); } else if (rows.empty() && display == Display::TableColumnGroup) { PushColumnGroup(element); } else { if (display == Display::TableColumn || display == Display::TableColumnGroup) Log::Message(Log::LT_WARNING, "Table columns and column groups must precede any table rows. Ignoring element %s.", element->GetAddress().c_str()); else Log::Message(Log::LT_WARNING, "Only table columns, column groups, rows, row groups, and cells are valid children of tables. Ignoring element %s.", element->GetAddress().c_str()); } } if (!non_parented_cell_elements.empty()) { PushRow(nullptr, std::move(non_parented_cell_elements), table_wrapper); non_parented_cell_elements.clear(); } // Sort cells by the last row they span. std::sort(cells.begin(), cells.end(), [](const Cell& a, const Cell& b) { return a.row_last < b.row_last; }); if (!open_cells.empty()) { Log::Message(Log::LT_WARNING, "One or more cells span below the last row in table %s. They will not be formatted. Add additional rows, or adjust the rowspan " "attribute.", element_table->GetAddress().c_str()); } open_cells.clear(); open_cells.shrink_to_fit(); return true; } void TableGrid::PushColumn(Element* element_column, int span) { Column column; column.element_column = element_column; column.column_span = span; columns.push_back(column); for (int j = 1; j < span; j++) columns.push_back({}); } void TableGrid::PushColumnGroup(Element* element_column_group) { const int column_begin = (int)columns.size(); int group_span = Math::Max(0, element_column_group->GetAttribute("span", 0)); if (group_span == 0) { // Look through the column group to find all its column children. const int num_column_group_children = element_column_group->GetNumChildren(); for (int j = 0; j < num_column_group_children; j++) { Element* child = element_column_group->GetChild(j); if (child->GetDisplay() == Style::Display::TableColumn) { const int column_span = Math::Max(1, child->GetAttribute("span", 1)); PushColumn(child, column_span); group_span += column_span; } } } else { // Push empty columns, the group properties are filled below. for (int j = 0; j < group_span; j++) columns.push_back({}); } if (group_span > 0) { columns[column_begin].element_group = element_column_group; columns[column_begin].group_span = group_span; } } void TableGrid::PushOrMergeColumnsFromFirstRow(Element* element_cell, int column_begin, int span) { for (int column_index = column_begin; column_index < column_begin + span; column_index++) { Column* column = nullptr; if (column_index < (int)columns.size()) { column = &columns[column_index]; } else { RMLUI_ASSERT(column_index == (int)columns.size()); columns.push_back({}); column = &columns.back(); } if (column_index == column_begin) { column->element_cell = element_cell; column->cell_span = span; } } } void TableGrid::PushRow(Element* element_row, ElementList cell_elements, TableWrapper& table_wrapper) { const int row_index = (int)rows.size(); if (element_row) { RMLUI_ASSERT(cell_elements.empty()); const int num_row_children = element_row->GetNumChildren(); cell_elements.reserve(num_row_children); for (int j = 0; j < num_row_children; j++) { Element* element_cell = element_row->GetChild(j); const Style::Display cell_display = element_cell->GetComputedValues().display(); if (cell_display == Style::Display::TableCell) { cell_elements.push_back(element_cell); } else if (cell_display != Style::Display::None) { Log::Message(Log::LT_WARNING, "Only table cells are allowed as children of table rows. %s", element_cell->GetAddress().c_str()); } } if (element_row->GetPosition() == Style::Position::Relative) table_wrapper.AddRelativeElement(element_row); } rows.push_back(Row{element_row, nullptr, 0}); const int num_cells_spanning_this_row = (int)open_cells.size(); // For all child cell elements of this row, add them to the list of open cells. for (int j = 0, column = 0; j < (int)cell_elements.size(); j++) { Element* element_cell = cell_elements[j]; const int row_span = Math::Max(1, element_cell->GetAttribute("rowspan", 1)); const int col_span = Math::Max(1, element_cell->GetAttribute("colspan", 1)); if (row_index == 0) { // This is the first row. The cells of this row along with previous elements define the columns. PushOrMergeColumnsFromFirstRow(element_cell, column, col_span); } // Offset the column if we have any rowspan elements from previous rows overlapping with the current column. for (bool continue_offset_column = true; continue_offset_column;) { continue_offset_column = false; for (int k = 0; k < num_cells_spanning_this_row; k++) { if (column >= open_cells[k].column_begin && column <= open_cells[k].column_last) { column = open_cells[k].column_last + 1; continue_offset_column = true; break; } } } const int column_last = column + col_span - 1; if (column_last >= (int)columns.size()) { Log::Message(Log::LT_WARNING, "Too many columns in table row %d while encountering cell: %s\nThe number of columns is %d, as determined by the table columns or " "the first table row.", row_index + 1, element_cell->GetAddress().c_str(), (int)columns.size()); break; } const Style::Position cell_position = element_cell->GetPosition(); if (cell_position == Style::Position::Absolute || cell_position == Style::Position::Fixed) { table_wrapper.AddAbsoluteElement(element_cell, {}, table_wrapper.GetElement()); } else { // Add the new cell to our list. open_cells.emplace_back(); Cell& cell = open_cells.back(); cell.element_cell = element_cell; cell.row_begin = row_index; cell.row_last = row_index + row_span - 1; cell.column_begin = column; cell.column_last = column_last; if (cell_position == Style::Position::Relative) table_wrapper.AddRelativeElement(element_cell); } column += col_span; } // Partition the cells to determine those who end at this row. const auto it_cells_in_row_end = std::partition(open_cells.begin(), open_cells.end(), [row_index](const Cell& cell) { return cell.row_last == row_index; }); // Close cells ending at this row. cells.insert(cells.end(), open_cells.begin(), it_cells_in_row_end); open_cells.erase(open_cells.begin(), it_cells_in_row_end); } void TracksSizing::GetEdgeSizes(float& margin_a, float& margin_b, float& padding_border_a, float& padding_border_b, const ComputedAxisSize& computed) const { LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed, table_initial_content_size); } void TracksSizing::ApplyGroupElement(const int index, const int span, const ComputedAxisSize& computed) { RMLUI_ASSERT(span >= 1 && index + span - 1 < (int)metrics.size()); float margin_a, margin_b; float padding_border_a, padding_border_b; GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed); // Add left/top edges. TrackMetric& metric_begin = metrics[index]; metric_begin.group_padding_border_a = padding_border_a; metric_begin.sum_margin_a = margin_a; // Add right/bottom edges. TrackMetric& metric_last = metrics[index + span - 1]; metric_last.group_padding_border_b = padding_border_b; metric_last.sum_margin_b = margin_b; } void TracksSizing::ApplyTrackElement(const int index, const int span, const ComputedAxisSize& computed) { RMLUI_ASSERT(span >= 1 && index + span - 1 < (int)metrics.size()); float margin_a, margin_b; float padding_border_a, padding_border_b; TrackMetric& metric_begin = metrics[index]; // We target the content box because track sizes are defined in terms of the border box of cells, equal to the content size of tracks. InitializeSize(metric_begin, margin_a, margin_b, padding_border_a, padding_border_b, computed, span, Style::BoxSizing::ContentBox); // Add left/top edges. Increment the values because we are merging with any previously set edges. metric_begin.column_padding_border_a += padding_border_a; metric_begin.sum_margin_a += margin_a; // Add right/bottom edges. TrackMetric& metric_last = metrics[index + span - 1]; metric_last.column_padding_border_b += padding_border_b; metric_last.sum_margin_b += margin_b; // The size of all spanning tracks are distributed equally. for (int j = 1; j < span; j++) { TrackMetric& metric = metrics[index + j]; metric.sizing_mode = metric_begin.sizing_mode; metric.fixed_size = metric_begin.fixed_size; metric.flex_size = metric_begin.flex_size; metric.min_size = metric_begin.min_size; metric.max_size = metric_begin.max_size; } } void TracksSizing::ApplyCellElement(const int index, const int span, const ComputedAxisSize& computed) { // Merge the metrics of the cell with the existing track: If the existing track // has auto min-/max-/size, we use the cell's min-/max-/size if it has any. RMLUI_ASSERT(span >= 1 && index + span - 1 < (int)metrics.size()); float margin_a, margin_b; float padding_border_a, padding_border_b; TrackMetric cell_metric; // We target the border box because track sizes are defined in terms of the border box of cells. InitializeSize(cell_metric, margin_a, margin_b, padding_border_a, padding_border_b, computed, span, Style::BoxSizing::BorderBox); cell_metric.sum_margin_a = margin_a; // Merge the size determined by this cell with any existing track sizes. for (int j = 0; j < span; j++) { if (j == 1) cell_metric.sum_margin_a = 0; if (j == span - 1) cell_metric.sum_margin_b = margin_b; // Merge the existing track metrics with the cell sizing data. TrackMetric& destination = metrics[index + j]; if (destination.sizing_mode != TrackSizingMode::Fixed && cell_metric.sizing_mode == TrackSizingMode::Fixed) { destination.fixed_size = cell_metric.fixed_size; destination.flex_size = 0; destination.sizing_mode = TrackSizingMode::Fixed; } if (destination.min_size == 0) destination.min_size = cell_metric.min_size; if (destination.max_size == FLT_MAX) destination.max_size = cell_metric.max_size; destination.sum_margin_a += cell_metric.sum_margin_a; destination.sum_margin_b += cell_metric.sum_margin_b; } } void TracksSizing::InitializeSize(TrackMetric& metric, float& margin_a, float& margin_b, float& padding_border_a, float& padding_border_b, const ComputedAxisSize& computed, const int span, const Style::BoxSizing target_box) const { RMLUI_ASSERT(span >= 1); GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed); const float padding_border_sum = padding_border_a + padding_border_b; // Find the min/max size. metric.min_size = ResolveValue(computed.min_size, table_initial_content_size); metric.max_size = ResolveValue(computed.max_size, table_initial_content_size); if (target_box == Style::BoxSizing::ContentBox && computed.box_sizing == Style::BoxSizing::BorderBox) { metric.min_size = Math::Max(0.0f, metric.min_size - padding_border_sum); if (metric.max_size < FLT_MAX) metric.max_size = Math::Max(0.0f, metric.max_size - padding_border_sum); } else if (target_box == Style::BoxSizing::BorderBox && computed.box_sizing == Style::BoxSizing::ContentBox) { if (metric.min_size > 0) metric.min_size += padding_border_sum; if (metric.max_size < FLT_MAX) metric.max_size += padding_border_sum; } // Find fixed and flexible sizes. if (computed.size.type == Style::LengthPercentageAuto::Auto) { metric.sizing_mode = TrackSizingMode::Auto; } else if (computed.size.type == Style::LengthPercentageAuto::Percentage && computed.size.value >= 100.f) { // Percentages >= 100% are resolved as flexible size. metric.sizing_mode = TrackSizingMode::Flexible; metric.flex_size = Math::Max(0.01f * computed.size.value / float(span), 0.f); } else { float width = ResolveValue(computed.size, table_initial_content_size); if (target_box == Style::BoxSizing::ContentBox && computed.box_sizing == Style::BoxSizing::BorderBox) width = Math::Max(0.f, width - padding_border_sum); else if (target_box == Style::BoxSizing::BorderBox && computed.box_sizing == Style::BoxSizing::ContentBox) width += padding_border_sum; metric.sizing_mode = TrackSizingMode::Fixed; metric.flex_size = 0; metric.fixed_size = Math::Clamp(width, metric.min_size, metric.max_size); metric.min_size = metric.fixed_size; metric.max_size = metric.fixed_size; } if (span > 1) { // Account for distribution of fixed size over the tracks we are spanning. const float width_factor = 1.f / float(span); metric.fixed_size *= width_factor; metric.min_size *= width_factor; if (metric.max_size < FLT_MAX) metric.max_size *= width_factor; } } void TracksSizing::ResolveFlexibleSize() { // The fixed spacing includes the table gaps, and the track and track-group elements' padding, border, and margins. float sum_fixed_spacing = table_gap * float((int)metrics.size() - 1); for (const TrackMetric& metric : metrics) { // Any auto size must have been resolved to either fixed or flexible before running this algorithm. RMLUI_ASSERT(metric.sizing_mode == TrackSizingMode::Fixed || metric.sizing_mode == TrackSizingMode::Flexible); sum_fixed_spacing += metric.column_padding_border_a + metric.column_padding_border_b; sum_fixed_spacing += metric.group_padding_border_a + metric.group_padding_border_a; sum_fixed_spacing += metric.sum_margin_a + metric.sum_margin_b; } float table_available_size = 0.0f; // Convert any flexible sizes to fixed sizes by filling up the size of the table. for (bool continue_iteration = true; continue_iteration;) { continue_iteration = false; float fr_to_px_ratio = 0; // Calculate the fr/px-ratio. [fr] is here the unit for flexible width. { float sum_fixed_size = sum_fixed_spacing; // [px] float sum_flex_size = 0; // [fr] for (const TrackMetric& metric : metrics) { sum_flex_size += metric.flex_size; sum_fixed_size += (metric.flex_size == 0.f ? metric.fixed_size : 0.0f); } sum_flex_size = Math::Max(1.f, sum_flex_size); table_available_size = table_initial_content_size - sum_fixed_size; fr_to_px_ratio = Math::Max(0.0f, table_available_size) / sum_flex_size; } // Iterate through each track and convert flexible size to fixed size. for (auto& metric : metrics) { if (metric.flex_size > 0) { const float fixed_flex_size = metric.flex_size * fr_to_px_ratio; metric.fixed_size = Math::Clamp(fixed_flex_size, metric.min_size, metric.max_size); table_available_size -= metric.fixed_size; if (metric.fixed_size != fixed_flex_size) { // We met a min/max-constraint, fix the size of this track. Start over with the procedure once we are done with all the tracks. metric.flex_size = 0.0f; continue_iteration = true; } } } } // If we have distributed all the flexible space, and there is still space available, then distribute the available space over // the track sizes while respecting max-widths. if (table_available_size > 0.5f) { const int num_tracks = (int)metrics.size(); struct TrackAvailableSize { int track; float available_size; }; Vector track_available_sizes(num_tracks); // Find the available size of all tracks. for (int i = 0; i < num_tracks; i++) { track_available_sizes[i].track = i; track_available_sizes[i].available_size = metrics[i].max_size - metrics[i].fixed_size; } // Sort the tracks by available size, smallest to largest. This lets us "fill up" the most constrained tracks first. std::sort(track_available_sizes.begin(), track_available_sizes.end(), [](const TrackAvailableSize& c1, const TrackAvailableSize& c2) { return c1.available_size < c2.available_size; }); for (int i = 0; i < num_tracks; i++) { const int track = track_available_sizes[i].track; const int num_tracks_remaining = num_tracks - i; const float ideal_add_track_size = table_available_size / float(num_tracks_remaining); const float add_track_size = Math::Min(ideal_add_track_size, track_available_sizes[i].available_size); if (add_track_size > 0) { metrics[track].fixed_size += add_track_size; table_available_size = Math::Max(0.0f, table_available_size - add_track_size); } } } } static float InitializeTrackBoxes(TrackBoxList& boxes, const TrackMetricList& metrics, const float table_gap) { boxes.resize(metrics.size()); float cursor = 0; // Walk through all the metrics and populate the track box accordingly. for (size_t i = 0; i < metrics.size(); i++) { TrackBox& box = boxes[i]; const TrackMetric& metric = metrics[i]; box.group_offset = cursor + metric.sum_margin_a; box.track_offset = box.group_offset + metric.group_padding_border_a; box.cell_offset = box.track_offset + metric.column_padding_border_a; // The group and column width will be extended if they span multiple columns (see next loop). box.group_size = metric.fixed_size + metric.column_padding_border_a + metric.column_padding_border_b; box.cell_size = metric.fixed_size; box.track_size = metric.fixed_size; cursor = box.cell_offset + metric.fixed_size + metric.column_padding_border_b + metric.group_padding_border_b + metric.sum_margin_b; if (i != metrics.size() - 1) cursor += table_gap; } return cursor; } float BuildColumnBoxes(TrackBoxList& column_boxes, const TrackMetricList& column_metrics, const TableGrid::ColumnList& grid_columns, const float table_gap_x) { const float columns_width = InitializeTrackBoxes(column_boxes, column_metrics, table_gap_x); const int num_columns = (int)column_metrics.size(); // Extend column and column group widths to cover all the columns they span. for (int i = 0; i < num_columns; i++) { const int column_span = grid_columns[i].column_span; const int group_span = grid_columns[i].group_span; if (column_span > 1 && i + column_span - 1 < num_columns) { TrackBox& metric = column_boxes[i]; TrackBox& metric_last_span = column_boxes[i + column_span - 1]; metric.track_size = metric_last_span.cell_size + (metric_last_span.cell_offset - metric.cell_offset); } if (group_span > 1 && i + group_span - 1 < num_columns) { TrackBox& metric = column_boxes[i]; TrackBox& metric_last_span = column_boxes[i + group_span - 1]; metric.group_size = metric_last_span.group_size + (metric_last_span.track_offset - metric.track_offset); } } return columns_width; } float BuildRowBoxes(TrackBoxList& row_boxes, const TrackMetricList& row_metrics, const TableGrid::RowList& grid_rows, const float table_gap_y) { const float rows_height = InitializeTrackBoxes(row_boxes, row_metrics, table_gap_y); const int num_rows = (int)row_metrics.size(); // Extend row group heights to cover the all rows they span. for (int i = 0; i < num_rows; i++) { const int group_span = grid_rows[i].group_span; if (group_span > 1 && i + group_span - 1 < num_rows) { TrackBox& metric = row_boxes[i]; TrackBox& metric_last_span = row_boxes[i + group_span - 1]; metric.group_size = metric_last_span.group_size + (metric_last_span.track_offset - metric.track_offset); } } return rows_height; } } // namespace Rml