TransformPrimitive.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2014 Markus Schöngart
  7. * Copyright (c) 2019 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "precompiled.h"
  29. #include "../../Include/RmlUi/Core/TransformPrimitive.h"
  30. #include "../../Include/RmlUi/Core/TypeConverter.h"
  31. #include <iostream>
  32. #include <unordered_map>
  33. namespace Rml {
  34. namespace Core {
  35. namespace Transforms {
  36. static Vector3f Combine(const Vector3f& a, const Vector3f& b, float a_scale, float b_scale)
  37. {
  38. Vector3f result;
  39. result.x = a_scale * a.x + b_scale * b.x;
  40. result.y = a_scale * a.y + b_scale * b.y;
  41. result.z = a_scale * a.z + b_scale * b.z;
  42. return result;
  43. }
  44. // Interpolate two quaternions a, b with weight alpha [0, 1]
  45. static Vector4f QuaternionSlerp(const Vector4f& a, const Vector4f& b, float alpha)
  46. {
  47. using namespace Math;
  48. const float eps = 0.9995f;
  49. float dot = a.DotProduct(b);
  50. dot = Clamp(dot, -1.f, 1.f);
  51. if (dot > eps)
  52. return a;
  53. float theta = ACos(dot);
  54. float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot);
  55. float a_scale = Cos(alpha*theta) - dot * w;
  56. Vector4f result;
  57. for (int i = 0; i < 4; i++)
  58. {
  59. result[i] = a[i] * a_scale + b[i] * w;
  60. }
  61. return result;
  62. }
  63. NumericValue::NumericValue() noexcept
  64. : number(), unit(Property::UNKNOWN)
  65. {
  66. }
  67. NumericValue::NumericValue(float number, Property::Unit unit) noexcept
  68. : number(number), unit(unit)
  69. {
  70. }
  71. float NumericValue::ResolveLengthPercentage(Element& e, float base) const noexcept
  72. {
  73. Property prop;
  74. prop.value = Variant(number);
  75. prop.unit = unit;
  76. return e.ResolveLength(&prop, base);
  77. }
  78. float NumericValue::ResolveWidth(Element& e) const noexcept
  79. {
  80. if(unit & (Property::PX | Property::NUMBER)) return number;
  81. return ResolveLengthPercentage(e, e.GetBox().GetSize(Box::BORDER).x);
  82. }
  83. float NumericValue::ResolveHeight(Element& e) const noexcept
  84. {
  85. if (unit & (Property::PX | Property::NUMBER)) return number;
  86. return ResolveLengthPercentage(e, e.GetBox().GetSize(Box::BORDER).y);
  87. }
  88. float NumericValue::ResolveDepth(Element& e) const noexcept
  89. {
  90. if (unit & (Property::PX | Property::NUMBER)) return number;
  91. Vector2f size = e.GetBox().GetSize(Box::BORDER);
  92. return ResolveLengthPercentage(e, Math::Max(size.x, size.y));
  93. }
  94. float NumericValue::ResolveAbsoluteUnit(Property::Unit base_unit) const noexcept
  95. {
  96. if(base_unit == Property::RAD)
  97. {
  98. switch (unit)
  99. {
  100. case Property::NUMBER:
  101. case Property::DEG:
  102. return Math::DegreesToRadians(number);
  103. case Property::RAD:
  104. return number;
  105. case Property::PERCENT:
  106. return number * 0.01f * 2.0f * Math::RMLUI_PI;
  107. default:
  108. break;
  109. }
  110. }
  111. return number;
  112. }
  113. String NumericValue::ToString() const noexcept
  114. {
  115. Property prop;
  116. prop.value = Variant(number);
  117. prop.unit = unit;
  118. return prop.ToString();
  119. }
  120. struct ResolveTransformVisitor
  121. {
  122. Matrix4f& m;
  123. Element& e;
  124. bool operator()(const Matrix2D& p)
  125. {
  126. m = Matrix4f::FromRows(
  127. Vector4f(p.values[0], p.values[2], 0, p.values[4]),
  128. Vector4f(p.values[1], p.values[3], 0, p.values[5]),
  129. Vector4f(0, 0, 1, 0),
  130. Vector4f(0, 0, 0, 1)
  131. );
  132. return true;
  133. }
  134. bool operator()(const Matrix3D& p)
  135. {
  136. m = Matrix4f::FromColumns(
  137. Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]),
  138. Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]),
  139. Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]),
  140. Vector4f(p.values[12], p.values[13], p.values[14], p.values[15])
  141. );
  142. return true;
  143. }
  144. bool operator()(const TranslateX& p)
  145. {
  146. m = Matrix4f::TranslateX(p.values[0].ResolveWidth(e));
  147. return true;
  148. }
  149. bool operator()(const TranslateY& p)
  150. {
  151. m = Matrix4f::TranslateY(p.values[0].ResolveHeight(e));
  152. return true;
  153. }
  154. bool operator()(const TranslateZ& p)
  155. {
  156. m = Matrix4f::TranslateZ(p.values[0].ResolveDepth(e));
  157. return true;
  158. }
  159. bool operator()(const Translate2D& p)
  160. {
  161. m = Matrix4f::Translate(
  162. p.values[0].ResolveWidth(e),
  163. p.values[1].ResolveHeight(e),
  164. 0
  165. );
  166. return true;
  167. }
  168. bool operator()(const Translate3D& p)
  169. {
  170. m = Matrix4f::Translate(
  171. p.values[0].ResolveWidth(e),
  172. p.values[1].ResolveHeight(e),
  173. p.values[2].ResolveDepth(e)
  174. );
  175. return true;
  176. }
  177. bool operator()(const ScaleX& p)
  178. {
  179. m = Matrix4f::ScaleX(p.values[0]);
  180. return true;
  181. }
  182. bool operator()(const ScaleY& p)
  183. {
  184. m = Matrix4f::ScaleY(p.values[0]);
  185. return true;
  186. }
  187. bool operator()(const ScaleZ& p)
  188. {
  189. m = Matrix4f::ScaleZ(p.values[0]);
  190. return true;
  191. }
  192. bool operator()(const Scale2D& p)
  193. {
  194. m = Matrix4f::Scale(p.values[0], p.values[1], 1);
  195. return true;
  196. }
  197. bool operator()(const Scale3D& p)
  198. {
  199. m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]);
  200. return true;
  201. }
  202. bool operator()(const RotateX& p)
  203. {
  204. m = Matrix4f::RotateX(p.values[0]);
  205. return true;
  206. }
  207. bool operator()(const RotateY& p)
  208. {
  209. m = Matrix4f::RotateY(p.values[0]);
  210. return true;
  211. }
  212. bool operator()(const RotateZ& p)
  213. {
  214. m = Matrix4f::RotateZ(p.values[0]);
  215. return true;
  216. }
  217. bool operator()(const Rotate2D& p)
  218. {
  219. m = Matrix4f::RotateZ(p.values[0]);
  220. return true;
  221. }
  222. bool operator()(const Rotate3D& p)
  223. {
  224. m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]);
  225. return true;
  226. }
  227. bool operator()(const SkewX& p)
  228. {
  229. m = Matrix4f::SkewX(p.values[0]);
  230. return true;
  231. }
  232. bool operator()(const SkewY& p)
  233. {
  234. m = Matrix4f::SkewY(p.values[0]);
  235. return true;
  236. }
  237. bool operator()(const Skew2D& p)
  238. {
  239. m = Matrix4f::Skew(p.values[0], p.values[1]);
  240. return true;
  241. }
  242. bool operator()(const DecomposedMatrix4& p)
  243. {
  244. m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion);
  245. return true;
  246. }
  247. bool operator()(const Perspective& p)
  248. {
  249. m = Matrix4f::Perspective(p.values[0].ResolveDepth(e));
  250. return true;
  251. }
  252. bool run(const PrimitiveVariant& primitive)
  253. {
  254. switch (primitive.type)
  255. {
  256. case PrimitiveVariant::MATRIX2D: return this->operator()(primitive.matrix_2d);
  257. case PrimitiveVariant::MATRIX3D: return this->operator()(primitive.matrix_3d);
  258. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x);
  259. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y);
  260. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z);
  261. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  262. case PrimitiveVariant::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  263. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x);
  264. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y);
  265. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z);
  266. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d);
  267. case PrimitiveVariant::SCALE3D: return this->operator()(primitive.scale_3d);
  268. case PrimitiveVariant::ROTATEX: return this->operator()(primitive.rotate_x);
  269. case PrimitiveVariant::ROTATEY: return this->operator()(primitive.rotate_y);
  270. case PrimitiveVariant::ROTATEZ: return this->operator()(primitive.rotate_z);
  271. case PrimitiveVariant::ROTATE2D: return this->operator()(primitive.rotate_2d);
  272. case PrimitiveVariant::ROTATE3D: return this->operator()(primitive.rotate_3d);
  273. case PrimitiveVariant::SKEWX: return this->operator()(primitive.skew_x);
  274. case PrimitiveVariant::SKEWY: return this->operator()(primitive.skew_y);
  275. case PrimitiveVariant::SKEW2D: return this->operator()(primitive.skew_2d);
  276. case PrimitiveVariant::PERSPECTIVE: return this->operator()(primitive.perspective);
  277. case PrimitiveVariant::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  278. default:
  279. break;
  280. }
  281. RMLUI_ASSERT(false);
  282. return false;
  283. }
  284. };
  285. bool Primitive::ResolveTransform(Matrix4f & m, Element & e) const noexcept
  286. {
  287. ResolveTransformVisitor visitor{ m, e };
  288. bool result = visitor.run(primitive);
  289. return result;
  290. }
  291. struct SetIdentityVisitor
  292. {
  293. template <size_t N>
  294. void operator()(ResolvedPrimitive<N>& p)
  295. {
  296. for (auto& value : p.values)
  297. value = 0.0f;
  298. }
  299. template <size_t N>
  300. void operator()(UnresolvedPrimitive<N>& p)
  301. {
  302. for (auto& value : p.values)
  303. value.number = 0.0f;
  304. }
  305. void operator()(Matrix2D& p)
  306. {
  307. for (int i = 0; i < 6; i++)
  308. p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f);
  309. }
  310. void operator()(Matrix3D& p)
  311. {
  312. for (int i = 0; i < 16; i++)
  313. p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f);
  314. }
  315. void operator()(ScaleX& p)
  316. {
  317. p.values[0] = 1;
  318. }
  319. void operator()(ScaleY& p)
  320. {
  321. p.values[0] = 1;
  322. }
  323. void operator()(ScaleZ& p)
  324. {
  325. p.values[0] = 1;
  326. }
  327. void operator()(Scale2D& p)
  328. {
  329. p.values[0] = p.values[1] = 1;
  330. }
  331. void operator()(Scale3D& p)
  332. {
  333. p.values[0] = p.values[1] = p.values[2] = 1;
  334. }
  335. void operator()(DecomposedMatrix4& p)
  336. {
  337. p.perspective = Vector4f(0, 0, 0, 1);
  338. p.quaternion = Vector4f(0, 0, 0, 1);
  339. p.translation = Vector3f(0, 0, 0);
  340. p.scale = Vector3f(1, 1, 1);
  341. p.skew = Vector3f(0, 0, 0);
  342. }
  343. void run(PrimitiveVariant& primitive)
  344. {
  345. switch (primitive.type)
  346. {
  347. case PrimitiveVariant::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  348. case PrimitiveVariant::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  349. case PrimitiveVariant::TRANSLATEX: this->operator()(primitive.translate_x); break;
  350. case PrimitiveVariant::TRANSLATEY: this->operator()(primitive.translate_y); break;
  351. case PrimitiveVariant::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  352. case PrimitiveVariant::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  353. case PrimitiveVariant::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  354. case PrimitiveVariant::SCALEX: this->operator()(primitive.scale_x); break;
  355. case PrimitiveVariant::SCALEY: this->operator()(primitive.scale_y); break;
  356. case PrimitiveVariant::SCALEZ: this->operator()(primitive.scale_z); break;
  357. case PrimitiveVariant::SCALE2D: this->operator()(primitive.scale_2d); break;
  358. case PrimitiveVariant::SCALE3D: this->operator()(primitive.scale_3d); break;
  359. case PrimitiveVariant::ROTATEX: this->operator()(primitive.rotate_x); break;
  360. case PrimitiveVariant::ROTATEY: this->operator()(primitive.rotate_y); break;
  361. case PrimitiveVariant::ROTATEZ: this->operator()(primitive.rotate_z); break;
  362. case PrimitiveVariant::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  363. case PrimitiveVariant::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  364. case PrimitiveVariant::SKEWX: this->operator()(primitive.skew_x); break;
  365. case PrimitiveVariant::SKEWY: this->operator()(primitive.skew_y); break;
  366. case PrimitiveVariant::SKEW2D: this->operator()(primitive.skew_2d); break;
  367. case PrimitiveVariant::PERSPECTIVE: this->operator()(primitive.perspective); break;
  368. case PrimitiveVariant::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  369. default:
  370. RMLUI_ASSERT(false);
  371. break;
  372. }
  373. }
  374. };
  375. void Primitive::SetIdentity() noexcept
  376. {
  377. SetIdentityVisitor{}.run(primitive);
  378. }
  379. struct PrepareVisitor
  380. {
  381. Element& e;
  382. bool operator()(TranslateX& p)
  383. {
  384. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  385. return true;
  386. }
  387. bool operator()(TranslateY& p)
  388. {
  389. p.values[0] = NumericValue{ p.values[0].ResolveHeight(e), Property::PX };
  390. return true;
  391. }
  392. bool operator()(TranslateZ& p)
  393. {
  394. p.values[0] = NumericValue{ p.values[0].ResolveDepth(e), Property::PX };
  395. return true;
  396. }
  397. bool operator()(Translate2D& p)
  398. {
  399. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  400. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  401. return true;
  402. }
  403. bool operator()(Translate3D& p)
  404. {
  405. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  406. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  407. p.values[2] = NumericValue{ p.values[2].ResolveDepth(e), Property::PX };
  408. return true;
  409. }
  410. template <size_t N>
  411. bool operator()(ResolvedPrimitive<N>& p)
  412. {
  413. // No conversion needed for resolved transforms (with some exceptions below)
  414. return true;
  415. }
  416. bool operator()(DecomposedMatrix4& p)
  417. {
  418. return true;
  419. }
  420. bool operator()(Rotate3D& p)
  421. {
  422. // Rotate3D must be resolved to a full matrix for interpolation.
  423. // There is an exception in CSS specs when the two interpolating rotation vectors are in the same direction, but for simplicity we ignore this optimization.
  424. return false;
  425. }
  426. bool operator()(Matrix3D& p)
  427. {
  428. // Matrices must be decomposed for interpolation
  429. return false;
  430. }
  431. bool operator()(Matrix2D& p)
  432. {
  433. // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4
  434. return false;
  435. }
  436. bool operator()(Perspective& p)
  437. {
  438. // Perspective must be decomposed
  439. return false;
  440. }
  441. bool run(PrimitiveVariant& primitive)
  442. {
  443. switch (primitive.type)
  444. {
  445. case PrimitiveVariant::MATRIX2D: return this->operator()(primitive.matrix_2d);
  446. case PrimitiveVariant::MATRIX3D: return this->operator()(primitive.matrix_3d);
  447. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x);
  448. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y);
  449. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z);
  450. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  451. case PrimitiveVariant::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  452. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x);
  453. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y);
  454. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z);
  455. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d);
  456. case PrimitiveVariant::SCALE3D: return this->operator()(primitive.scale_3d);
  457. case PrimitiveVariant::ROTATEX: return this->operator()(primitive.rotate_x);
  458. case PrimitiveVariant::ROTATEY: return this->operator()(primitive.rotate_y);
  459. case PrimitiveVariant::ROTATEZ: return this->operator()(primitive.rotate_z);
  460. case PrimitiveVariant::ROTATE2D: return this->operator()(primitive.rotate_2d);
  461. case PrimitiveVariant::ROTATE3D: return this->operator()(primitive.rotate_3d);
  462. case PrimitiveVariant::SKEWX: return this->operator()(primitive.skew_x);
  463. case PrimitiveVariant::SKEWY: return this->operator()(primitive.skew_y);
  464. case PrimitiveVariant::SKEW2D: return this->operator()(primitive.skew_2d);
  465. case PrimitiveVariant::PERSPECTIVE: return this->operator()(primitive.perspective);
  466. case PrimitiveVariant::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  467. default:
  468. break;
  469. }
  470. RMLUI_ASSERT(false);
  471. return false;
  472. }
  473. };
  474. bool Primitive::PrepareForInterpolation(Element & e) noexcept
  475. {
  476. return PrepareVisitor{ e }.run(primitive);
  477. }
  478. enum class GenericType { None, Scale3D, Translate3D };
  479. struct GetGenericTypeVisitor
  480. {
  481. GenericType common_type = GenericType::None;
  482. GenericType operator()(const TranslateX& p) { return GenericType::Translate3D; }
  483. GenericType operator()(const TranslateY& p) { return GenericType::Translate3D; }
  484. GenericType operator()(const TranslateZ& p) { return GenericType::Translate3D; }
  485. GenericType operator()(const Translate2D& p) { return GenericType::Translate3D; }
  486. GenericType operator()(const ScaleX& p) { return GenericType::Scale3D; }
  487. GenericType operator()(const ScaleY& p) { return GenericType::Scale3D; }
  488. GenericType operator()(const ScaleZ& p) { return GenericType::Scale3D; }
  489. GenericType operator()(const Scale2D& p) { return GenericType::Scale3D; }
  490. template <typename T>
  491. GenericType operator()(const T& p) { return GenericType::None; }
  492. GenericType run(const PrimitiveVariant& primitive)
  493. {
  494. switch (primitive.type)
  495. {
  496. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x); break;
  497. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y); break;
  498. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z); break;
  499. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d); break;
  500. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x); break;
  501. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y); break;
  502. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z); break;
  503. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d); break;
  504. default:
  505. break;
  506. }
  507. return GenericType::None;
  508. }
  509. };
  510. struct ConvertToGenericTypeVisitor
  511. {
  512. Translate3D operator()(const TranslateX& p) { return Translate3D{ p.values[0], {0.0f, Property::PX}, {0.0f, Property::PX} }; }
  513. Translate3D operator()(const TranslateY& p) { return Translate3D{ {0.0f, Property::PX}, p.values[0], {0.0f, Property::PX} }; }
  514. Translate3D operator()(const TranslateZ& p) { return Translate3D{ {0.0f, Property::PX}, {0.0f, Property::PX}, p.values[0] }; }
  515. Translate3D operator()(const Translate2D& p) { return Translate3D{ p.values[0], p.values[1], {0.0f, Property::PX} }; }
  516. Scale3D operator()(const ScaleX& p) { return Scale3D{ p.values[0], 1.0f, 1.0f }; }
  517. Scale3D operator()(const ScaleY& p) { return Scale3D{ 1.0f, p.values[0], 1.0f }; }
  518. Scale3D operator()(const ScaleZ& p) { return Scale3D{ 1.0f, 1.0f, p.values[0] }; }
  519. Scale3D operator()(const Scale2D& p) { return Scale3D{ p.values[0], p.values[1], 1.0f }; }
  520. template <typename T>
  521. PrimitiveVariant operator()(const T& p) { RMLUI_ERROR; return p; }
  522. PrimitiveVariant run(const PrimitiveVariant& primitive)
  523. {
  524. PrimitiveVariant result = primitive;
  525. switch (primitive.type)
  526. {
  527. case PrimitiveVariant::TRANSLATEX: result.type = PrimitiveVariant::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_x); break;
  528. case PrimitiveVariant::TRANSLATEY: result.type = PrimitiveVariant::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_y); break;
  529. case PrimitiveVariant::TRANSLATEZ: result.type = PrimitiveVariant::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_z); break;
  530. case PrimitiveVariant::TRANSLATE2D: result.type = PrimitiveVariant::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_2d); break;
  531. case PrimitiveVariant::SCALEX: result.type = PrimitiveVariant::SCALE3D; result.scale_3d = this->operator()(primitive.scale_x); break;
  532. case PrimitiveVariant::SCALEY: result.type = PrimitiveVariant::SCALE3D; result.scale_3d = this->operator()(primitive.scale_y); break;
  533. case PrimitiveVariant::SCALEZ: result.type = PrimitiveVariant::SCALE3D; result.scale_3d = this->operator()(primitive.scale_z); break;
  534. case PrimitiveVariant::SCALE2D: result.type = PrimitiveVariant::SCALE3D; result.scale_3d = this->operator()(primitive.scale_2d); break;
  535. default:
  536. RMLUI_ASSERT(false);
  537. break;
  538. }
  539. return result;
  540. }
  541. };
  542. bool Primitive::TryConvertToMatchingGenericType(Primitive & p0, Primitive & p1) noexcept
  543. {
  544. if (p0.primitive.type == p1.primitive.type)
  545. return true;
  546. GenericType c0 = GetGenericTypeVisitor{}.run(p0.primitive);
  547. GenericType c1 = GetGenericTypeVisitor{}.run(p1.primitive);
  548. if (c0 == c1 && c0 != GenericType::None)
  549. {
  550. p0.primitive = ConvertToGenericTypeVisitor{}.run(p0.primitive);
  551. p1.primitive = ConvertToGenericTypeVisitor{}.run(p1.primitive);
  552. return true;
  553. }
  554. return false;
  555. }
  556. struct InterpolateVisitor
  557. {
  558. const PrimitiveVariant& other_variant;
  559. float alpha;
  560. template <size_t N>
  561. bool Interpolate(ResolvedPrimitive<N>& p0, const ResolvedPrimitive<N>& p1)
  562. {
  563. for (size_t i = 0; i < N; i++)
  564. p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha;
  565. return true;
  566. }
  567. template <size_t N>
  568. bool Interpolate(UnresolvedPrimitive<N>& p0, const UnresolvedPrimitive<N>& p1)
  569. {
  570. // Assumes that the underlying units have been resolved (e.g. to pixels)
  571. for (size_t i = 0; i < N; i++)
  572. p0.values[i].number = p0.values[i].number*(1.0f - alpha) + p1.values[i].number * alpha;
  573. return true;
  574. }
  575. bool Interpolate(Rotate3D& p0, const Rotate3D& p1)
  576. {
  577. // Currently, we promote Rotate3D to decomposed matrices in PrepareForInterpolation(), thus, it is an error if we get here. Make sure primitives are prepared and decomposed as necessary.
  578. // We may change this later by assuming that the underlying direction vectors are equivalent (else, need to do full matrix interpolation)
  579. // If we change this later: p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha;
  580. return false;
  581. }
  582. bool Interpolate(Matrix2D& p0, const Matrix2D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  583. bool Interpolate(Matrix3D& p0, const Matrix3D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  584. bool Interpolate(Perspective& p0, const Perspective& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  585. bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1)
  586. {
  587. p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha;
  588. p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha);
  589. p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha;
  590. p0.scale = p0.scale* (1.0f - alpha) + p1.scale* alpha;
  591. p0.skew = p0.skew* (1.0f - alpha) + p1.skew* alpha;
  592. return true;
  593. }
  594. bool run(PrimitiveVariant& variant)
  595. {
  596. RMLUI_ASSERT(variant.type == other_variant.type);
  597. switch (variant.type)
  598. {
  599. case PrimitiveVariant::MATRIX2D: return Interpolate(variant.matrix_2d, other_variant.matrix_2d);
  600. case PrimitiveVariant::MATRIX3D: return Interpolate(variant.matrix_3d, other_variant.matrix_3d);
  601. case PrimitiveVariant::TRANSLATEX: return Interpolate(variant.translate_x, other_variant.translate_x);
  602. case PrimitiveVariant::TRANSLATEY: return Interpolate(variant.translate_y, other_variant.translate_y);
  603. case PrimitiveVariant::TRANSLATEZ: return Interpolate(variant.translate_z, other_variant.translate_z);
  604. case PrimitiveVariant::TRANSLATE2D: return Interpolate(variant.translate_2d, other_variant.translate_2d);
  605. case PrimitiveVariant::TRANSLATE3D: return Interpolate(variant.translate_3d, other_variant.translate_3d);
  606. case PrimitiveVariant::SCALEX: return Interpolate(variant.scale_x, other_variant.scale_x);
  607. case PrimitiveVariant::SCALEY: return Interpolate(variant.scale_y, other_variant.scale_y);
  608. case PrimitiveVariant::SCALEZ: return Interpolate(variant.scale_z, other_variant.scale_z);
  609. case PrimitiveVariant::SCALE2D: return Interpolate(variant.scale_2d, other_variant.scale_2d);
  610. case PrimitiveVariant::SCALE3D: return Interpolate(variant.scale_3d, other_variant.scale_3d);
  611. case PrimitiveVariant::ROTATEX: return Interpolate(variant.rotate_x, other_variant.rotate_x);
  612. case PrimitiveVariant::ROTATEY: return Interpolate(variant.rotate_y, other_variant.rotate_y);
  613. case PrimitiveVariant::ROTATEZ: return Interpolate(variant.rotate_z, other_variant.rotate_z);
  614. case PrimitiveVariant::ROTATE2D: return Interpolate(variant.rotate_2d, other_variant.rotate_2d);
  615. case PrimitiveVariant::ROTATE3D: return Interpolate(variant.rotate_3d, other_variant.rotate_3d);
  616. case PrimitiveVariant::SKEWX: return Interpolate(variant.skew_x, other_variant.skew_x);
  617. case PrimitiveVariant::SKEWY: return Interpolate(variant.skew_y, other_variant.skew_y);
  618. case PrimitiveVariant::SKEW2D: return Interpolate(variant.skew_2d, other_variant.skew_2d);
  619. case PrimitiveVariant::PERSPECTIVE: return Interpolate(variant.perspective, other_variant.perspective);
  620. case PrimitiveVariant::DECOMPOSEDMATRIX4: return Interpolate(variant.decomposed_matrix_4, other_variant.decomposed_matrix_4);
  621. default:
  622. break;
  623. }
  624. RMLUI_ASSERT(false);
  625. return false;
  626. }
  627. };
  628. bool Primitive::InterpolateWith(const Primitive & other, float alpha) noexcept
  629. {
  630. if (primitive.type != other.primitive.type)
  631. return false;
  632. bool result = InterpolateVisitor{ other.primitive, alpha }.run(primitive);
  633. return result;
  634. }
  635. template<size_t N>
  636. static inline String ToString(const Transforms::ResolvedPrimitive<N>& p, String unit, bool rad_to_deg = false, bool only_unit_on_last_value = false) noexcept {
  637. float multiplier = 1.0f;
  638. String tmp;
  639. String result = "(";
  640. for (size_t i = 0; i < N; i++)
  641. {
  642. if (only_unit_on_last_value && i < N - 1)
  643. multiplier = 1.0f;
  644. else if (rad_to_deg)
  645. multiplier = 180.f / Math::RMLUI_PI;
  646. if (TypeConverter<float, String>::Convert(p.values[i] * multiplier, tmp))
  647. result += tmp;
  648. if (!unit.empty() && (!only_unit_on_last_value || (i == N - 1)))
  649. result += unit;
  650. if (i < N - 1)
  651. result += ", ";
  652. }
  653. result += ")";
  654. return result;
  655. }
  656. template<size_t N>
  657. static inline String ToString(const Transforms::UnresolvedPrimitive<N> & p) noexcept {
  658. String result = "(";
  659. for (size_t i = 0; i < N; i++)
  660. {
  661. result += p.values[i].ToString();
  662. if (i != N - 1)
  663. result += ", ";
  664. }
  665. result += ")";
  666. return result;
  667. }
  668. static inline String ToString(const Transforms::DecomposedMatrix4& p) noexcept {
  669. static const DecomposedMatrix4 d{
  670. Vector4f(0, 0, 0, 1),
  671. Vector4f(0, 0, 0, 1),
  672. Vector3f(0, 0, 0),
  673. Vector3f(1, 1, 1),
  674. Vector3f(0, 0, 0)
  675. };
  676. String tmp;
  677. String result;
  678. if(p.perspective != d.perspective && TypeConverter< Vector4f, String >::Convert(p.perspective, tmp))
  679. result += "perspective(" + tmp + "), ";
  680. if (p.quaternion != d.quaternion && TypeConverter< Vector4f, String >::Convert(p.quaternion, tmp))
  681. result += "quaternion(" + tmp + "), ";
  682. if (p.translation != d.translation && TypeConverter< Vector3f, String >::Convert(p.translation, tmp))
  683. result += "translation(" + tmp + "), ";
  684. if (p.scale != d.scale && TypeConverter< Vector3f, String >::Convert(p.scale, tmp))
  685. result += "scale(" + tmp + "), ";
  686. if (p.skew != d.skew && TypeConverter< Vector3f, String >::Convert(p.skew, tmp))
  687. result += "skew(" + tmp + "), ";
  688. if (result.size() > 2)
  689. result.resize(result.size() - 2);
  690. result = "decomposedMatrix3d{ " + result + " }";
  691. return result;
  692. }
  693. String ToString(const Transforms::Matrix2D & p) noexcept { return "matrix" + ToString(static_cast<const Transforms::ResolvedPrimitive< 6 >&>(p), ""); }
  694. String ToString(const Transforms::Matrix3D & p) noexcept { return "matrix3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 16 >&>(p), ""); }
  695. String ToString(const Transforms::TranslateX & p) noexcept { return "translateX" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  696. String ToString(const Transforms::TranslateY & p) noexcept { return "translateY" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  697. String ToString(const Transforms::TranslateZ & p) noexcept { return "translateZ" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  698. String ToString(const Transforms::Translate2D & p) noexcept { return "translate" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 2 >&>(p)); }
  699. String ToString(const Transforms::Translate3D & p) noexcept { return "translate3d" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 3 >&>(p)); }
  700. String ToString(const Transforms::ScaleX & p) noexcept { return "scaleX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  701. String ToString(const Transforms::ScaleY & p) noexcept { return "scaleY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  702. String ToString(const Transforms::ScaleZ & p) noexcept { return "scaleZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  703. String ToString(const Transforms::Scale2D & p) noexcept { return "scale" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), ""); }
  704. String ToString(const Transforms::Scale3D & p) noexcept { return "scale3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 3 >&>(p), ""); }
  705. String ToString(const Transforms::RotateX & p) noexcept { return "rotateX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  706. String ToString(const Transforms::RotateY & p) noexcept { return "rotateY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  707. String ToString(const Transforms::RotateZ & p) noexcept { return "rotateZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  708. String ToString(const Transforms::Rotate2D & p) noexcept { return "rotate" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  709. String ToString(const Transforms::Rotate3D & p) noexcept { return "rotate3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 4 >&>(p), "deg", true, true); }
  710. String ToString(const Transforms::SkewX & p) noexcept { return "skewX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  711. String ToString(const Transforms::SkewY & p) noexcept { return "skewY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  712. String ToString(const Transforms::Skew2D & p) noexcept { return "skew" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), "deg", true); }
  713. String ToString(const Transforms::Perspective & p) noexcept { return "perspective" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  714. struct ToStringVisitor
  715. {
  716. String run(const PrimitiveVariant& variant)
  717. {
  718. switch (variant.type)
  719. {
  720. case PrimitiveVariant::MATRIX2D: return ToString(variant.matrix_2d);
  721. case PrimitiveVariant::MATRIX3D: return ToString(variant.matrix_3d);
  722. case PrimitiveVariant::TRANSLATEX: return ToString(variant.translate_x);
  723. case PrimitiveVariant::TRANSLATEY: return ToString(variant.translate_y);
  724. case PrimitiveVariant::TRANSLATEZ: return ToString(variant.translate_z);
  725. case PrimitiveVariant::TRANSLATE2D: return ToString(variant.translate_2d);
  726. case PrimitiveVariant::TRANSLATE3D: return ToString(variant.translate_3d);
  727. case PrimitiveVariant::SCALEX: return ToString(variant.scale_x);
  728. case PrimitiveVariant::SCALEY: return ToString(variant.scale_y);
  729. case PrimitiveVariant::SCALEZ: return ToString(variant.scale_z);
  730. case PrimitiveVariant::SCALE2D: return ToString(variant.scale_2d);
  731. case PrimitiveVariant::SCALE3D: return ToString(variant.scale_3d);
  732. case PrimitiveVariant::ROTATEX: return ToString(variant.rotate_x);
  733. case PrimitiveVariant::ROTATEY: return ToString(variant.rotate_y);
  734. case PrimitiveVariant::ROTATEZ: return ToString(variant.rotate_z);
  735. case PrimitiveVariant::ROTATE2D: return ToString(variant.rotate_2d);
  736. case PrimitiveVariant::ROTATE3D: return ToString(variant.rotate_3d);
  737. case PrimitiveVariant::SKEWX: return ToString(variant.skew_x);
  738. case PrimitiveVariant::SKEWY: return ToString(variant.skew_y);
  739. case PrimitiveVariant::SKEW2D: return ToString(variant.skew_2d);
  740. case PrimitiveVariant::PERSPECTIVE: return ToString(variant.perspective);
  741. case PrimitiveVariant::DECOMPOSEDMATRIX4: return ToString(variant.decomposed_matrix_4);
  742. default:
  743. break;
  744. }
  745. RMLUI_ASSERT(false);
  746. return String();
  747. }
  748. };
  749. String Primitive::ToString() const noexcept
  750. {
  751. String result = ToStringVisitor{}.run(primitive);
  752. return result;
  753. }
  754. bool DecomposedMatrix4::Decompose(const Matrix4f & m)
  755. {
  756. // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices
  757. const float eps = 0.0005f;
  758. if (Math::AbsoluteValue(m[3][3]) < eps)
  759. return false;
  760. // Perspective matrix
  761. Matrix4f p = m;
  762. for (int i = 0; i < 3; i++)
  763. p[i][3] = 0;
  764. p[3][3] = 1;
  765. if (Math::AbsoluteValue(p.Determinant()) < eps)
  766. return false;
  767. if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0)
  768. {
  769. auto rhs = m.GetColumn(3);
  770. Matrix4f p_inv = p;
  771. if (!p_inv.Invert())
  772. return false;
  773. auto& p_inv_trans = p.Transpose();
  774. perspective = p_inv_trans * rhs;
  775. }
  776. else
  777. {
  778. perspective[0] = perspective[1] = perspective[2] = 0;
  779. perspective[3] = 1;
  780. }
  781. for (int i = 0; i < 3; i++)
  782. translation[i] = m[3][i];
  783. Vector3f row[3];
  784. for (int i = 0; i < 3; i++)
  785. {
  786. row[i][0] = m[i][0];
  787. row[i][1] = m[i][1];
  788. row[i][2] = m[i][2];
  789. }
  790. scale[0] = row[0].Magnitude();
  791. row[0] = row[0].Normalise();
  792. skew[0] = row[0].DotProduct(row[1]);
  793. row[1] = Combine(row[1], row[0], 1, -skew[0]);
  794. scale[1] = row[1].Magnitude();
  795. row[1] = row[1].Normalise();
  796. skew[0] /= scale[1];
  797. skew[1] = row[0].DotProduct(row[2]);
  798. row[2] = Combine(row[2], row[0], 1, -skew[1]);
  799. skew[2] = row[1].DotProduct(row[2]);
  800. row[2] = Combine(row[2], row[1], 1, -skew[2]);
  801. scale[2] = row[2].Magnitude();
  802. row[2] = row[2].Normalise();
  803. skew[1] /= scale[2];
  804. skew[2] /= scale[2];
  805. // Check if we need to flip coordinate system
  806. auto pdum3 = row[1].CrossProduct(row[2]);
  807. if (row[0].DotProduct(pdum3) < 0.0f)
  808. {
  809. for (int i = 0; i < 3; i++)
  810. {
  811. scale[i] *= -1.f;
  812. row[i] *= -1.f;
  813. }
  814. }
  815. quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f));
  816. quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f));
  817. quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f));
  818. quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f));
  819. if (row[2][1] > row[1][2])
  820. quaternion[0] *= -1.f;
  821. if (row[0][2] > row[2][0])
  822. quaternion[1] *= -1.f;
  823. if (row[1][0] > row[0][1])
  824. quaternion[2] *= -1.f;
  825. return true;
  826. }
  827. }
  828. }
  829. }