ElementAnimation.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2018 Michael R. P. Ragazzon
  7. * Copyright (c) 2019 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "precompiled.h"
  29. #include "ElementAnimation.h"
  30. #include "ElementStyle.h"
  31. #include "../../Include/RmlUi/Core/TransformPrimitive.h"
  32. #include "../../Include/RmlUi/Core/StyleSheetSpecification.h"
  33. namespace Rml {
  34. namespace Core {
  35. static Colourf ColourToLinearSpace(Colourb c)
  36. {
  37. Colourf result;
  38. // Approximate inverse sRGB function
  39. result.red = Math::SquareRoot((float)c.red / 255.f);
  40. result.green = Math::SquareRoot((float)c.green / 255.f);
  41. result.blue = Math::SquareRoot((float)c.blue / 255.f);
  42. result.alpha = (float)c.alpha / 255.f;
  43. return result;
  44. }
  45. static Colourb ColourFromLinearSpace(Colourf c)
  46. {
  47. Colourb result;
  48. result.red = (Rml::Core::byte)Math::Clamp(c.red*c.red*255.f, 0.0f, 255.f);
  49. result.green = (Rml::Core::byte)Math::Clamp(c.green*c.green*255.f, 0.0f, 255.f);
  50. result.blue = (Rml::Core::byte)Math::Clamp(c.blue*c.blue*255.f, 0.0f, 255.f);
  51. result.alpha = (Rml::Core::byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f);
  52. return result;
  53. }
  54. // Merges all the primitives to a single DecomposedMatrix4 primitive
  55. static bool CombineAndDecompose(Transform& t, Element& e)
  56. {
  57. Matrix4f m = Matrix4f::Identity();
  58. for (auto& primitive : t.GetPrimitives())
  59. {
  60. Matrix4f m_primitive;
  61. if (primitive.ResolveTransform(m_primitive, e))
  62. m *= m_primitive;
  63. }
  64. Transforms::DecomposedMatrix4 decomposed;
  65. if (!decomposed.Decompose(m))
  66. return false;
  67. t.ClearPrimitives();
  68. t.AddPrimitive(decomposed);
  69. return true;
  70. }
  71. static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition)
  72. {
  73. if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT))
  74. {
  75. if (p0.unit == p1.unit || !definition)
  76. {
  77. // If we have the same units, we can just interpolate regardless of what the value represents.
  78. // Or if we have distinct units but no definition, all bets are off. This shouldn't occur, just interpolate values.
  79. float f0 = p0.value.Get<float>();
  80. float f1 = p1.value.Get<float>();
  81. float f = (1.0f - alpha) * f0 + alpha * f1;
  82. return Property{ f, p0.unit };
  83. }
  84. else
  85. {
  86. // Otherwise, convert units to pixels.
  87. float f0 = element.GetStyle()->ResolveLength(&p0, definition->GetRelativeTarget());
  88. float f1 = element.GetStyle()->ResolveLength(&p1, definition->GetRelativeTarget());
  89. float f = (1.0f - alpha) * f0 + alpha * f1;
  90. return Property{ f, Property::PX };
  91. }
  92. }
  93. if (p0.unit == Property::KEYWORD && p1.unit == Property::KEYWORD)
  94. {
  95. // Discrete interpolation, swap at alpha = 0.5.
  96. // Special case for the 'visibility' property as in the CSS specs:
  97. // Apply the visible property if present during the entire transition period, ie. alpha (0,1).
  98. if (definition && definition->GetId() == PropertyId::Visibility)
  99. {
  100. if (p0.Get<int>() == (int)Style::Visibility::Visible)
  101. return alpha < 1.f ? p0 : p1;
  102. else if (p1.Get<int>() == (int)Style::Visibility::Visible)
  103. return alpha <= 0.f ? p0 : p1;
  104. }
  105. return alpha < 0.5f ? p0 : p1;
  106. }
  107. if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR)
  108. {
  109. Colourf c0 = ColourToLinearSpace(p0.value.Get<Colourb>());
  110. Colourf c1 = ColourToLinearSpace(p1.value.Get<Colourb>());
  111. Colourf c = c0 * (1.0f - alpha) + c1 * alpha;
  112. return Property{ ColourFromLinearSpace(c), Property::COLOUR };
  113. }
  114. if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM)
  115. {
  116. using namespace Rml::Core::Transforms;
  117. auto& t0 = p0.value.GetReference<TransformPtr>();
  118. auto& t1 = p1.value.GetReference<TransformPtr>();
  119. const auto& prim0 = t0->GetPrimitives();
  120. const auto& prim1 = t1->GetPrimitives();
  121. if (prim0.size() != prim1.size())
  122. {
  123. RMLUI_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?");
  124. return Property{ t0, Property::TRANSFORM };
  125. }
  126. // Build the new, interpolating transform
  127. UniquePtr<Transform> t(new Transform);
  128. t->GetPrimitives().reserve(t0->GetPrimitives().size());
  129. for (size_t i = 0; i < prim0.size(); i++)
  130. {
  131. Primitive p = prim0[i];
  132. if (!p.InterpolateWith(prim1[i], alpha))
  133. {
  134. RMLUI_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?");
  135. return Property{ t0, Property::TRANSFORM };
  136. }
  137. t->AddPrimitive(p);
  138. }
  139. return Property{ TransformPtr(std::move(t)), Property::TRANSFORM };
  140. }
  141. // Fall back to discrete interpolation for incompatible units.
  142. return alpha < 0.5f ? p0 : p1;
  143. }
  144. enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 };
  145. static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element)
  146. {
  147. using namespace Transforms;
  148. // Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives.
  149. // Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
  150. auto& prims0 = t0.GetPrimitives();
  151. auto& prims1 = t1.GetPrimitives();
  152. // Check for trivial case where they contain the same primitives
  153. if (prims0.size() == prims1.size())
  154. {
  155. PrepareTransformResult result = PrepareTransformResult::Unchanged;
  156. bool same_primitives = true;
  157. for (size_t i = 0; i < prims0.size(); i++)
  158. {
  159. auto p0_type = prims0[i].primitive.type;
  160. auto p1_type = prims1[i].primitive.type;
  161. // See if they are the same or can be converted to a matching generic type.
  162. if (Primitive::TryConvertToMatchingGenericType(prims0[i], prims1[i]))
  163. {
  164. if (prims0[i].primitive.type != p0_type)
  165. (int&)result |= (int)PrepareTransformResult::ChangedT0;
  166. if (prims1[i].primitive.type != p1_type)
  167. (int&)result |= (int)PrepareTransformResult::ChangedT1;
  168. }
  169. else
  170. {
  171. same_primitives = false;
  172. break;
  173. }
  174. }
  175. if (same_primitives)
  176. return result;
  177. }
  178. if (prims0.size() != prims1.size())
  179. {
  180. // Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity.
  181. // Requirement: The small set must match types in the same order they appear in the big set.
  182. // Example: (letter indicates type, number represents values)
  183. // big: a0 b0 c0 b1
  184. // ^ ^
  185. // small: b2 b3
  186. // ^ ^
  187. // new small: a1 b2 c1 b3
  188. bool prims0_smallest = (prims0.size() < prims1.size());
  189. auto& small = (prims0_smallest ? prims0 : prims1);
  190. auto& big = (prims0_smallest ? prims1 : prims0);
  191. std::vector<size_t> matching_indices; // Indices into 'big' for matching types
  192. matching_indices.reserve(small.size() + 1);
  193. size_t i_big = 0;
  194. bool match_success = true;
  195. bool changed_big = false;
  196. // Iterate through the small set to see if its types fit into the big set
  197. for (size_t i_small = 0; i_small < small.size(); i_small++)
  198. {
  199. match_success = false;
  200. for (; i_big < big.size(); i_big++)
  201. {
  202. auto big_type = big[i_big].primitive.type;
  203. if (Primitive::TryConvertToMatchingGenericType(small[i_small], big[i_big]))
  204. {
  205. // They matched exactly or in their more generic form. One or both primitives may have been converted.
  206. match_success = true;
  207. if (big[i_big].primitive.type != big_type)
  208. changed_big = true;
  209. }
  210. if (match_success)
  211. {
  212. matching_indices.push_back(i_big);
  213. match_success = true;
  214. i_big += 1;
  215. break;
  216. }
  217. }
  218. if (!match_success)
  219. break;
  220. }
  221. if (match_success)
  222. {
  223. // Success, insert the missing primitives into the small set
  224. matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive
  225. small.reserve(big.size());
  226. size_t i0 = 0;
  227. for (size_t match_index : matching_indices)
  228. {
  229. for (size_t i = i0; i < match_index; i++)
  230. {
  231. Primitive p = big[i];
  232. p.SetIdentity();
  233. small.insert(small.begin() + i, p);
  234. }
  235. // Next value to copy is one-past the matching primitive
  236. i0 = match_index + 1;
  237. }
  238. // The small set has always been changed if we get here, but the big set is only changed
  239. // if one or more of its primitives were converted to a general form.
  240. if (changed_big)
  241. return PrepareTransformResult::ChangedT0andT1;
  242. return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1);
  243. }
  244. }
  245. // If we get here, things get tricky. Need to do full matrix interpolation.
  246. // In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components.
  247. // Then, during update, interpolate these components and combine into a new transform matrix.
  248. if (!CombineAndDecompose(t0, element))
  249. return PrepareTransformResult::Invalid;
  250. if (!CombineAndDecompose(t1, element))
  251. return PrepareTransformResult::Invalid;
  252. return PrepareTransformResult::ChangedT0andT1;
  253. }
  254. static bool PrepareTransforms(std::vector<AnimationKey>& keys, Element& element, int start_index)
  255. {
  256. bool result = true;
  257. // Prepare each transform individually.
  258. for (int i = start_index; i < (int)keys.size(); i++)
  259. {
  260. Property& property = keys[i].property;
  261. if (!property.value.GetReference<TransformPtr>())
  262. property.value = std::make_shared<Transform>();
  263. bool must_decompose = false;
  264. Transform& transform = *property.value.GetReference<TransformPtr>();
  265. for (auto& primitive : transform.GetPrimitives())
  266. {
  267. if (!primitive.PrepareForInterpolation(element))
  268. {
  269. must_decompose = true;
  270. break;
  271. }
  272. }
  273. if (must_decompose)
  274. result = CombineAndDecompose(transform, element);
  275. }
  276. if (!result)
  277. return false;
  278. // We don't need to prepare the transforms pairwise if we only have a single key added so far.
  279. if (keys.size() < 2 || start_index < 1)
  280. return true;
  281. // Now, prepare the transforms pair-wise so they can be interpolated.
  282. const int N = (int)keys.size();
  283. int count_iterations = -1;
  284. const int max_iterations = 3 * N;
  285. std::vector<bool> dirty_list(N + 1, false);
  286. dirty_list[start_index] = true;
  287. // For each pair of keys, match the transform primitives such that they can be interpolated during animation update
  288. for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++)
  289. {
  290. if (!dirty_list[i])
  291. {
  292. ++i;
  293. continue;
  294. }
  295. auto& prop0 = keys[i - 1].property;
  296. auto& prop1 = keys[i].property;
  297. if(prop0.unit != Property::TRANSFORM || prop1.unit != Property::TRANSFORM)
  298. return false;
  299. auto& t0 = prop0.value.GetReference<TransformPtr>();
  300. auto& t1 = prop1.value.GetReference<TransformPtr>();
  301. auto result = PrepareTransformPair(*t0, *t1, element);
  302. if (result == PrepareTransformResult::Invalid)
  303. return false;
  304. bool changed_t0 = ((int)result & (int)PrepareTransformResult::ChangedT0);
  305. bool changed_t1 = ((int)result & (int)PrepareTransformResult::ChangedT1);
  306. dirty_list[i] = false;
  307. dirty_list[i - 1] = dirty_list[i - 1] || changed_t0;
  308. dirty_list[i + 1] = dirty_list[i + 1] || changed_t1;
  309. if (changed_t0 && i > 1)
  310. --i;
  311. else
  312. ++i;
  313. }
  314. // Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair()
  315. return (count_iterations < max_iterations);
  316. }
  317. ElementAnimation::ElementAnimation(PropertyId property_id, ElementAnimationOrigin origin, const Property& current_value, Element& element, double start_world_time, float duration, int num_iterations, bool alternate_direction)
  318. : property_id(property_id), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction), last_update_world_time(start_world_time),
  319. time_since_iteration_start(0.0f), current_iteration(0), reverse_direction(false), animation_complete(false), origin(origin)
  320. {
  321. if (!current_value.definition)
  322. {
  323. Log::Message(Log::LT_WARNING, "Property in animation key did not have a definition (while adding key '%s').", current_value.ToString().c_str());
  324. }
  325. InternalAddKey(0.0f, current_value, element, Tween{});
  326. }
  327. bool ElementAnimation::InternalAddKey(float time, const Property& in_property, Element& element, Tween tween)
  328. {
  329. int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM | Property::KEYWORD);
  330. if (!(in_property.unit & valid_properties))
  331. {
  332. Log::Message(Log::LT_WARNING, "Property '%s' is not a valid target for interpolation.", in_property.ToString().c_str());
  333. return false;
  334. }
  335. keys.emplace_back(time, in_property, tween);
  336. bool result = true;
  337. if (keys.back().property.unit == Property::TRANSFORM)
  338. {
  339. result = PrepareTransforms(keys, element, (int)keys.size() - 1);
  340. }
  341. if (!result)
  342. {
  343. Log::Message(Log::LT_WARNING, "Could not add animation key with property '%s'.", in_property.ToString().c_str());
  344. keys.pop_back();
  345. }
  346. return result;
  347. }
  348. bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration)
  349. {
  350. if (keys.empty())
  351. {
  352. Log::Message(Log::LT_WARNING, "Element animation was not initialized properly, can't add key.");
  353. return false;
  354. }
  355. if (!InternalAddKey(target_time, in_property, element, tween))
  356. {
  357. return false;
  358. }
  359. if (extend_duration)
  360. duration = target_time;
  361. return true;
  362. }
  363. float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const
  364. {
  365. float t = time_since_iteration_start;
  366. if (reverse_direction)
  367. t = duration - t;
  368. int key0 = -1;
  369. int key1 = -1;
  370. {
  371. for (int i = 0; i < (int)keys.size(); i++)
  372. {
  373. if (keys[i].time >= t)
  374. {
  375. key1 = i;
  376. break;
  377. }
  378. }
  379. if (key1 < 0) key1 = (int)keys.size() - 1;
  380. key0 = (key1 == 0 ? 0 : key1 - 1);
  381. }
  382. RMLUI_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size());
  383. float alpha = 0.0f;
  384. {
  385. const float t0 = keys[key0].time;
  386. const float t1 = keys[key1].time;
  387. const float eps = 1e-3f;
  388. if (t1 - t0 > eps)
  389. alpha = (t - t0) / (t1 - t0);
  390. alpha = Math::Clamp(alpha, 0.0f, 1.0f);
  391. }
  392. alpha = keys[key1].tween(alpha);
  393. if (out_key0) *out_key0 = key0;
  394. if (out_key1) *out_key1 = key1;
  395. return alpha;
  396. }
  397. Property ElementAnimation::UpdateAndGetProperty(double world_time, Element& element)
  398. {
  399. RMLUI_ASSERT(keys.size() >= 2);
  400. float dt = float(world_time - last_update_world_time);
  401. if (animation_complete || dt <= 0.0f)
  402. return Property{};
  403. dt = Math::Min(dt, 0.1f);
  404. last_update_world_time = world_time;
  405. time_since_iteration_start += dt;
  406. if (time_since_iteration_start >= duration)
  407. {
  408. // Next iteration
  409. current_iteration += 1;
  410. if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations))
  411. {
  412. time_since_iteration_start -= duration;
  413. if (alternate_direction)
  414. reverse_direction = !reverse_direction;
  415. }
  416. else
  417. {
  418. animation_complete = true;
  419. time_since_iteration_start = duration;
  420. }
  421. }
  422. int key0 = -1;
  423. int key1 = -1;
  424. float alpha = GetInterpolationFactorAndKeys(&key0, &key1);
  425. Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition);
  426. return result;
  427. }
  428. }
  429. }