ElementAnimation.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505
  1. /*
  2. * This source file is part of libRocket, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://www.librocket.com
  5. *
  6. * Copyright (c) 2018 Michael Ragazzon
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. *
  26. */
  27. #include "precompiled.h"
  28. #include "ElementAnimation.h"
  29. #include "ElementStyle.h"
  30. #include "../../Include/Rocket/Core/TransformPrimitive.h"
  31. #include "../../Include/Rocket/Core/StyleSheetSpecification.h"
  32. namespace Rocket {
  33. namespace Core {
  34. static Colourf ColourToLinearSpace(Colourb c)
  35. {
  36. Colourf result;
  37. // Approximate inverse sRGB function
  38. result.red = Math::SquareRoot((float)c.red / 255.f);
  39. result.green = Math::SquareRoot((float)c.green / 255.f);
  40. result.blue = Math::SquareRoot((float)c.blue / 255.f);
  41. result.alpha = (float)c.alpha / 255.f;
  42. return result;
  43. }
  44. static Colourb ColourFromLinearSpace(Colourf c)
  45. {
  46. Colourb result;
  47. result.red = (Rocket::Core::byte)Math::Clamp(c.red*c.red*255.f, 0.0f, 255.f);
  48. result.green = (Rocket::Core::byte)Math::Clamp(c.green*c.green*255.f, 0.0f, 255.f);
  49. result.blue = (Rocket::Core::byte)Math::Clamp(c.blue*c.blue*255.f, 0.0f, 255.f);
  50. result.alpha = (Rocket::Core::byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f);
  51. return result;
  52. }
  53. // Merges all the primitives to a single DecomposedMatrix4 primitive
  54. static bool CombineAndDecompose(Transform& t, Element& e)
  55. {
  56. Matrix4f m = Matrix4f::Identity();
  57. for (auto& primitive : t.GetPrimitives())
  58. {
  59. Matrix4f m_primitive;
  60. if (primitive.ResolveTransform(m_primitive, e))
  61. m *= m_primitive;
  62. }
  63. Transforms::DecomposedMatrix4 decomposed;
  64. if (!decomposed.Decompose(m))
  65. return false;
  66. t.ClearPrimitives();
  67. t.AddPrimitive(decomposed);
  68. return true;
  69. }
  70. static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition)
  71. {
  72. if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT))
  73. {
  74. if (p0.unit == p1.unit)
  75. {
  76. // If we have the same units, we can just interpolate regardless of what the value represents.
  77. float f0 = p0.value.Get<float>();
  78. float f1 = p1.value.Get<float>();
  79. float f = (1.0f - alpha) * f0 + alpha * f1;
  80. return Property{ f, p0.unit };
  81. }
  82. else
  83. {
  84. // Otherwise, convert units to pixels.
  85. float f0 = element.GetStyle()->ResolveNumericProperty(&p0, definition->GetRelativeTarget());
  86. float f1 = element.GetStyle()->ResolveNumericProperty(&p1, definition->GetRelativeTarget());
  87. float f = (1.0f - alpha) * f0 + alpha * f1;
  88. return Property{ f, Property::PX };
  89. }
  90. }
  91. if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR)
  92. {
  93. Colourf c0 = ColourToLinearSpace(p0.value.Get<Colourb>());
  94. Colourf c1 = ColourToLinearSpace(p1.value.Get<Colourb>());
  95. Colourf c = c0 * (1.0f - alpha) + c1 * alpha;
  96. return Property{ ColourFromLinearSpace(c), Property::COLOUR };
  97. }
  98. if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM)
  99. {
  100. using namespace Rocket::Core::Transforms;
  101. // Build the new, interpolating transform
  102. auto t = std::make_unique<Transform>();
  103. auto t0 = p0.value.Get<TransformRef>();
  104. auto t1 = p1.value.Get<TransformRef>();
  105. const auto& prim0 = t0->GetPrimitives();
  106. const auto& prim1 = t1->GetPrimitives();
  107. if (prim0.size() != prim1.size())
  108. {
  109. ROCKET_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?");
  110. return Property{ t0, Property::TRANSFORM };
  111. }
  112. for (size_t i = 0; i < prim0.size(); i++)
  113. {
  114. Primitive p = prim0[i];
  115. if (!p.InterpolateWith(prim1[i], alpha))
  116. {
  117. ROCKET_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?");
  118. return Property{ t0, Property::TRANSFORM };
  119. }
  120. t->AddPrimitive(p);
  121. }
  122. return Property{ TransformRef(std::move(t)), Property::TRANSFORM };
  123. }
  124. return alpha < 0.5f ? p0 : p1;
  125. }
  126. enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 };
  127. static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element)
  128. {
  129. using namespace Transforms;
  130. // Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives.
  131. // Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
  132. auto& prims0 = t0.GetPrimitives();
  133. auto& prims1 = t1.GetPrimitives();
  134. // Check for trivial case where they contain the same primitives
  135. if (prims0.size() == prims1.size())
  136. {
  137. PrepareTransformResult result = PrepareTransformResult::Unchanged;
  138. bool same_primitives = true;
  139. for (size_t i = 0; i < prims0.size(); i++)
  140. {
  141. auto p0_type = prims0[i].primitive.index();
  142. auto p1_type = prims1[i].primitive.index();
  143. if (p0_type != p1_type)
  144. {
  145. // They are not the same, but see if we can convert them to their more generic form
  146. if (!Primitive::TryConvertToMatchingGenericType(prims0[i], prims1[i]))
  147. {
  148. same_primitives = false;
  149. break;
  150. }
  151. if (prims0[i].primitive.index() != p0_type)
  152. (int&)result |= (int)PrepareTransformResult::ChangedT0;
  153. if (prims1[i].primitive.index() != p1_type)
  154. (int&)result |= (int)PrepareTransformResult::ChangedT1;
  155. }
  156. }
  157. if (same_primitives)
  158. return result;
  159. }
  160. if (prims0.size() != prims1.size())
  161. {
  162. // Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity.
  163. // Requirement: The small set must match types in the same order they appear in the big set.
  164. // Example: (letter indicates type, number represent values)
  165. // big: a0 b0 c0 b1
  166. // ^ ^
  167. // small: b2 b3
  168. // ^ ^
  169. // new small: a1 b2 c1 b3
  170. bool prims0_smallest = (prims0.size() < prims1.size());
  171. auto& small = (prims0_smallest ? prims0 : prims1);
  172. auto& big = (prims0_smallest ? prims1 : prims0);
  173. std::vector<size_t> matching_indices; // Indices into 'big' for matching types
  174. matching_indices.reserve(small.size() + 1);
  175. size_t i_big = 0;
  176. bool match_success = true;
  177. bool changed_big = false;
  178. // Iterate through the small set to see if its types fit into the big set
  179. for (size_t i_small = 0; i_small < small.size(); i_small++)
  180. {
  181. match_success = false;
  182. auto small_type = small[i_small].primitive.index();
  183. for (; i_big < big.size(); i_big++)
  184. {
  185. auto big_type = big[i_big].primitive.index();
  186. if (small_type == big_type)
  187. {
  188. // Exact match
  189. match_success = true;
  190. }
  191. else if (Primitive::TryConvertToMatchingGenericType(small[i_small], big[i_big]))
  192. {
  193. // They matched in their more generic form, one or both primitives converted
  194. match_success = true;
  195. if (big[i_big].primitive.index() != big_type)
  196. changed_big = true;
  197. }
  198. if (match_success)
  199. {
  200. matching_indices.push_back(i_big);
  201. match_success = true;
  202. i_big += 1;
  203. break;
  204. }
  205. }
  206. if (!match_success)
  207. break;
  208. }
  209. if (match_success)
  210. {
  211. // Success, insert the missing primitives into the small set
  212. matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive
  213. small.reserve(big.size());
  214. size_t i0 = 0;
  215. for (size_t match_index : matching_indices)
  216. {
  217. for (size_t i = i0; i < match_index; i++)
  218. {
  219. Primitive p = big[i];
  220. p.SetIdentity();
  221. small.insert(small.begin() + i, p);
  222. }
  223. // Next value to copy is one-past the matching primitive
  224. i0 = match_index + 1;
  225. }
  226. // The small set has always been changed if we get here, but the big set is only changed
  227. // if one or more of its primitives were converted to a general form.
  228. if (changed_big)
  229. return PrepareTransformResult::ChangedT0andT1;
  230. return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1);
  231. }
  232. }
  233. // If we get here, things get tricky. Need to do full matrix interpolation.
  234. // In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components.
  235. // Then, during update, interpolate these components and combine into a new transform matrix.
  236. if constexpr(true)
  237. {
  238. if (!CombineAndDecompose(t0, element))
  239. return PrepareTransformResult::Invalid;
  240. if (!CombineAndDecompose(t1, element))
  241. return PrepareTransformResult::Invalid;
  242. }
  243. else
  244. {
  245. // Bad "flat" matrix interpolation
  246. for (Transform* t : { &t0, &t1 })
  247. {
  248. Matrix4f transform_value = Matrix4f::Identity();
  249. for (const auto& primitive : t->GetPrimitives())
  250. {
  251. Matrix4f m;
  252. if (primitive.ResolveTransform(m, element))
  253. transform_value *= m;
  254. }
  255. t->ClearPrimitives();
  256. t->AddPrimitive({ Matrix3D{transform_value} });
  257. }
  258. }
  259. return PrepareTransformResult::ChangedT0andT1;
  260. }
  261. static bool PrepareTransforms(std::vector<AnimationKey>& keys, Element& element, int start_index)
  262. {
  263. if (keys.size() < 2 || start_index < 1)
  264. return false;
  265. const int N = (int)keys.size();
  266. int count_iterations = -1;
  267. const int max_iterations = 3 * N;
  268. if (start_index < 1) start_index = 1;
  269. std::vector<bool> dirty_list(N + 1, false);
  270. dirty_list[start_index] = true;
  271. // For each pair of keys, match the transform primitives such that they can be interpolated during animation update
  272. for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++)
  273. {
  274. if (!dirty_list[i])
  275. {
  276. ++i;
  277. continue;
  278. }
  279. auto& t0 = keys[i - 1].property.value.Get<TransformRef>();
  280. auto& t1 = keys[i].property.value.Get<TransformRef>();
  281. auto result = PrepareTransformPair(*t0, *t1, element);
  282. if (result == PrepareTransformResult::Invalid)
  283. return false;
  284. bool changed_t0 = ((int)result & (int)PrepareTransformResult::ChangedT0);
  285. bool changed_t1 = ((int)result & (int)PrepareTransformResult::ChangedT1);
  286. dirty_list[i] = false;
  287. dirty_list[i - 1] = dirty_list[i - 1] || changed_t0;
  288. dirty_list[i + 1] = dirty_list[i + 1] || changed_t1;
  289. if (changed_t0 && i > 1)
  290. --i;
  291. else
  292. ++i;
  293. }
  294. // Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair()
  295. return (count_iterations < max_iterations);
  296. }
  297. ElementAnimation::ElementAnimation(const String& property_name, const Property& current_value, float start_world_time, float duration, int num_iterations, bool alternate_direction, bool is_transition)
  298. : property_name(property_name), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction),
  299. keys({ AnimationKey{0.0f, current_value, Tween{}} }),
  300. last_update_world_time(start_world_time), time_since_iteration_start(0.0f), current_iteration(0), reverse_direction(false), animation_complete(false), is_transition(is_transition)
  301. {
  302. ROCKET_ASSERT(current_value.definition);
  303. }
  304. bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration)
  305. {
  306. int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM);
  307. if (!(in_property.unit & valid_properties))
  308. {
  309. Log::Message(Log::LT_WARNING, "Property '%s' is not a valid target for interpolation.", in_property.ToString().CString());
  310. return false;
  311. }
  312. bool result = true;
  313. keys.push_back({ target_time, in_property, tween });
  314. auto& property = keys.back().property;
  315. if (property.unit == Property::TRANSFORM)
  316. {
  317. bool must_decompose = false;
  318. auto& transform = *property.value.Get<TransformRef>();
  319. for (auto& primitive : transform.GetPrimitives())
  320. {
  321. if (!primitive.PrepareForInterpolation(element))
  322. {
  323. must_decompose = true;
  324. break;
  325. }
  326. }
  327. if(must_decompose)
  328. result = CombineAndDecompose(transform, element);
  329. if (result)
  330. result = PrepareTransforms(keys, element, (int)keys.size() - 1);
  331. }
  332. if(result)
  333. if(extend_duration) duration = target_time;
  334. else
  335. keys.pop_back();
  336. return result;
  337. }
  338. float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const
  339. {
  340. float t = time_since_iteration_start;
  341. if (reverse_direction)
  342. t = duration - t;
  343. int key0 = -1;
  344. int key1 = -1;
  345. {
  346. for (int i = 0; i < (int)keys.size(); i++)
  347. {
  348. if (keys[i].time >= t)
  349. {
  350. key1 = i;
  351. break;
  352. }
  353. }
  354. if (key1 < 0) key1 = (int)keys.size() - 1;
  355. key0 = (key1 == 0 ? 0 : key1 - 1);
  356. }
  357. ROCKET_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size());
  358. float alpha = 0.0f;
  359. {
  360. const float t0 = keys[key0].time;
  361. const float t1 = keys[key1].time;
  362. const float eps = 1e-3f;
  363. if (t1 - t0 > eps)
  364. alpha = (t - t0) / (t1 - t0);
  365. alpha = Math::Clamp(alpha, 0.0f, 1.0f);
  366. }
  367. alpha = keys[key1].tween(alpha);
  368. if (out_key0) *out_key0 = key0;
  369. if (out_key1) *out_key1 = key1;
  370. return alpha;
  371. }
  372. Property ElementAnimation::UpdateAndGetProperty(float world_time, Element& element)
  373. {
  374. if (animation_complete || world_time - last_update_world_time <= 0.0f)
  375. return Property{};
  376. const float dt = Math::Min(world_time - last_update_world_time, 0.1f);
  377. last_update_world_time = world_time;
  378. time_since_iteration_start += dt;
  379. if (time_since_iteration_start >= duration)
  380. {
  381. // Next iteration
  382. current_iteration += 1;
  383. if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations) )
  384. {
  385. time_since_iteration_start -= duration;
  386. if (alternate_direction)
  387. reverse_direction = !reverse_direction;
  388. }
  389. else
  390. {
  391. animation_complete = true;
  392. time_since_iteration_start = duration;
  393. }
  394. }
  395. int key0 = -1;
  396. int key1 = -1;
  397. float alpha = GetInterpolationFactorAndKeys(&key0, &key1);
  398. Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition);
  399. return result;
  400. }
  401. }
  402. }