ElementAnimation.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. /*
  2. * This source file is part of libRocket, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://www.librocket.com
  5. *
  6. * Copyright (c) 2018 Michael Ragazzon
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. *
  26. */
  27. #include "precompiled.h"
  28. #include "ElementAnimation.h"
  29. #include "ElementStyle.h"
  30. #include "../../Include/Rocket/Core/TransformPrimitive.h"
  31. #include "../../Include/Rocket/Core/StyleSheetSpecification.h"
  32. namespace Rocket {
  33. namespace Core {
  34. static Colourf ColourToLinearSpace(Colourb c)
  35. {
  36. Colourf result;
  37. // Approximate inverse sRGB function
  38. result.red = Math::SquareRoot((float)c.red / 255.f);
  39. result.green = Math::SquareRoot((float)c.green / 255.f);
  40. result.blue = Math::SquareRoot((float)c.blue / 255.f);
  41. result.alpha = (float)c.alpha / 255.f;
  42. return result;
  43. }
  44. static Colourb ColourFromLinearSpace(Colourf c)
  45. {
  46. Colourb result;
  47. result.red = (Rocket::Core::byte)Math::Clamp(c.red*c.red*255.f, 0.0f, 255.f);
  48. result.green = (Rocket::Core::byte)Math::Clamp(c.green*c.green*255.f, 0.0f, 255.f);
  49. result.blue = (Rocket::Core::byte)Math::Clamp(c.blue*c.blue*255.f, 0.0f, 255.f);
  50. result.alpha = (Rocket::Core::byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f);
  51. return result;
  52. }
  53. // Merges all the primitives to a single DecomposedMatrix4 primitive
  54. static bool CombineAndDecompose(Transform& t, Element& e)
  55. {
  56. Matrix4f m = Matrix4f::Identity();
  57. for (auto& primitive : t.GetPrimitives())
  58. {
  59. Matrix4f m_primitive;
  60. if (primitive.ResolveTransform(m_primitive, e))
  61. m *= m_primitive;
  62. }
  63. Transforms::DecomposedMatrix4 decomposed;
  64. if (!decomposed.Decompose(m))
  65. return false;
  66. t.ClearPrimitives();
  67. t.AddPrimitive(decomposed);
  68. return true;
  69. }
  70. static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition)
  71. {
  72. if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT))
  73. {
  74. if (p0.unit == p1.unit || !definition)
  75. {
  76. // If we have the same units, we can just interpolate regardless of what the value represents.
  77. // Or if we have distinct units but no definition, all bets are off. This shouldn't occur, just interpolate values.
  78. float f0 = p0.value.Get<float>();
  79. float f1 = p1.value.Get<float>();
  80. float f = (1.0f - alpha) * f0 + alpha * f1;
  81. return Property{ f, p0.unit };
  82. }
  83. else
  84. {
  85. // Otherwise, convert units to pixels.
  86. float f0 = element.GetStyle()->ResolveNumericProperty(&p0, definition->GetRelativeTarget());
  87. float f1 = element.GetStyle()->ResolveNumericProperty(&p1, definition->GetRelativeTarget());
  88. float f = (1.0f - alpha) * f0 + alpha * f1;
  89. return Property{ f, Property::PX };
  90. }
  91. }
  92. if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR)
  93. {
  94. Colourf c0 = ColourToLinearSpace(p0.value.Get<Colourb>());
  95. Colourf c1 = ColourToLinearSpace(p1.value.Get<Colourb>());
  96. Colourf c = c0 * (1.0f - alpha) + c1 * alpha;
  97. return Property{ ColourFromLinearSpace(c), Property::COLOUR };
  98. }
  99. if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM)
  100. {
  101. using namespace Rocket::Core::Transforms;
  102. // Build the new, interpolating transform
  103. auto t = std::make_unique<Transform>();
  104. auto t0 = p0.value.Get<TransformRef>();
  105. auto t1 = p1.value.Get<TransformRef>();
  106. const auto& prim0 = t0->GetPrimitives();
  107. const auto& prim1 = t1->GetPrimitives();
  108. if (prim0.size() != prim1.size())
  109. {
  110. ROCKET_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?");
  111. return Property{ t0, Property::TRANSFORM };
  112. }
  113. for (size_t i = 0; i < prim0.size(); i++)
  114. {
  115. Primitive p = prim0[i];
  116. if (!p.InterpolateWith(prim1[i], alpha))
  117. {
  118. ROCKET_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?");
  119. return Property{ t0, Property::TRANSFORM };
  120. }
  121. t->AddPrimitive(p);
  122. }
  123. return Property{ TransformRef(std::move(t)), Property::TRANSFORM };
  124. }
  125. return alpha < 0.5f ? p0 : p1;
  126. }
  127. enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 };
  128. static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element)
  129. {
  130. using namespace Transforms;
  131. // Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives.
  132. // Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
  133. auto& prims0 = t0.GetPrimitives();
  134. auto& prims1 = t1.GetPrimitives();
  135. // Check for trivial case where they contain the same primitives
  136. if (prims0.size() == prims1.size())
  137. {
  138. PrepareTransformResult result = PrepareTransformResult::Unchanged;
  139. bool same_primitives = true;
  140. for (size_t i = 0; i < prims0.size(); i++)
  141. {
  142. auto p0_type = prims0[i].primitive.index();
  143. auto p1_type = prims1[i].primitive.index();
  144. if (p0_type != p1_type)
  145. {
  146. // They are not the same, but see if we can convert them to their more generic form
  147. if (!Primitive::TryConvertToMatchingGenericType(prims0[i], prims1[i]))
  148. {
  149. same_primitives = false;
  150. break;
  151. }
  152. if (prims0[i].primitive.index() != p0_type)
  153. (int&)result |= (int)PrepareTransformResult::ChangedT0;
  154. if (prims1[i].primitive.index() != p1_type)
  155. (int&)result |= (int)PrepareTransformResult::ChangedT1;
  156. }
  157. }
  158. if (same_primitives)
  159. return result;
  160. }
  161. if (prims0.size() != prims1.size())
  162. {
  163. // Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity.
  164. // Requirement: The small set must match types in the same order they appear in the big set.
  165. // Example: (letter indicates type, number represent values)
  166. // big: a0 b0 c0 b1
  167. // ^ ^
  168. // small: b2 b3
  169. // ^ ^
  170. // new small: a1 b2 c1 b3
  171. bool prims0_smallest = (prims0.size() < prims1.size());
  172. auto& small = (prims0_smallest ? prims0 : prims1);
  173. auto& big = (prims0_smallest ? prims1 : prims0);
  174. std::vector<size_t> matching_indices; // Indices into 'big' for matching types
  175. matching_indices.reserve(small.size() + 1);
  176. size_t i_big = 0;
  177. bool match_success = true;
  178. bool changed_big = false;
  179. // Iterate through the small set to see if its types fit into the big set
  180. for (size_t i_small = 0; i_small < small.size(); i_small++)
  181. {
  182. match_success = false;
  183. auto small_type = small[i_small].primitive.index();
  184. for (; i_big < big.size(); i_big++)
  185. {
  186. auto big_type = big[i_big].primitive.index();
  187. if (small_type == big_type)
  188. {
  189. // Exact match
  190. match_success = true;
  191. }
  192. else if (Primitive::TryConvertToMatchingGenericType(small[i_small], big[i_big]))
  193. {
  194. // They matched in their more generic form, one or both primitives converted
  195. match_success = true;
  196. if (big[i_big].primitive.index() != big_type)
  197. changed_big = true;
  198. }
  199. if (match_success)
  200. {
  201. matching_indices.push_back(i_big);
  202. match_success = true;
  203. i_big += 1;
  204. break;
  205. }
  206. }
  207. if (!match_success)
  208. break;
  209. }
  210. if (match_success)
  211. {
  212. // Success, insert the missing primitives into the small set
  213. matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive
  214. small.reserve(big.size());
  215. size_t i0 = 0;
  216. for (size_t match_index : matching_indices)
  217. {
  218. for (size_t i = i0; i < match_index; i++)
  219. {
  220. Primitive p = big[i];
  221. p.SetIdentity();
  222. small.insert(small.begin() + i, p);
  223. }
  224. // Next value to copy is one-past the matching primitive
  225. i0 = match_index + 1;
  226. }
  227. // The small set has always been changed if we get here, but the big set is only changed
  228. // if one or more of its primitives were converted to a general form.
  229. if (changed_big)
  230. return PrepareTransformResult::ChangedT0andT1;
  231. return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1);
  232. }
  233. }
  234. // If we get here, things get tricky. Need to do full matrix interpolation.
  235. // In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components.
  236. // Then, during update, interpolate these components and combine into a new transform matrix.
  237. if constexpr(true)
  238. {
  239. if (!CombineAndDecompose(t0, element))
  240. return PrepareTransformResult::Invalid;
  241. if (!CombineAndDecompose(t1, element))
  242. return PrepareTransformResult::Invalid;
  243. }
  244. else
  245. {
  246. // Bad "flat" matrix interpolation
  247. for (Transform* t : { &t0, &t1 })
  248. {
  249. Matrix4f transform_value = Matrix4f::Identity();
  250. for (const auto& primitive : t->GetPrimitives())
  251. {
  252. Matrix4f m;
  253. if (primitive.ResolveTransform(m, element))
  254. transform_value *= m;
  255. }
  256. t->ClearPrimitives();
  257. t->AddPrimitive({ Matrix3D{transform_value} });
  258. }
  259. }
  260. return PrepareTransformResult::ChangedT0andT1;
  261. }
  262. static bool PrepareTransforms(std::vector<AnimationKey>& keys, Element& element, int start_index)
  263. {
  264. if (keys.size() < 2 || start_index < 1)
  265. return false;
  266. const int N = (int)keys.size();
  267. int count_iterations = -1;
  268. const int max_iterations = 3 * N;
  269. if (start_index < 1) start_index = 1;
  270. std::vector<bool> dirty_list(N + 1, false);
  271. dirty_list[start_index] = true;
  272. // For each pair of keys, match the transform primitives such that they can be interpolated during animation update
  273. for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++)
  274. {
  275. if (!dirty_list[i])
  276. {
  277. ++i;
  278. continue;
  279. }
  280. auto& prop0 = keys[i - 1].property;
  281. auto& prop1 = keys[i].property;
  282. if(prop0.unit != Property::TRANSFORM || prop1.unit != Property::TRANSFORM)
  283. return false;
  284. auto& t0 = prop0.value.Get<TransformRef>();
  285. auto& t1 = prop1.value.Get<TransformRef>();
  286. auto result = PrepareTransformPair(*t0, *t1, element);
  287. if (result == PrepareTransformResult::Invalid)
  288. return false;
  289. bool changed_t0 = ((int)result & (int)PrepareTransformResult::ChangedT0);
  290. bool changed_t1 = ((int)result & (int)PrepareTransformResult::ChangedT1);
  291. dirty_list[i] = false;
  292. dirty_list[i - 1] = dirty_list[i - 1] || changed_t0;
  293. dirty_list[i + 1] = dirty_list[i + 1] || changed_t1;
  294. if (changed_t0 && i > 1)
  295. --i;
  296. else
  297. ++i;
  298. }
  299. // Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair()
  300. return (count_iterations < max_iterations);
  301. }
  302. ElementAnimation::ElementAnimation(const String& property_name, const Property& current_value, double start_world_time, float duration, int num_iterations, bool alternate_direction, bool is_transition)
  303. : property_name(property_name), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction),
  304. last_update_world_time(start_world_time), time_since_iteration_start(0.0f), current_iteration(0), reverse_direction(false), animation_complete(false), is_transition(is_transition)
  305. {
  306. if (!current_value.definition)
  307. {
  308. Log::Message(Log::LT_WARNING, "Property in animation key did not have a definition (while adding key '%s').", current_value.ToString().CString());
  309. }
  310. InternalAddKey(AnimationKey{ 0.0f, current_value, Tween{} });
  311. }
  312. bool ElementAnimation::InternalAddKey(AnimationKey key)
  313. {
  314. int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM);
  315. if (!(key.property.unit & valid_properties))
  316. {
  317. Log::Message(Log::LT_WARNING, "Property '%s' is not a valid target for interpolation.", key.property.ToString().CString());
  318. return false;
  319. }
  320. if (key.property.unit == Property::TRANSFORM)
  321. {
  322. if (!key.property.value.Get<TransformRef>())
  323. key.property.value.Reset(TransformRef(new Transform));
  324. }
  325. keys.push_back(key);
  326. return true;
  327. }
  328. bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration)
  329. {
  330. if (keys.empty())
  331. {
  332. Log::Message(Log::LT_WARNING, "Element animation was not initialized properly, can't add key.");
  333. return false;
  334. }
  335. if (!InternalAddKey(AnimationKey{ target_time, in_property, tween }))
  336. {
  337. return false;
  338. }
  339. bool result = true;
  340. auto& property = keys.back().property;
  341. if (property.unit == Property::TRANSFORM)
  342. {
  343. bool must_decompose = false;
  344. auto& transform = *property.value.Get<TransformRef>();
  345. for (auto& primitive : transform.GetPrimitives())
  346. {
  347. if (!primitive.PrepareForInterpolation(element))
  348. {
  349. must_decompose = true;
  350. break;
  351. }
  352. }
  353. if(must_decompose)
  354. result = CombineAndDecompose(transform, element);
  355. if (result)
  356. result = PrepareTransforms(keys, element, (int)keys.size() - 1);
  357. }
  358. if(result)
  359. if(extend_duration) duration = target_time;
  360. else
  361. keys.pop_back();
  362. return result;
  363. }
  364. float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const
  365. {
  366. float t = time_since_iteration_start;
  367. if (reverse_direction)
  368. t = duration - t;
  369. int key0 = -1;
  370. int key1 = -1;
  371. {
  372. for (int i = 0; i < (int)keys.size(); i++)
  373. {
  374. if (keys[i].time >= t)
  375. {
  376. key1 = i;
  377. break;
  378. }
  379. }
  380. if (key1 < 0) key1 = (int)keys.size() - 1;
  381. key0 = (key1 == 0 ? 0 : key1 - 1);
  382. }
  383. ROCKET_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size());
  384. float alpha = 0.0f;
  385. {
  386. const float t0 = keys[key0].time;
  387. const float t1 = keys[key1].time;
  388. const float eps = 1e-3f;
  389. if (t1 - t0 > eps)
  390. alpha = (t - t0) / (t1 - t0);
  391. alpha = Math::Clamp(alpha, 0.0f, 1.0f);
  392. }
  393. alpha = keys[key1].tween(alpha);
  394. if (out_key0) *out_key0 = key0;
  395. if (out_key1) *out_key1 = key1;
  396. return alpha;
  397. }
  398. Property ElementAnimation::UpdateAndGetProperty(double world_time, Element& element)
  399. {
  400. ROCKET_ASSERT(keys.size() >= 2);
  401. float dt = float(world_time - last_update_world_time);
  402. if (animation_complete || dt <= 0.0f)
  403. return Property{};
  404. dt = Math::Min(dt, 0.1f);
  405. last_update_world_time = world_time;
  406. time_since_iteration_start += dt;
  407. if (time_since_iteration_start >= duration)
  408. {
  409. // Next iteration
  410. current_iteration += 1;
  411. if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations))
  412. {
  413. time_since_iteration_start -= duration;
  414. if (alternate_direction)
  415. reverse_direction = !reverse_direction;
  416. }
  417. else
  418. {
  419. animation_complete = true;
  420. time_since_iteration_start = duration;
  421. }
  422. }
  423. int key0 = -1;
  424. int key1 = -1;
  425. float alpha = GetInterpolationFactorAndKeys(&key0, &key1);
  426. Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition);
  427. return result;
  428. }
  429. }
  430. }