FlexFormattingContext.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
  7. * Copyright (c) 2019 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "FlexFormattingContext.h"
  29. #include "../../../Include/RmlUi/Core/ComputedValues.h"
  30. #include "../../../Include/RmlUi/Core/Element.h"
  31. #include "../../../Include/RmlUi/Core/ElementScroll.h"
  32. #include "../../../Include/RmlUi/Core/Types.h"
  33. #include "ContainerBox.h"
  34. #include "LayoutDetails.h"
  35. #include "LayoutEngine.h"
  36. #include <algorithm>
  37. #include <float.h>
  38. #include <numeric>
  39. namespace Rml {
  40. UniquePtr<LayoutBox> FlexFormattingContext::Format(ContainerBox* parent_container, Element* element, const Box* override_initial_box)
  41. {
  42. auto flex_container_box = MakeUnique<FlexContainer>(element, parent_container);
  43. ElementScroll* element_scroll = element->GetElementScroll();
  44. const ComputedValues& computed = element->GetComputedValues();
  45. const Vector2f containing_block = LayoutDetails::GetContainingBlock(parent_container, element->GetPosition()).size;
  46. RMLUI_ASSERT(containing_block.x >= 0.f);
  47. // Build the initial box as specified by the flex's style, as if it was a normal block element.
  48. Box& box = flex_container_box->GetBox();
  49. if (override_initial_box)
  50. box = *override_initial_box;
  51. else
  52. LayoutDetails::BuildBox(box, containing_block, element, BuildBoxMode::Block);
  53. // Start with any auto-scrollbars off.
  54. flex_container_box->ResetScrollbars(box);
  55. FlexFormattingContext context;
  56. context.flex_container_box = flex_container_box.get();
  57. context.element_flex = element;
  58. LayoutDetails::GetMinMaxWidth(context.flex_min_size.x, context.flex_max_size.x, computed, box, containing_block.x);
  59. LayoutDetails::GetMinMaxHeight(context.flex_min_size.y, context.flex_max_size.y, computed, box, containing_block.y);
  60. const Vector2f box_content_size = box.GetSize();
  61. const bool auto_height = (box_content_size.y < 0.0f);
  62. context.flex_content_offset = box.GetPosition();
  63. for (int layout_iteration = 0; layout_iteration < 3; layout_iteration++)
  64. {
  65. // One or both scrollbars can be enabled between iterations.
  66. const Vector2f scrollbar_size = {
  67. element_scroll->GetScrollbarSize(ElementScroll::VERTICAL),
  68. element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL),
  69. };
  70. context.flex_available_content_size = Math::Max(box_content_size - scrollbar_size, Vector2f(0.f));
  71. context.flex_content_containing_block = context.flex_available_content_size;
  72. if (auto_height)
  73. {
  74. context.flex_available_content_size.y = -1.f; // Negative means infinite space
  75. context.flex_content_containing_block.y = containing_block.y;
  76. }
  77. Math::SnapToPixelGrid(context.flex_content_offset, context.flex_available_content_size);
  78. // Format the flexbox and all its children.
  79. Vector2f flex_resulting_content_size, content_overflow_size;
  80. context.Format(flex_resulting_content_size, content_overflow_size);
  81. // Output the size of the formatted flexbox. The width is determined as a normal block box so we don't need to change that.
  82. Vector2f formatted_content_size = box_content_size;
  83. if (auto_height)
  84. formatted_content_size.y = flex_resulting_content_size.y + scrollbar_size.y;
  85. Box sized_box = box;
  86. sized_box.SetContent(formatted_content_size);
  87. // Close the box, and break out of the loop if it did not produce any new scrollbars, otherwise continue to format the flexbox again.
  88. if (flex_container_box->Close(content_overflow_size, sized_box))
  89. break;
  90. }
  91. return flex_container_box;
  92. }
  93. struct FlexItem {
  94. // In the following, suffix '_a' means flex start edge while '_b' means flex end edge.
  95. struct Size {
  96. bool auto_margin_a, auto_margin_b;
  97. bool auto_size;
  98. float margin_a, margin_b;
  99. float sum_edges_a; // Start edge: margin (non-auto) + border + padding
  100. float sum_edges; // Inner->outer size
  101. float min_size, max_size; // Inner size
  102. };
  103. Element* element;
  104. Box box;
  105. // Filled during the build step.
  106. Size main;
  107. Size cross;
  108. float flex_shrink_factor;
  109. float flex_grow_factor;
  110. Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value
  111. float inner_flex_base_size; // Inner size
  112. float flex_base_size; // Outer size
  113. float hypothetical_main_size; // Outer size
  114. // Used for resolving flexible length
  115. enum class Violation : std::uint8_t { None = 0, Min, Max };
  116. bool frozen;
  117. Violation violation;
  118. float target_main_size; // Outer size
  119. float used_main_size; // Outer size (without auto margins)
  120. float main_auto_margin_size_a, main_auto_margin_size_b;
  121. float main_offset;
  122. // Used for resolving cross size
  123. float hypothetical_cross_size; // Outer size
  124. float used_cross_size; // Outer size
  125. float cross_offset; // Offset within line
  126. float cross_baseline_top; // Only used for baseline cross alignment
  127. };
  128. struct FlexLine {
  129. FlexLine(Vector<FlexItem>&& items) : items(std::move(items)) {}
  130. Vector<FlexItem> items;
  131. float accumulated_hypothetical_main_size = 0;
  132. float cross_size = 0; // Excludes line spacing
  133. float cross_spacing_a = 0, cross_spacing_b = 0;
  134. float cross_offset = 0;
  135. };
  136. struct FlexLineContainer {
  137. Vector<FlexLine> lines;
  138. };
  139. static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse)
  140. {
  141. float margin_a, margin_b, padding_border_a, padding_border_b;
  142. LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value);
  143. const float padding_border = padding_border_a + padding_border_b;
  144. const float margin = margin_a + margin_b;
  145. destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto);
  146. destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto);
  147. destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto);
  148. destination.margin_a = margin_a;
  149. destination.margin_b = margin_b;
  150. destination.sum_edges = padding_border + margin;
  151. destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a);
  152. destination.min_size = ResolveValue(computed_size.min_size, base_value);
  153. destination.max_size = ResolveValue(computed_size.max_size, base_value);
  154. if (computed_size.box_sizing == Style::BoxSizing::BorderBox)
  155. {
  156. destination.min_size = Math::Max(0.0f, destination.min_size - padding_border);
  157. if (destination.max_size < FLT_MAX)
  158. destination.max_size = Math::Max(0.0f, destination.max_size - padding_border);
  159. }
  160. if (direction_reverse)
  161. {
  162. std::swap(destination.auto_margin_a, destination.auto_margin_b);
  163. std::swap(destination.margin_a, destination.margin_b);
  164. }
  165. }
  166. void FlexFormattingContext::Format(Vector2f& flex_resulting_content_size, Vector2f& flex_content_overflow_size) const
  167. {
  168. // The following procedure is based on the CSS flexible box layout algorithm.
  169. // For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm
  170. const ComputedValues& computed_flex = element_flex->GetComputedValues();
  171. const Style::FlexDirection direction = computed_flex.flex_direction();
  172. const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse);
  173. const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse);
  174. const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap);
  175. const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse);
  176. const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  177. const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  178. const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y);
  179. const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y);
  180. const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x);
  181. const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x);
  182. // For the purpose of placing items we make infinite size a big value.
  183. const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size);
  184. // For the purpose of resolving lengths, infinite main size becomes zero.
  185. const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size);
  186. const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size);
  187. // -- Build a list of all flex items with base size information --
  188. Vector<FlexItem> items;
  189. const int num_flex_children = element_flex->GetNumChildren();
  190. for (int i = 0; i < num_flex_children; i++)
  191. {
  192. Element* element = element_flex->GetChild(i);
  193. const ComputedValues& computed = element->GetComputedValues();
  194. if (computed.display() == Style::Display::None)
  195. {
  196. continue;
  197. }
  198. else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed)
  199. {
  200. ContainerBox* absolute_containing_block = LayoutDetails::GetContainingBlock(flex_container_box, computed.position()).container;
  201. absolute_containing_block->AddAbsoluteElement(element, {}, element_flex);
  202. continue;
  203. }
  204. else if (computed.position() == Style::Position::Relative)
  205. {
  206. flex_container_box->AddRelativeElement(element);
  207. }
  208. FlexItem item = {};
  209. item.element = element;
  210. LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BuildBoxMode::UnalignedBlock);
  211. Style::LengthPercentageAuto item_main_size;
  212. {
  213. const ComputedAxisSize computed_main_size =
  214. main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  215. const ComputedAxisSize computed_cross_size =
  216. !main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  217. GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse);
  218. GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse);
  219. item_main_size = computed_main_size.size;
  220. }
  221. item.flex_shrink_factor = computed.flex_shrink();
  222. item.flex_grow_factor = computed.flex_grow();
  223. item.align_self = computed.align_self();
  224. static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 &&
  225. int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1,
  226. "It is assumed below that align items is a shifted version (no auto value) of align self.");
  227. // Use the container's align-items property if align-self is auto.
  228. if (item.align_self == Style::AlignSelf::Auto)
  229. item.align_self = static_cast<Style::AlignSelf>(static_cast<int>(computed_flex.align_items()) + 1);
  230. const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b);
  231. // Find the flex base size (possibly negative when using border box sizing)
  232. if (computed.flex_basis().type != Style::FlexBasis::Auto)
  233. {
  234. item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value);
  235. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  236. item.inner_flex_base_size -= sum_padding_border;
  237. }
  238. else if (!item.main.auto_size)
  239. {
  240. item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value);
  241. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  242. item.inner_flex_base_size -= sum_padding_border;
  243. }
  244. else if (main_axis_horizontal)
  245. {
  246. item.inner_flex_base_size = LayoutDetails::GetShrinkToFitWidth(element, flex_content_containing_block);
  247. }
  248. else
  249. {
  250. const Vector2f initial_box_size = item.box.GetSize();
  251. RMLUI_ASSERT(initial_box_size.y < 0.f);
  252. Box format_box = item.box;
  253. if (initial_box_size.x < 0.f)
  254. format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y));
  255. FormattingContext::FormatIndependent(flex_container_box, element, &format_box, FormattingContextType::Block);
  256. item.inner_flex_base_size = element->GetBox().GetSize().y;
  257. }
  258. // Calculate the hypothetical main size (clamped flex base size).
  259. item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  260. item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges;
  261. items.push_back(std::move(item));
  262. }
  263. if (items.empty())
  264. {
  265. return;
  266. }
  267. // -- Collect the items into lines --
  268. FlexLineContainer container;
  269. if (flex_single_line)
  270. {
  271. container.lines.emplace_back(std::move(items));
  272. }
  273. else
  274. {
  275. float cursor = 0;
  276. Vector<FlexItem> line_items;
  277. for (FlexItem& item : items)
  278. {
  279. cursor += item.hypothetical_main_size;
  280. if (!line_items.empty() && cursor > main_wrap_size)
  281. {
  282. // Break into new line.
  283. container.lines.emplace_back(std::move(line_items));
  284. cursor = item.hypothetical_main_size;
  285. line_items = {std::move(item)};
  286. }
  287. else
  288. {
  289. // Add item to current line.
  290. line_items.push_back(std::move(item));
  291. }
  292. }
  293. if (!line_items.empty())
  294. container.lines.emplace_back(std::move(line_items));
  295. items.clear();
  296. items.shrink_to_fit();
  297. }
  298. for (FlexLine& line : container.lines)
  299. {
  300. line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f,
  301. [](float value, const FlexItem& item) { return value + item.hypothetical_main_size; });
  302. }
  303. // If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line.
  304. const float used_main_size_unconstrained = main_available_size >= 0.f
  305. ? main_available_size
  306. : std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) {
  307. return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size;
  308. })->accumulated_hypothetical_main_size;
  309. const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size);
  310. // -- Determine main size --
  311. // Resolve flexible lengths to find the used main size of all items.
  312. for (FlexLine& line : container.lines)
  313. {
  314. const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative
  315. const bool flex_mode_grow = (available_flex_space > 0.f);
  316. auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); };
  317. // Initialize items and freeze inflexible items.
  318. for (FlexItem& item : line.items)
  319. {
  320. item.target_main_size = item.flex_base_size;
  321. if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) ||
  322. (!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size))
  323. {
  324. item.frozen = true;
  325. item.target_main_size = item.hypothetical_main_size;
  326. }
  327. }
  328. auto RemainingFreeSpace = [used_main_size, &line]() {
  329. return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  330. return value + (item.frozen ? item.target_main_size : item.flex_base_size);
  331. });
  332. };
  333. const float initial_free_space = RemainingFreeSpace();
  334. // Now iteratively distribute or shrink the size of all the items, until all the items are frozen.
  335. while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; }))
  336. {
  337. float remaining_free_space = RemainingFreeSpace();
  338. const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f,
  339. [&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); });
  340. if (flex_factor_sum < 1.f)
  341. {
  342. const float scaled_initial_free_space = initial_free_space * flex_factor_sum;
  343. if (Math::AbsoluteValue(scaled_initial_free_space) < Math::AbsoluteValue(remaining_free_space))
  344. remaining_free_space = scaled_initial_free_space;
  345. }
  346. if (remaining_free_space != 0.f)
  347. {
  348. // Distribute free space proportionally to flex factors
  349. if (flex_mode_grow)
  350. {
  351. for (FlexItem& item : line.items)
  352. {
  353. if (!item.frozen)
  354. {
  355. const float distribute_ratio = item.flex_grow_factor / flex_factor_sum;
  356. item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space;
  357. }
  358. }
  359. }
  360. else
  361. {
  362. const float scaled_flex_shrink_factor_sum =
  363. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  364. return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size);
  365. });
  366. const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum);
  367. for (FlexItem& item : line.items)
  368. {
  369. if (!item.frozen)
  370. {
  371. const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size;
  372. const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero;
  373. item.target_main_size = item.flex_base_size - distribute_ratio * Math::AbsoluteValue(remaining_free_space);
  374. }
  375. }
  376. }
  377. }
  378. // Clamp min/max violations
  379. float total_minmax_violation = 0.f;
  380. for (FlexItem& item : line.items)
  381. {
  382. if (!item.frozen)
  383. {
  384. const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges);
  385. const float clamped_target_main_size =
  386. Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  387. const float violation_diff = clamped_target_main_size - item.target_main_size;
  388. item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min
  389. : (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None));
  390. item.target_main_size = clamped_target_main_size;
  391. total_minmax_violation += violation_diff;
  392. }
  393. }
  394. for (FlexItem& item : line.items)
  395. {
  396. if (total_minmax_violation > 0.0f)
  397. item.frozen |= (item.violation == FlexItem::Violation::Min);
  398. else if (total_minmax_violation < 0.0f)
  399. item.frozen |= (item.violation == FlexItem::Violation::Max);
  400. else
  401. item.frozen = true;
  402. }
  403. }
  404. // Now, each item's used main size is found!
  405. for (FlexItem& item : line.items)
  406. item.used_main_size = item.target_main_size;
  407. }
  408. // -- Align main axis (§9.5) --
  409. // Main alignment is done before cross sizing. Due to rounding to the pixel grid, the main size can
  410. // change slightly after main alignment/offseting. Also, the cross sizing depends on the main sizing
  411. // so doing it in this order ensures no surprises (overflow/wrapping issues) due to pixel rounding.
  412. for (FlexLine& line : container.lines)
  413. {
  414. const float remaining_free_space = used_main_size -
  415. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; });
  416. if (remaining_free_space > 0.0f)
  417. {
  418. const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0,
  419. [](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); });
  420. if (num_auto_margins > 0)
  421. {
  422. // Distribute the remaining space to the auto margins.
  423. const float space_per_auto_margin = remaining_free_space / float(num_auto_margins);
  424. for (FlexItem& item : line.items)
  425. {
  426. if (item.main.auto_margin_a)
  427. item.main_auto_margin_size_a = space_per_auto_margin;
  428. if (item.main.auto_margin_b)
  429. item.main_auto_margin_size_b = space_per_auto_margin;
  430. }
  431. }
  432. else
  433. {
  434. // Distribute the remaining space based on the 'justify-content' property.
  435. using Style::JustifyContent;
  436. const int num_items = int(line.items.size());
  437. switch (computed_flex.justify_content())
  438. {
  439. case JustifyContent::SpaceBetween:
  440. if (num_items > 1)
  441. {
  442. const float space_per_edge = remaining_free_space / float(2 * num_items - 2);
  443. for (int i = 0; i < num_items; i++)
  444. {
  445. FlexItem& item = line.items[i];
  446. if (i > 0)
  447. item.main_auto_margin_size_a = space_per_edge;
  448. if (i < num_items - 1)
  449. item.main_auto_margin_size_b = space_per_edge;
  450. }
  451. break;
  452. }
  453. //-fallthrough
  454. case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break;
  455. case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break;
  456. case JustifyContent::Center:
  457. line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space;
  458. line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space;
  459. break;
  460. case JustifyContent::SpaceAround:
  461. {
  462. const float space_per_edge = remaining_free_space / float(2 * num_items);
  463. for (FlexItem& item : line.items)
  464. {
  465. item.main_auto_margin_size_a = space_per_edge;
  466. item.main_auto_margin_size_b = space_per_edge;
  467. }
  468. }
  469. break;
  470. }
  471. }
  472. }
  473. // Now find the offset and snap the outer edges to the pixel grid.
  474. float cursor = 0.0f;
  475. for (FlexItem& item : line.items)
  476. {
  477. if (direction_reverse)
  478. item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b);
  479. else
  480. item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a;
  481. cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b;
  482. Math::SnapToPixelGrid(item.main_offset, item.used_main_size);
  483. }
  484. }
  485. // -- Determine cross size (§9.4) --
  486. // First, determine the cross size of each item, format it if necessary.
  487. for (FlexLine& line : container.lines)
  488. {
  489. for (FlexItem& item : line.items)
  490. {
  491. const Vector2f content_size = item.box.GetSize();
  492. const float used_main_size_inner = item.used_main_size - item.main.sum_edges;
  493. if (main_axis_horizontal)
  494. {
  495. if (content_size.y < 0.0f)
  496. {
  497. item.box.SetContent(Vector2f(used_main_size_inner, content_size.y));
  498. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  499. item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges;
  500. }
  501. else
  502. {
  503. item.hypothetical_cross_size = content_size.y + item.cross.sum_edges;
  504. }
  505. }
  506. else
  507. {
  508. if (content_size.x < 0.0f || item.cross.auto_size)
  509. {
  510. item.box.SetContent(Vector2f(content_size.x, used_main_size_inner));
  511. item.hypothetical_cross_size =
  512. LayoutDetails::GetShrinkToFitWidth(item.element, flex_content_containing_block) + item.cross.sum_edges;
  513. }
  514. else
  515. {
  516. item.hypothetical_cross_size = content_size.x + item.cross.sum_edges;
  517. }
  518. }
  519. }
  520. }
  521. // Determine cross size of each line.
  522. if (cross_available_size >= 0.f && flex_single_line && container.lines.size() == 1)
  523. {
  524. container.lines[0].cross_size = cross_available_size;
  525. }
  526. else
  527. {
  528. for (FlexLine& line : container.lines)
  529. {
  530. const float largest_hypothetical_cross_size =
  531. std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) {
  532. return a.hypothetical_cross_size < b.hypothetical_cross_size;
  533. })->hypothetical_cross_size;
  534. // Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8.
  535. line.cross_size = Math::Max(0.0f, Math::RoundFloat(largest_hypothetical_cross_size));
  536. if (flex_single_line)
  537. line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size);
  538. }
  539. }
  540. // Stretch out the lines if we have extra space.
  541. if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch)
  542. {
  543. int remaining_space = static_cast<int>(cross_available_size -
  544. std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  545. [](float value, const FlexLine& line) { return value + line.cross_size; }));
  546. if (remaining_space > 0)
  547. {
  548. // Here we use integer math to ensure all space is distributed to pixel boundaries.
  549. const int num_lines = (int)container.lines.size();
  550. for (int i = 0; i < num_lines; i++)
  551. {
  552. const int add_space_to_line = remaining_space / (num_lines - i);
  553. remaining_space -= add_space_to_line;
  554. container.lines[i].cross_size += static_cast<float>(add_space_to_line);
  555. }
  556. }
  557. }
  558. // Determine the used cross size of items.
  559. for (FlexLine& line : container.lines)
  560. {
  561. for (FlexItem& item : line.items)
  562. {
  563. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  564. if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b)
  565. {
  566. item.used_cross_size =
  567. Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
  568. // Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems
  569. // very slow, we skip this for now.
  570. }
  571. else
  572. {
  573. item.used_cross_size = item.hypothetical_cross_size;
  574. }
  575. }
  576. }
  577. // -- Align cross axis (§9.6) --
  578. for (FlexLine& line : container.lines)
  579. {
  580. constexpr float UndefinedBaseline = -FLT_MAX;
  581. float max_baseline_edge_distance = UndefinedBaseline;
  582. FlexItem* max_baseline_item = nullptr;
  583. for (FlexItem& item : line.items)
  584. {
  585. const float remaining_space = line.cross_size - item.used_cross_size;
  586. item.cross_offset = item.cross.margin_a;
  587. item.cross_baseline_top = UndefinedBaseline;
  588. const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b);
  589. if (num_auto_margins > 0)
  590. {
  591. const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins);
  592. item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f);
  593. }
  594. else
  595. {
  596. using Style::AlignSelf;
  597. const AlignSelf align_self = item.align_self;
  598. switch (align_self)
  599. {
  600. case AlignSelf::Auto:
  601. // Never encountered here: should already have been replaced by container's align-items property.
  602. RMLUI_ERROR;
  603. break;
  604. case AlignSelf::FlexStart:
  605. // Do nothing, cross offset set above with this behavior.
  606. break;
  607. case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break;
  608. case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break;
  609. case AlignSelf::Baseline:
  610. {
  611. // We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation.
  612. const float baseline_heuristic = 0.5f * item.element->GetLineHeight();
  613. const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a);
  614. item.cross_baseline_top = sum_edges_top + baseline_heuristic;
  615. const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top);
  616. if (baseline_edge_distance > max_baseline_edge_distance)
  617. {
  618. max_baseline_item = &item;
  619. max_baseline_edge_distance = baseline_edge_distance;
  620. }
  621. }
  622. break;
  623. case AlignSelf::Stretch:
  624. // Handled above
  625. break;
  626. }
  627. }
  628. if (wrap_reverse)
  629. {
  630. const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b;
  631. item.cross_offset = reverse_offset - item.cross_offset;
  632. }
  633. }
  634. if (max_baseline_item)
  635. {
  636. // Align all baseline items such that their baselines are aligned with the one with the max. baseline distance.
  637. // Cross offset for all baseline items are currently set as in 'flex-start'.
  638. const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a);
  639. const float line_top_to_baseline_distance =
  640. max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top;
  641. for (FlexItem& item : line.items)
  642. {
  643. if (item.cross_baseline_top != UndefinedBaseline)
  644. {
  645. const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a);
  646. item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top;
  647. }
  648. }
  649. }
  650. // Snap the outer item cross edges to the pixel grid.
  651. for (FlexItem& item : line.items)
  652. Math::SnapToPixelGrid(item.cross_offset, item.used_cross_size);
  653. }
  654. const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  655. [](float value, const FlexLine& line) { return value + line.cross_size; });
  656. // If the available cross size is infinite, the used cross size becomes the accumulated line cross size.
  657. const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size;
  658. const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size);
  659. // Align the lines along the cross-axis.
  660. {
  661. const float remaining_free_space = used_cross_size - accumulated_lines_cross_size;
  662. const int num_lines = int(container.lines.size());
  663. if (remaining_free_space > 0.f)
  664. {
  665. using Style::AlignContent;
  666. switch (computed_flex.align_content())
  667. {
  668. case AlignContent::SpaceBetween:
  669. if (num_lines > 1)
  670. {
  671. const float space_per_edge = remaining_free_space / float(2 * num_lines - 2);
  672. for (int i = 0; i < num_lines; i++)
  673. {
  674. FlexLine& line = container.lines[i];
  675. if (i > 0)
  676. line.cross_spacing_a = space_per_edge;
  677. if (i < num_lines - 1)
  678. line.cross_spacing_b = space_per_edge;
  679. }
  680. }
  681. //-fallthrough
  682. case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break;
  683. case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break;
  684. case AlignContent::Center:
  685. container.lines.front().cross_spacing_a = 0.5f * remaining_free_space;
  686. container.lines.back().cross_spacing_b = 0.5f * remaining_free_space;
  687. break;
  688. case AlignContent::SpaceAround:
  689. {
  690. const float space_per_edge = remaining_free_space / float(2 * num_lines);
  691. for (FlexLine& line : container.lines)
  692. {
  693. line.cross_spacing_a = space_per_edge;
  694. line.cross_spacing_b = space_per_edge;
  695. }
  696. }
  697. break;
  698. case AlignContent::Stretch:
  699. // Handled above.
  700. break;
  701. }
  702. }
  703. // Now find the offset and snap the line edges to the pixel grid.
  704. float cursor = 0.f;
  705. for (FlexLine& line : container.lines)
  706. {
  707. if (wrap_reverse)
  708. line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size);
  709. else
  710. line.cross_offset = cursor + line.cross_spacing_a;
  711. cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b;
  712. Math::SnapToPixelGrid(line.cross_offset, line.cross_size);
  713. }
  714. }
  715. auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) {
  716. return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main);
  717. };
  718. // -- Format items --
  719. for (FlexLine& line : container.lines)
  720. {
  721. for (FlexItem& item : line.items)
  722. {
  723. const Vector2f item_size = MainCrossToVec2(item.used_main_size - item.main.sum_edges, item.used_cross_size - item.cross.sum_edges);
  724. const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset);
  725. item.box.SetContent(item_size);
  726. UniquePtr<LayoutBox> item_layout_box =
  727. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  728. // Set the position of the element within the the flex container
  729. item.element->SetOffset(flex_content_offset + item_offset, element_flex);
  730. // The cell contents may overflow, propagate this to the flex container.
  731. const Vector2f overflow_size = item_offset + item_layout_box->GetVisibleOverflowSize();
  732. flex_content_overflow_size.x = Math::Max(flex_content_overflow_size.x, overflow_size.x);
  733. flex_content_overflow_size.y = Math::Max(flex_content_overflow_size.y, overflow_size.y);
  734. }
  735. }
  736. flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size);
  737. }
  738. } // namespace Rml