ElementAnimation.cpp 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2018 Michael R. P. Ragazzon
  7. * Copyright (c) 2019 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "precompiled.h"
  29. #include "ElementAnimation.h"
  30. #include "ElementStyle.h"
  31. #include "../../Include/RmlUi/Core/TransformPrimitive.h"
  32. #include "../../Include/RmlUi/Core/StyleSheetSpecification.h"
  33. namespace Rml {
  34. namespace Core {
  35. static Colourf ColourToLinearSpace(Colourb c)
  36. {
  37. Colourf result;
  38. // Approximate inverse sRGB function
  39. result.red = Math::SquareRoot((float)c.red / 255.f);
  40. result.green = Math::SquareRoot((float)c.green / 255.f);
  41. result.blue = Math::SquareRoot((float)c.blue / 255.f);
  42. result.alpha = (float)c.alpha / 255.f;
  43. return result;
  44. }
  45. static Colourb ColourFromLinearSpace(Colourf c)
  46. {
  47. Colourb result;
  48. result.red = (Rml::Core::byte)Math::Clamp(c.red*c.red*255.f, 0.0f, 255.f);
  49. result.green = (Rml::Core::byte)Math::Clamp(c.green*c.green*255.f, 0.0f, 255.f);
  50. result.blue = (Rml::Core::byte)Math::Clamp(c.blue*c.blue*255.f, 0.0f, 255.f);
  51. result.alpha = (Rml::Core::byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f);
  52. return result;
  53. }
  54. // Merges all the primitives to a single DecomposedMatrix4 primitive
  55. static bool CombineAndDecompose(Transform& t, Element& e)
  56. {
  57. Matrix4f m = Matrix4f::Identity();
  58. for (auto& primitive : t.GetPrimitives())
  59. {
  60. Matrix4f m_primitive;
  61. if (primitive.ResolveTransform(m_primitive, e))
  62. m *= m_primitive;
  63. }
  64. Transforms::DecomposedMatrix4 decomposed;
  65. if (!decomposed.Decompose(m))
  66. return false;
  67. t.ClearPrimitives();
  68. t.AddPrimitive(decomposed);
  69. return true;
  70. }
  71. static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition)
  72. {
  73. if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT))
  74. {
  75. if (p0.unit == p1.unit || !definition)
  76. {
  77. // If we have the same units, we can just interpolate regardless of what the value represents.
  78. // Or if we have distinct units but no definition, all bets are off. This shouldn't occur, just interpolate values.
  79. float f0 = p0.value.Get<float>();
  80. float f1 = p1.value.Get<float>();
  81. float f = (1.0f - alpha) * f0 + alpha * f1;
  82. return Property{ f, p0.unit };
  83. }
  84. else
  85. {
  86. // Otherwise, convert units to pixels.
  87. float f0 = element.GetStyle()->ResolveLength(&p0, definition->GetRelativeTarget());
  88. float f1 = element.GetStyle()->ResolveLength(&p1, definition->GetRelativeTarget());
  89. float f = (1.0f - alpha) * f0 + alpha * f1;
  90. return Property{ f, Property::PX };
  91. }
  92. }
  93. if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR)
  94. {
  95. Colourf c0 = ColourToLinearSpace(p0.value.Get<Colourb>());
  96. Colourf c1 = ColourToLinearSpace(p1.value.Get<Colourb>());
  97. Colourf c = c0 * (1.0f - alpha) + c1 * alpha;
  98. return Property{ ColourFromLinearSpace(c), Property::COLOUR };
  99. }
  100. if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM)
  101. {
  102. using namespace Rml::Core::Transforms;
  103. auto& t0 = p0.value.GetReference<TransformPtr>();
  104. auto& t1 = p1.value.GetReference<TransformPtr>();
  105. const auto& prim0 = t0->GetPrimitives();
  106. const auto& prim1 = t1->GetPrimitives();
  107. if (prim0.size() != prim1.size())
  108. {
  109. RMLUI_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?");
  110. return Property{ t0, Property::TRANSFORM };
  111. }
  112. // Build the new, interpolating transform
  113. UniquePtr<Transform> t(new Transform);
  114. t->GetPrimitives().reserve(t0->GetPrimitives().size());
  115. for (size_t i = 0; i < prim0.size(); i++)
  116. {
  117. Primitive p = prim0[i];
  118. if (!p.InterpolateWith(prim1[i], alpha))
  119. {
  120. RMLUI_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?");
  121. return Property{ t0, Property::TRANSFORM };
  122. }
  123. t->AddPrimitive(p);
  124. }
  125. return Property{ TransformPtr(std::move(t)), Property::TRANSFORM };
  126. }
  127. return alpha < 0.5f ? p0 : p1;
  128. }
  129. enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 };
  130. static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element)
  131. {
  132. using namespace Transforms;
  133. // Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives.
  134. // Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
  135. auto& prims0 = t0.GetPrimitives();
  136. auto& prims1 = t1.GetPrimitives();
  137. // Check for trivial case where they contain the same primitives
  138. if (prims0.size() == prims1.size())
  139. {
  140. PrepareTransformResult result = PrepareTransformResult::Unchanged;
  141. bool same_primitives = true;
  142. for (size_t i = 0; i < prims0.size(); i++)
  143. {
  144. auto p0_type = prims0[i].primitive.type;
  145. auto p1_type = prims1[i].primitive.type;
  146. // See if they are the same or can be converted to a matching generic type.
  147. if (Primitive::TryConvertToMatchingGenericType(prims0[i], prims1[i]))
  148. {
  149. if (prims0[i].primitive.type != p0_type)
  150. (int&)result |= (int)PrepareTransformResult::ChangedT0;
  151. if (prims1[i].primitive.type != p1_type)
  152. (int&)result |= (int)PrepareTransformResult::ChangedT1;
  153. }
  154. else
  155. {
  156. same_primitives = false;
  157. break;
  158. }
  159. }
  160. if (same_primitives)
  161. return result;
  162. }
  163. if (prims0.size() != prims1.size())
  164. {
  165. // Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity.
  166. // Requirement: The small set must match types in the same order they appear in the big set.
  167. // Example: (letter indicates type, number represents values)
  168. // big: a0 b0 c0 b1
  169. // ^ ^
  170. // small: b2 b3
  171. // ^ ^
  172. // new small: a1 b2 c1 b3
  173. bool prims0_smallest = (prims0.size() < prims1.size());
  174. auto& small = (prims0_smallest ? prims0 : prims1);
  175. auto& big = (prims0_smallest ? prims1 : prims0);
  176. std::vector<size_t> matching_indices; // Indices into 'big' for matching types
  177. matching_indices.reserve(small.size() + 1);
  178. size_t i_big = 0;
  179. bool match_success = true;
  180. bool changed_big = false;
  181. // Iterate through the small set to see if its types fit into the big set
  182. for (size_t i_small = 0; i_small < small.size(); i_small++)
  183. {
  184. match_success = false;
  185. for (; i_big < big.size(); i_big++)
  186. {
  187. auto big_type = big[i_big].primitive.type;
  188. if (Primitive::TryConvertToMatchingGenericType(small[i_small], big[i_big]))
  189. {
  190. // They matched exactly or in their more generic form. One or both primitives may have been converted.
  191. match_success = true;
  192. if (big[i_big].primitive.type != big_type)
  193. changed_big = true;
  194. }
  195. if (match_success)
  196. {
  197. matching_indices.push_back(i_big);
  198. match_success = true;
  199. i_big += 1;
  200. break;
  201. }
  202. }
  203. if (!match_success)
  204. break;
  205. }
  206. if (match_success)
  207. {
  208. // Success, insert the missing primitives into the small set
  209. matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive
  210. small.reserve(big.size());
  211. size_t i0 = 0;
  212. for (size_t match_index : matching_indices)
  213. {
  214. for (size_t i = i0; i < match_index; i++)
  215. {
  216. Primitive p = big[i];
  217. p.SetIdentity();
  218. small.insert(small.begin() + i, p);
  219. }
  220. // Next value to copy is one-past the matching primitive
  221. i0 = match_index + 1;
  222. }
  223. // The small set has always been changed if we get here, but the big set is only changed
  224. // if one or more of its primitives were converted to a general form.
  225. if (changed_big)
  226. return PrepareTransformResult::ChangedT0andT1;
  227. return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1);
  228. }
  229. }
  230. // If we get here, things get tricky. Need to do full matrix interpolation.
  231. // In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components.
  232. // Then, during update, interpolate these components and combine into a new transform matrix.
  233. if (!CombineAndDecompose(t0, element))
  234. return PrepareTransformResult::Invalid;
  235. if (!CombineAndDecompose(t1, element))
  236. return PrepareTransformResult::Invalid;
  237. return PrepareTransformResult::ChangedT0andT1;
  238. }
  239. static bool PrepareTransforms(std::vector<AnimationKey>& keys, Element& element, int start_index)
  240. {
  241. bool result = true;
  242. // Prepare each transform individually.
  243. for (int i = start_index; i < (int)keys.size(); i++)
  244. {
  245. Property& property = keys[i].property;
  246. if (!property.value.GetReference<TransformPtr>())
  247. property.value = std::make_shared<Transform>();
  248. bool must_decompose = false;
  249. Transform& transform = *property.value.GetReference<TransformPtr>();
  250. for (auto& primitive : transform.GetPrimitives())
  251. {
  252. if (!primitive.PrepareForInterpolation(element))
  253. {
  254. must_decompose = true;
  255. break;
  256. }
  257. }
  258. if (must_decompose)
  259. result = CombineAndDecompose(transform, element);
  260. }
  261. if (!result)
  262. return false;
  263. // We don't need to prepare the transforms pairwise if we only have a single key added so far.
  264. if (keys.size() < 2 || start_index < 1)
  265. return true;
  266. // Now, prepare the transforms pair-wise so they can be interpolated.
  267. const int N = (int)keys.size();
  268. int count_iterations = -1;
  269. const int max_iterations = 3 * N;
  270. std::vector<bool> dirty_list(N + 1, false);
  271. dirty_list[start_index] = true;
  272. // For each pair of keys, match the transform primitives such that they can be interpolated during animation update
  273. for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++)
  274. {
  275. if (!dirty_list[i])
  276. {
  277. ++i;
  278. continue;
  279. }
  280. auto& prop0 = keys[i - 1].property;
  281. auto& prop1 = keys[i].property;
  282. if(prop0.unit != Property::TRANSFORM || prop1.unit != Property::TRANSFORM)
  283. return false;
  284. auto& t0 = prop0.value.GetReference<TransformPtr>();
  285. auto& t1 = prop1.value.GetReference<TransformPtr>();
  286. auto result = PrepareTransformPair(*t0, *t1, element);
  287. if (result == PrepareTransformResult::Invalid)
  288. return false;
  289. bool changed_t0 = ((int)result & (int)PrepareTransformResult::ChangedT0);
  290. bool changed_t1 = ((int)result & (int)PrepareTransformResult::ChangedT1);
  291. dirty_list[i] = false;
  292. dirty_list[i - 1] = dirty_list[i - 1] || changed_t0;
  293. dirty_list[i + 1] = dirty_list[i + 1] || changed_t1;
  294. if (changed_t0 && i > 1)
  295. --i;
  296. else
  297. ++i;
  298. }
  299. // Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair()
  300. return (count_iterations < max_iterations);
  301. }
  302. ElementAnimation::ElementAnimation(PropertyId property_id, ElementAnimationOrigin origin, const Property& current_value, Element& element, double start_world_time, float duration, int num_iterations, bool alternate_direction)
  303. : property_id(property_id), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction), last_update_world_time(start_world_time),
  304. time_since_iteration_start(0.0f), current_iteration(0), reverse_direction(false), animation_complete(false), origin(origin)
  305. {
  306. if (!current_value.definition)
  307. {
  308. Log::Message(Log::LT_WARNING, "Property in animation key did not have a definition (while adding key '%s').", current_value.ToString().c_str());
  309. }
  310. InternalAddKey(0.0f, current_value, element, Tween{});
  311. }
  312. bool ElementAnimation::InternalAddKey(float time, const Property& in_property, Element& element, Tween tween)
  313. {
  314. int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM);
  315. if (!(in_property.unit & valid_properties))
  316. {
  317. Log::Message(Log::LT_WARNING, "Property '%s' is not a valid target for interpolation.", in_property.ToString().c_str());
  318. return false;
  319. }
  320. keys.emplace_back(time, in_property, tween);
  321. bool result = true;
  322. if (keys.back().property.unit == Property::TRANSFORM)
  323. {
  324. result = PrepareTransforms(keys, element, (int)keys.size() - 1);
  325. }
  326. if (!result)
  327. {
  328. Log::Message(Log::LT_WARNING, "Could not add animation key with property '%s'.", in_property.ToString().c_str());
  329. keys.pop_back();
  330. }
  331. return result;
  332. }
  333. bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration)
  334. {
  335. if (keys.empty())
  336. {
  337. Log::Message(Log::LT_WARNING, "Element animation was not initialized properly, can't add key.");
  338. return false;
  339. }
  340. if (!InternalAddKey(target_time, in_property, element, tween))
  341. {
  342. return false;
  343. }
  344. if (extend_duration)
  345. duration = target_time;
  346. return true;
  347. }
  348. float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const
  349. {
  350. float t = time_since_iteration_start;
  351. if (reverse_direction)
  352. t = duration - t;
  353. int key0 = -1;
  354. int key1 = -1;
  355. {
  356. for (int i = 0; i < (int)keys.size(); i++)
  357. {
  358. if (keys[i].time >= t)
  359. {
  360. key1 = i;
  361. break;
  362. }
  363. }
  364. if (key1 < 0) key1 = (int)keys.size() - 1;
  365. key0 = (key1 == 0 ? 0 : key1 - 1);
  366. }
  367. RMLUI_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size());
  368. float alpha = 0.0f;
  369. {
  370. const float t0 = keys[key0].time;
  371. const float t1 = keys[key1].time;
  372. const float eps = 1e-3f;
  373. if (t1 - t0 > eps)
  374. alpha = (t - t0) / (t1 - t0);
  375. alpha = Math::Clamp(alpha, 0.0f, 1.0f);
  376. }
  377. alpha = keys[key1].tween(alpha);
  378. if (out_key0) *out_key0 = key0;
  379. if (out_key1) *out_key1 = key1;
  380. return alpha;
  381. }
  382. Property ElementAnimation::UpdateAndGetProperty(double world_time, Element& element)
  383. {
  384. RMLUI_ASSERT(keys.size() >= 2);
  385. float dt = float(world_time - last_update_world_time);
  386. if (animation_complete || dt <= 0.0f)
  387. return Property{};
  388. dt = Math::Min(dt, 0.1f);
  389. last_update_world_time = world_time;
  390. time_since_iteration_start += dt;
  391. if (time_since_iteration_start >= duration)
  392. {
  393. // Next iteration
  394. current_iteration += 1;
  395. if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations))
  396. {
  397. time_since_iteration_start -= duration;
  398. if (alternate_direction)
  399. reverse_direction = !reverse_direction;
  400. }
  401. else
  402. {
  403. animation_complete = true;
  404. time_since_iteration_start = duration;
  405. }
  406. }
  407. int key0 = -1;
  408. int key1 = -1;
  409. float alpha = GetInterpolationFactorAndKeys(&key0, &key1);
  410. Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition);
  411. return result;
  412. }
  413. }
  414. }