ElementAnimation.cpp 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2018 Michael R. P. Ragazzon
  7. * Copyright (c) 2019 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "ElementAnimation.h"
  29. #include "ElementStyle.h"
  30. #include "../../Include/RmlUi/Core/TransformPrimitive.h"
  31. #include "../../Include/RmlUi/Core/StyleSheetSpecification.h"
  32. namespace Rml {
  33. namespace Core {
  34. static Colourf ColourToLinearSpace(Colourb c)
  35. {
  36. Colourf result;
  37. // Approximate inverse sRGB function
  38. result.red = Math::SquareRoot((float)c.red / 255.f);
  39. result.green = Math::SquareRoot((float)c.green / 255.f);
  40. result.blue = Math::SquareRoot((float)c.blue / 255.f);
  41. result.alpha = (float)c.alpha / 255.f;
  42. return result;
  43. }
  44. static Colourb ColourFromLinearSpace(Colourf c)
  45. {
  46. Colourb result;
  47. result.red = (Rml::Core::byte)Math::Clamp(c.red*c.red*255.f, 0.0f, 255.f);
  48. result.green = (Rml::Core::byte)Math::Clamp(c.green*c.green*255.f, 0.0f, 255.f);
  49. result.blue = (Rml::Core::byte)Math::Clamp(c.blue*c.blue*255.f, 0.0f, 255.f);
  50. result.alpha = (Rml::Core::byte)Math::Clamp(c.alpha*255.f, 0.0f, 255.f);
  51. return result;
  52. }
  53. // Merges all the primitives to a single DecomposedMatrix4 primitive
  54. static bool CombineAndDecompose(Transform& t, Element& e)
  55. {
  56. Matrix4f m = Matrix4f::Identity();
  57. for (auto& primitive : t.GetPrimitives())
  58. {
  59. Matrix4f m_primitive;
  60. if (primitive.ResolveTransform(m_primitive, e))
  61. m *= m_primitive;
  62. }
  63. Transforms::DecomposedMatrix4 decomposed;
  64. if (!decomposed.Decompose(m))
  65. return false;
  66. t.ClearPrimitives();
  67. t.AddPrimitive(decomposed);
  68. return true;
  69. }
  70. static Property InterpolateProperties(const Property & p0, const Property& p1, float alpha, Element& element, const PropertyDefinition* definition)
  71. {
  72. if ((p0.unit & Property::NUMBER_LENGTH_PERCENT) && (p1.unit & Property::NUMBER_LENGTH_PERCENT))
  73. {
  74. if (p0.unit == p1.unit || !definition)
  75. {
  76. // If we have the same units, we can just interpolate regardless of what the value represents.
  77. // Or if we have distinct units but no definition, all bets are off. This shouldn't occur, just interpolate values.
  78. float f0 = p0.value.Get<float>();
  79. float f1 = p1.value.Get<float>();
  80. float f = (1.0f - alpha) * f0 + alpha * f1;
  81. return Property{ f, p0.unit };
  82. }
  83. else
  84. {
  85. // Otherwise, convert units to pixels.
  86. float f0 = element.GetStyle()->ResolveLength(&p0, definition->GetRelativeTarget());
  87. float f1 = element.GetStyle()->ResolveLength(&p1, definition->GetRelativeTarget());
  88. float f = (1.0f - alpha) * f0 + alpha * f1;
  89. return Property{ f, Property::PX };
  90. }
  91. }
  92. if (p0.unit == Property::KEYWORD && p1.unit == Property::KEYWORD)
  93. {
  94. // Discrete interpolation, swap at alpha = 0.5.
  95. // Special case for the 'visibility' property as in the CSS specs:
  96. // Apply the visible property if present during the entire transition period, ie. alpha (0,1).
  97. if (definition && definition->GetId() == PropertyId::Visibility)
  98. {
  99. if (p0.Get<int>() == (int)Style::Visibility::Visible)
  100. return alpha < 1.f ? p0 : p1;
  101. else if (p1.Get<int>() == (int)Style::Visibility::Visible)
  102. return alpha <= 0.f ? p0 : p1;
  103. }
  104. return alpha < 0.5f ? p0 : p1;
  105. }
  106. if (p0.unit == Property::COLOUR && p1.unit == Property::COLOUR)
  107. {
  108. Colourf c0 = ColourToLinearSpace(p0.value.Get<Colourb>());
  109. Colourf c1 = ColourToLinearSpace(p1.value.Get<Colourb>());
  110. Colourf c = c0 * (1.0f - alpha) + c1 * alpha;
  111. return Property{ ColourFromLinearSpace(c), Property::COLOUR };
  112. }
  113. if (p0.unit == Property::TRANSFORM && p1.unit == Property::TRANSFORM)
  114. {
  115. using namespace Rml::Core::Transforms;
  116. auto& t0 = p0.value.GetReference<TransformPtr>();
  117. auto& t1 = p1.value.GetReference<TransformPtr>();
  118. const auto& prim0 = t0->GetPrimitives();
  119. const auto& prim1 = t1->GetPrimitives();
  120. if (prim0.size() != prim1.size())
  121. {
  122. RMLUI_ERRORMSG("Transform primitives not of same size during interpolation. Were the transforms properly prepared for interpolation?");
  123. return Property{ t0, Property::TRANSFORM };
  124. }
  125. // Build the new, interpolating transform
  126. UniquePtr<Transform> t(new Transform);
  127. t->GetPrimitives().reserve(t0->GetPrimitives().size());
  128. for (size_t i = 0; i < prim0.size(); i++)
  129. {
  130. Primitive p = prim0[i];
  131. if (!p.InterpolateWith(prim1[i], alpha))
  132. {
  133. RMLUI_ERRORMSG("Transform primitives can not be interpolated. Were the transforms properly prepared for interpolation?");
  134. return Property{ t0, Property::TRANSFORM };
  135. }
  136. t->AddPrimitive(p);
  137. }
  138. return Property{ TransformPtr(std::move(t)), Property::TRANSFORM };
  139. }
  140. // Fall back to discrete interpolation for incompatible units.
  141. return alpha < 0.5f ? p0 : p1;
  142. }
  143. enum class PrepareTransformResult { Unchanged = 0, ChangedT0 = 1, ChangedT1 = 2, ChangedT0andT1 = 3, Invalid = 4 };
  144. static PrepareTransformResult PrepareTransformPair(Transform& t0, Transform& t1, Element& element)
  145. {
  146. using namespace Transforms;
  147. // Insert or modify primitives such that the two transforms match exactly in both number of and types of primitives.
  148. // Based largely on https://drafts.csswg.org/css-transforms-1/#interpolation-of-transforms
  149. auto& prims0 = t0.GetPrimitives();
  150. auto& prims1 = t1.GetPrimitives();
  151. // Check for trivial case where they contain the same primitives
  152. if (prims0.size() == prims1.size())
  153. {
  154. PrepareTransformResult result = PrepareTransformResult::Unchanged;
  155. bool same_primitives = true;
  156. for (size_t i = 0; i < prims0.size(); i++)
  157. {
  158. auto p0_type = prims0[i].primitive.type;
  159. auto p1_type = prims1[i].primitive.type;
  160. // See if they are the same or can be converted to a matching generic type.
  161. if (Primitive::TryConvertToMatchingGenericType(prims0[i], prims1[i]))
  162. {
  163. if (prims0[i].primitive.type != p0_type)
  164. (int&)result |= (int)PrepareTransformResult::ChangedT0;
  165. if (prims1[i].primitive.type != p1_type)
  166. (int&)result |= (int)PrepareTransformResult::ChangedT1;
  167. }
  168. else
  169. {
  170. same_primitives = false;
  171. break;
  172. }
  173. }
  174. if (same_primitives)
  175. return result;
  176. }
  177. if (prims0.size() != prims1.size())
  178. {
  179. // Try to match the smallest set of primitives to the larger set, set missing keys in the small set to identity.
  180. // Requirement: The small set must match types in the same order they appear in the big set.
  181. // Example: (letter indicates type, number represents values)
  182. // big: a0 b0 c0 b1
  183. // ^ ^
  184. // small: b2 b3
  185. // ^ ^
  186. // new small: a1 b2 c1 b3
  187. bool prims0_smallest = (prims0.size() < prims1.size());
  188. auto& small = (prims0_smallest ? prims0 : prims1);
  189. auto& big = (prims0_smallest ? prims1 : prims0);
  190. std::vector<size_t> matching_indices; // Indices into 'big' for matching types
  191. matching_indices.reserve(small.size() + 1);
  192. size_t i_big = 0;
  193. bool match_success = true;
  194. bool changed_big = false;
  195. // Iterate through the small set to see if its types fit into the big set
  196. for (size_t i_small = 0; i_small < small.size(); i_small++)
  197. {
  198. match_success = false;
  199. for (; i_big < big.size(); i_big++)
  200. {
  201. auto big_type = big[i_big].primitive.type;
  202. if (Primitive::TryConvertToMatchingGenericType(small[i_small], big[i_big]))
  203. {
  204. // They matched exactly or in their more generic form. One or both primitives may have been converted.
  205. match_success = true;
  206. if (big[i_big].primitive.type != big_type)
  207. changed_big = true;
  208. }
  209. if (match_success)
  210. {
  211. matching_indices.push_back(i_big);
  212. match_success = true;
  213. i_big += 1;
  214. break;
  215. }
  216. }
  217. if (!match_success)
  218. break;
  219. }
  220. if (match_success)
  221. {
  222. // Success, insert the missing primitives into the small set
  223. matching_indices.push_back(big.size()); // Needed to copy elements behind the last matching primitive
  224. small.reserve(big.size());
  225. size_t i0 = 0;
  226. for (size_t match_index : matching_indices)
  227. {
  228. for (size_t i = i0; i < match_index; i++)
  229. {
  230. Primitive p = big[i];
  231. p.SetIdentity();
  232. small.insert(small.begin() + i, p);
  233. }
  234. // Next value to copy is one-past the matching primitive
  235. i0 = match_index + 1;
  236. }
  237. // The small set has always been changed if we get here, but the big set is only changed
  238. // if one or more of its primitives were converted to a general form.
  239. if (changed_big)
  240. return PrepareTransformResult::ChangedT0andT1;
  241. return (prims0_smallest ? PrepareTransformResult::ChangedT0 : PrepareTransformResult::ChangedT1);
  242. }
  243. }
  244. // If we get here, things get tricky. Need to do full matrix interpolation.
  245. // In short, we decompose the Transforms into translation, rotation, scale, skew and perspective components.
  246. // Then, during update, interpolate these components and combine into a new transform matrix.
  247. if (!CombineAndDecompose(t0, element))
  248. return PrepareTransformResult::Invalid;
  249. if (!CombineAndDecompose(t1, element))
  250. return PrepareTransformResult::Invalid;
  251. return PrepareTransformResult::ChangedT0andT1;
  252. }
  253. static bool PrepareTransforms(std::vector<AnimationKey>& keys, Element& element, int start_index)
  254. {
  255. bool result = true;
  256. // Prepare each transform individually.
  257. for (int i = start_index; i < (int)keys.size(); i++)
  258. {
  259. Property& property = keys[i].property;
  260. if (!property.value.GetReference<TransformPtr>())
  261. property.value = std::make_shared<Transform>();
  262. bool must_decompose = false;
  263. Transform& transform = *property.value.GetReference<TransformPtr>();
  264. for (auto& primitive : transform.GetPrimitives())
  265. {
  266. if (!primitive.PrepareForInterpolation(element))
  267. {
  268. must_decompose = true;
  269. break;
  270. }
  271. }
  272. if (must_decompose)
  273. result = CombineAndDecompose(transform, element);
  274. }
  275. if (!result)
  276. return false;
  277. // We don't need to prepare the transforms pairwise if we only have a single key added so far.
  278. if (keys.size() < 2 || start_index < 1)
  279. return true;
  280. // Now, prepare the transforms pair-wise so they can be interpolated.
  281. const int N = (int)keys.size();
  282. int count_iterations = -1;
  283. const int max_iterations = 3 * N;
  284. std::vector<bool> dirty_list(N + 1, false);
  285. dirty_list[start_index] = true;
  286. // For each pair of keys, match the transform primitives such that they can be interpolated during animation update
  287. for (int i = start_index; i < N && count_iterations < max_iterations; count_iterations++)
  288. {
  289. if (!dirty_list[i])
  290. {
  291. ++i;
  292. continue;
  293. }
  294. auto& prop0 = keys[i - 1].property;
  295. auto& prop1 = keys[i].property;
  296. if(prop0.unit != Property::TRANSFORM || prop1.unit != Property::TRANSFORM)
  297. return false;
  298. auto& t0 = prop0.value.GetReference<TransformPtr>();
  299. auto& t1 = prop1.value.GetReference<TransformPtr>();
  300. auto result = PrepareTransformPair(*t0, *t1, element);
  301. if (result == PrepareTransformResult::Invalid)
  302. return false;
  303. bool changed_t0 = ((int)result & (int)PrepareTransformResult::ChangedT0);
  304. bool changed_t1 = ((int)result & (int)PrepareTransformResult::ChangedT1);
  305. dirty_list[i] = false;
  306. dirty_list[i - 1] = dirty_list[i - 1] || changed_t0;
  307. dirty_list[i + 1] = dirty_list[i + 1] || changed_t1;
  308. if (changed_t0 && i > 1)
  309. --i;
  310. else
  311. ++i;
  312. }
  313. // Something has probably gone wrong if we exceeded max_iterations, possibly a bug in PrepareTransformPair()
  314. return (count_iterations < max_iterations);
  315. }
  316. ElementAnimation::ElementAnimation(PropertyId property_id, ElementAnimationOrigin origin, const Property& current_value, Element& element, double start_world_time, float duration, int num_iterations, bool alternate_direction)
  317. : property_id(property_id), duration(duration), num_iterations(num_iterations), alternate_direction(alternate_direction), last_update_world_time(start_world_time),
  318. time_since_iteration_start(0.0f), current_iteration(0), reverse_direction(false), animation_complete(false), origin(origin)
  319. {
  320. if (!current_value.definition)
  321. {
  322. Log::Message(Log::LT_WARNING, "Property in animation key did not have a definition (while adding key '%s').", current_value.ToString().c_str());
  323. }
  324. InternalAddKey(0.0f, current_value, element, Tween{});
  325. }
  326. bool ElementAnimation::InternalAddKey(float time, const Property& in_property, Element& element, Tween tween)
  327. {
  328. int valid_properties = (Property::NUMBER_LENGTH_PERCENT | Property::ANGLE | Property::COLOUR | Property::TRANSFORM | Property::KEYWORD);
  329. if (!(in_property.unit & valid_properties))
  330. {
  331. Log::Message(Log::LT_WARNING, "Property '%s' is not a valid target for interpolation.", in_property.ToString().c_str());
  332. return false;
  333. }
  334. keys.emplace_back(time, in_property, tween);
  335. bool result = true;
  336. if (keys.back().property.unit == Property::TRANSFORM)
  337. {
  338. result = PrepareTransforms(keys, element, (int)keys.size() - 1);
  339. }
  340. if (!result)
  341. {
  342. Log::Message(Log::LT_WARNING, "Could not add animation key with property '%s'.", in_property.ToString().c_str());
  343. keys.pop_back();
  344. }
  345. return result;
  346. }
  347. bool ElementAnimation::AddKey(float target_time, const Property & in_property, Element& element, Tween tween, bool extend_duration)
  348. {
  349. if (!IsInitalized())
  350. {
  351. Log::Message(Log::LT_WARNING, "Element animation was not initialized properly, can't add key.");
  352. return false;
  353. }
  354. if (!InternalAddKey(target_time, in_property, element, tween))
  355. {
  356. return false;
  357. }
  358. if (extend_duration)
  359. duration = target_time;
  360. return true;
  361. }
  362. float ElementAnimation::GetInterpolationFactorAndKeys(int* out_key0, int* out_key1) const
  363. {
  364. float t = time_since_iteration_start;
  365. if (reverse_direction)
  366. t = duration - t;
  367. int key0 = -1;
  368. int key1 = -1;
  369. {
  370. for (int i = 0; i < (int)keys.size(); i++)
  371. {
  372. if (keys[i].time >= t)
  373. {
  374. key1 = i;
  375. break;
  376. }
  377. }
  378. if (key1 < 0) key1 = (int)keys.size() - 1;
  379. key0 = (key1 == 0 ? 0 : key1 - 1);
  380. }
  381. RMLUI_ASSERT(key0 >= 0 && key0 < (int)keys.size() && key1 >= 0 && key1 < (int)keys.size());
  382. float alpha = 0.0f;
  383. {
  384. const float t0 = keys[key0].time;
  385. const float t1 = keys[key1].time;
  386. const float eps = 1e-3f;
  387. if (t1 - t0 > eps)
  388. alpha = (t - t0) / (t1 - t0);
  389. alpha = Math::Clamp(alpha, 0.0f, 1.0f);
  390. }
  391. alpha = keys[key1].tween(alpha);
  392. if (out_key0) *out_key0 = key0;
  393. if (out_key1) *out_key1 = key1;
  394. return alpha;
  395. }
  396. Property ElementAnimation::UpdateAndGetProperty(double world_time, Element& element)
  397. {
  398. float dt = float(world_time - last_update_world_time);
  399. if (keys.size() < 2 || animation_complete || dt <= 0.0f)
  400. return Property{};
  401. dt = Math::Min(dt, 0.1f);
  402. last_update_world_time = world_time;
  403. time_since_iteration_start += dt;
  404. if (time_since_iteration_start >= duration)
  405. {
  406. // Next iteration
  407. current_iteration += 1;
  408. if (num_iterations == -1 || (current_iteration >= 0 && current_iteration < num_iterations))
  409. {
  410. time_since_iteration_start -= duration;
  411. if (alternate_direction)
  412. reverse_direction = !reverse_direction;
  413. }
  414. else
  415. {
  416. animation_complete = true;
  417. time_since_iteration_start = duration;
  418. }
  419. }
  420. int key0 = -1;
  421. int key1 = -1;
  422. float alpha = GetInterpolationFactorAndKeys(&key0, &key1);
  423. Property result = InterpolateProperties(keys[key0].property, keys[key1].property, alpha, element, keys[0].property.definition);
  424. return result;
  425. }
  426. }
  427. }