TransformPrimitive.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950
  1. /*
  2. * This source file is part of libRocket, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://www.librocket.com
  5. *
  6. * Copyright (c) 2014 Markus Schöngart
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. *
  26. */
  27. #include "precompiled.h"
  28. #include "../../Include/Rocket/Core/TransformPrimitive.h"
  29. #include "../../Include/Rocket/Core/TypeConverter.h"
  30. #include <iostream>
  31. #include <unordered_map>
  32. namespace Rocket {
  33. namespace Core {
  34. namespace Transforms {
  35. static Vector3f Combine(const Vector3f& a, const Vector3f& b, float a_scale, float b_scale)
  36. {
  37. Vector3f result;
  38. result.x = a_scale * a.x + b_scale * b.x;
  39. result.y = a_scale * a.y + b_scale * b.y;
  40. result.z = a_scale * a.z + b_scale * b.z;
  41. return result;
  42. }
  43. // Interpolate two quaternions a, b with weight alpha [0, 1]
  44. static Vector4f QuaternionSlerp(const Vector4f& a, const Vector4f& b, float alpha)
  45. {
  46. using namespace Math;
  47. const float eps = 0.9995f;
  48. float dot = a.DotProduct(b);
  49. dot = Clamp(dot, -1.f, 1.f);
  50. if (dot > eps)
  51. return a;
  52. float theta = ACos(dot);
  53. float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot);
  54. float a_scale = Cos(alpha*theta) - dot * w;
  55. Vector4f result;
  56. for (int i = 0; i < 4; i++)
  57. {
  58. result[i] = a[i] * a_scale + b[i] * w;
  59. }
  60. return result;
  61. }
  62. NumericValue::NumericValue() noexcept
  63. : number(), unit(Property::UNKNOWN)
  64. {
  65. }
  66. NumericValue::NumericValue(float number, Property::Unit unit) noexcept
  67. : number(number), unit(unit)
  68. {
  69. }
  70. float NumericValue::ResolveLengthPercentage(Element& e, float base) const noexcept
  71. {
  72. Property prop;
  73. prop.value = Variant(number);
  74. prop.unit = unit;
  75. return e.ResolveLengthPercentage(&prop, base);
  76. }
  77. float NumericValue::ResolveWidth(Element& e) const noexcept
  78. {
  79. if(unit & (Property::PX | Property::NUMBER)) return number;
  80. return ResolveLengthPercentage(e, e.GetBox().GetSize(Box::BORDER).x);
  81. }
  82. float NumericValue::ResolveHeight(Element& e) const noexcept
  83. {
  84. if (unit & (Property::PX | Property::NUMBER)) return number;
  85. return ResolveLengthPercentage(e, e.GetBox().GetSize(Box::BORDER).y);
  86. }
  87. float NumericValue::ResolveDepth(Element& e) const noexcept
  88. {
  89. if (unit & (Property::PX | Property::NUMBER)) return number;
  90. Vector2f size = e.GetBox().GetSize(Box::BORDER);
  91. return ResolveLengthPercentage(e, Math::Max(size.x, size.y));
  92. }
  93. float NumericValue::ResolveAbsoluteUnit(Property::Unit base_unit) const noexcept
  94. {
  95. switch (base_unit)
  96. {
  97. case Property::RAD:
  98. {
  99. switch (unit)
  100. {
  101. case Property::NUMBER:
  102. case Property::DEG:
  103. return Math::DegreesToRadians(number);
  104. case Property::RAD:
  105. return number;
  106. case Property::PERCENT:
  107. return number * 0.01f * 2.0f * Math::ROCKET_PI;
  108. break;
  109. }
  110. }
  111. }
  112. return number;
  113. }
  114. String NumericValue::ToString() const noexcept
  115. {
  116. Property prop;
  117. prop.value = Variant(number);
  118. prop.unit = unit;
  119. return prop.ToString();
  120. }
  121. struct ResolveTransformVisitor
  122. {
  123. Matrix4f& m;
  124. Element& e;
  125. bool operator()(const Matrix2D& p)
  126. {
  127. m = Matrix4f::FromRows(
  128. Vector4f(p.values[0], p.values[2], 0, p.values[4]),
  129. Vector4f(p.values[1], p.values[3], 0, p.values[5]),
  130. Vector4f(0, 0, 1, 0),
  131. Vector4f(0, 0, 0, 1)
  132. );
  133. return true;
  134. }
  135. bool operator()(const Matrix3D& p)
  136. {
  137. m = Matrix4f::FromColumns(
  138. Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]),
  139. Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]),
  140. Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]),
  141. Vector4f(p.values[12], p.values[13], p.values[14], p.values[15])
  142. );
  143. return true;
  144. }
  145. bool operator()(const TranslateX& p)
  146. {
  147. m = Matrix4f::TranslateX(p.values[0].ResolveWidth(e));
  148. return true;
  149. }
  150. bool operator()(const TranslateY& p)
  151. {
  152. m = Matrix4f::TranslateY(p.values[0].ResolveHeight(e));
  153. return true;
  154. }
  155. bool operator()(const TranslateZ& p)
  156. {
  157. m = Matrix4f::TranslateZ(p.values[0].ResolveDepth(e));
  158. return true;
  159. }
  160. bool operator()(const Translate2D& p)
  161. {
  162. m = Matrix4f::Translate(
  163. p.values[0].ResolveWidth(e),
  164. p.values[1].ResolveHeight(e),
  165. 0
  166. );
  167. return true;
  168. }
  169. bool operator()(const Translate3D& p)
  170. {
  171. m = Matrix4f::Translate(
  172. p.values[0].ResolveWidth(e),
  173. p.values[1].ResolveHeight(e),
  174. p.values[2].ResolveDepth(e)
  175. );
  176. return true;
  177. }
  178. bool operator()(const ScaleX& p)
  179. {
  180. m = Matrix4f::ScaleX(p.values[0]);
  181. return true;
  182. }
  183. bool operator()(const ScaleY& p)
  184. {
  185. m = Matrix4f::ScaleY(p.values[0]);
  186. return true;
  187. }
  188. bool operator()(const ScaleZ& p)
  189. {
  190. m = Matrix4f::ScaleZ(p.values[0]);
  191. return true;
  192. }
  193. bool operator()(const Scale2D& p)
  194. {
  195. m = Matrix4f::Scale(p.values[0], p.values[1], 1);
  196. return true;
  197. }
  198. bool operator()(const Scale3D& p)
  199. {
  200. m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]);
  201. return true;
  202. }
  203. bool operator()(const RotateX& p)
  204. {
  205. m = Matrix4f::RotateX(p.values[0]);
  206. return true;
  207. }
  208. bool operator()(const RotateY& p)
  209. {
  210. m = Matrix4f::RotateY(p.values[0]);
  211. return true;
  212. }
  213. bool operator()(const RotateZ& p)
  214. {
  215. m = Matrix4f::RotateZ(p.values[0]);
  216. return true;
  217. }
  218. bool operator()(const Rotate2D& p)
  219. {
  220. m = Matrix4f::RotateZ(p.values[0]);
  221. return true;
  222. }
  223. bool operator()(const Rotate3D& p)
  224. {
  225. m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]);
  226. return true;
  227. }
  228. bool operator()(const SkewX& p)
  229. {
  230. m = Matrix4f::SkewX(p.values[0]);
  231. return true;
  232. }
  233. bool operator()(const SkewY& p)
  234. {
  235. m = Matrix4f::SkewY(p.values[0]);
  236. return true;
  237. }
  238. bool operator()(const Skew2D& p)
  239. {
  240. m = Matrix4f::Skew(p.values[0], p.values[1]);
  241. return true;
  242. }
  243. bool operator()(const DecomposedMatrix4& p)
  244. {
  245. m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion);
  246. return true;
  247. }
  248. bool operator()(const Perspective& p)
  249. {
  250. return false;
  251. }
  252. bool run(const PrimitiveVariant& primitive)
  253. {
  254. switch (primitive.type)
  255. {
  256. case PrimitiveVariant::MATRIX2D: return this->operator()(primitive.matrix_2d);
  257. case PrimitiveVariant::MATRIX3D: return this->operator()(primitive.matrix_3d);
  258. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x);
  259. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y);
  260. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z);
  261. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  262. case PrimitiveVariant::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  263. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x);
  264. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y);
  265. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z);
  266. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d);
  267. case PrimitiveVariant::SCALE3D: return this->operator()(primitive.scale_3d);
  268. case PrimitiveVariant::ROTATEX: return this->operator()(primitive.rotate_x);
  269. case PrimitiveVariant::ROTATEY: return this->operator()(primitive.rotate_y);
  270. case PrimitiveVariant::ROTATEZ: return this->operator()(primitive.rotate_z);
  271. case PrimitiveVariant::ROTATE2D: return this->operator()(primitive.rotate_2d);
  272. case PrimitiveVariant::ROTATE3D: return this->operator()(primitive.rotate_3d);
  273. case PrimitiveVariant::SKEWX: return this->operator()(primitive.skew_x);
  274. case PrimitiveVariant::SKEWY: return this->operator()(primitive.skew_y);
  275. case PrimitiveVariant::SKEW2D: return this->operator()(primitive.skew_2d);
  276. case PrimitiveVariant::PERSPECTIVE: return this->operator()(primitive.perspective);
  277. case PrimitiveVariant::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  278. default:
  279. break;
  280. }
  281. ROCKET_ASSERT(false);
  282. return false;
  283. }
  284. };
  285. bool Primitive::ResolveTransform(Matrix4f & m, Element & e) const noexcept
  286. {
  287. ResolveTransformVisitor visitor{ m, e };
  288. bool result = visitor.run(primitive);
  289. return result;
  290. }
  291. bool Primitive::ResolvePerspective(float & p, Element & e) const noexcept
  292. {
  293. bool result = false;
  294. if (primitive.type == PrimitiveVariant::PERSPECTIVE)
  295. {
  296. p = primitive.perspective.values[0].ResolveDepth(e);
  297. result = true;
  298. }
  299. return result;
  300. }
  301. struct SetIdentityVisitor
  302. {
  303. template <size_t N>
  304. void operator()(ResolvedPrimitive<N>& p)
  305. {
  306. for (auto& value : p.values)
  307. value = 0.0f;
  308. }
  309. template <size_t N>
  310. void operator()(UnresolvedPrimitive<N>& p)
  311. {
  312. for (auto& value : p.values)
  313. value.number = 0.0f;
  314. }
  315. void operator()(Matrix2D& p)
  316. {
  317. for (int i = 0; i < 6; i++)
  318. p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f);
  319. }
  320. void operator()(Matrix3D& p)
  321. {
  322. for (int i = 0; i < 16; i++)
  323. p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f);
  324. }
  325. void operator()(ScaleX& p)
  326. {
  327. p.values[0] = 1;
  328. }
  329. void operator()(ScaleY& p)
  330. {
  331. p.values[0] = 1;
  332. }
  333. void operator()(ScaleZ& p)
  334. {
  335. p.values[0] = 1;
  336. }
  337. void operator()(Scale2D& p)
  338. {
  339. p.values[0] = p.values[1] = 1;
  340. }
  341. void operator()(Scale3D& p)
  342. {
  343. p.values[0] = p.values[1] = p.values[2] = 1;
  344. }
  345. void operator()(DecomposedMatrix4& p)
  346. {
  347. p.perspective = Vector4f(0, 0, 0, 1);
  348. p.quaternion = Vector4f(0, 0, 0, 1);
  349. p.translation = Vector3f(0, 0, 0);
  350. p.scale = Vector3f(1, 1, 1);
  351. p.skew = Vector3f(0, 0, 0);
  352. }
  353. void run(PrimitiveVariant& primitive)
  354. {
  355. switch (primitive.type)
  356. {
  357. case PrimitiveVariant::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  358. case PrimitiveVariant::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  359. case PrimitiveVariant::TRANSLATEX: this->operator()(primitive.translate_x); break;
  360. case PrimitiveVariant::TRANSLATEY: this->operator()(primitive.translate_y); break;
  361. case PrimitiveVariant::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  362. case PrimitiveVariant::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  363. case PrimitiveVariant::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  364. case PrimitiveVariant::SCALEX: this->operator()(primitive.scale_x); break;
  365. case PrimitiveVariant::SCALEY: this->operator()(primitive.scale_y); break;
  366. case PrimitiveVariant::SCALEZ: this->operator()(primitive.scale_z); break;
  367. case PrimitiveVariant::SCALE2D: this->operator()(primitive.scale_2d); break;
  368. case PrimitiveVariant::SCALE3D: this->operator()(primitive.scale_3d); break;
  369. case PrimitiveVariant::ROTATEX: this->operator()(primitive.rotate_x); break;
  370. case PrimitiveVariant::ROTATEY: this->operator()(primitive.rotate_y); break;
  371. case PrimitiveVariant::ROTATEZ: this->operator()(primitive.rotate_z); break;
  372. case PrimitiveVariant::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  373. case PrimitiveVariant::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  374. case PrimitiveVariant::SKEWX: this->operator()(primitive.skew_x); break;
  375. case PrimitiveVariant::SKEWY: this->operator()(primitive.skew_y); break;
  376. case PrimitiveVariant::SKEW2D: this->operator()(primitive.skew_2d); break;
  377. case PrimitiveVariant::PERSPECTIVE: this->operator()(primitive.perspective); break;
  378. case PrimitiveVariant::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  379. default:
  380. ROCKET_ASSERT(false);
  381. break;
  382. }
  383. }
  384. };
  385. void Primitive::SetIdentity() noexcept
  386. {
  387. SetIdentityVisitor{}.run(primitive);
  388. }
  389. struct PrepareVisitor
  390. {
  391. Element& e;
  392. bool operator()(TranslateX& p)
  393. {
  394. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  395. return true;
  396. }
  397. bool operator()(TranslateY& p)
  398. {
  399. p.values[0] = NumericValue{ p.values[0].ResolveHeight(e), Property::PX };
  400. return true;
  401. }
  402. bool operator()(TranslateZ& p)
  403. {
  404. p.values[0] = NumericValue{ p.values[0].ResolveDepth(e), Property::PX };
  405. return true;
  406. }
  407. bool operator()(Translate2D& p)
  408. {
  409. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  410. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  411. return true;
  412. }
  413. bool operator()(Translate3D& p)
  414. {
  415. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  416. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  417. p.values[2] = NumericValue{ p.values[2].ResolveDepth(e), Property::PX };
  418. return true;
  419. }
  420. template <size_t N>
  421. bool operator()(ResolvedPrimitive<N>& p)
  422. {
  423. // No conversion needed for resolved transforms (with some exceptions below)
  424. return true;
  425. }
  426. bool operator()(DecomposedMatrix4& p)
  427. {
  428. return true;
  429. }
  430. bool operator()(Rotate3D& p)
  431. {
  432. // Rotate3D must be resolved to a full matrix for interpolation.
  433. // There is an exception in CSS specs when the two interpolating rotation vectors are in the same direction, but for simplicity we ignore this optimization.
  434. return false;
  435. }
  436. bool operator()(Matrix3D& p)
  437. {
  438. // Matrices must be decomposed for interpolatino
  439. return false;
  440. }
  441. bool operator()(Matrix2D& p)
  442. {
  443. // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4
  444. return false;
  445. }
  446. bool operator()(Perspective& p)
  447. {
  448. // Perspective must be decomposed
  449. return false;
  450. }
  451. bool run(PrimitiveVariant& primitive)
  452. {
  453. switch (primitive.type)
  454. {
  455. case PrimitiveVariant::MATRIX2D: return this->operator()(primitive.matrix_2d);
  456. case PrimitiveVariant::MATRIX3D: return this->operator()(primitive.matrix_3d);
  457. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x);
  458. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y);
  459. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z);
  460. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  461. case PrimitiveVariant::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  462. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x);
  463. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y);
  464. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z);
  465. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d);
  466. case PrimitiveVariant::SCALE3D: return this->operator()(primitive.scale_3d);
  467. case PrimitiveVariant::ROTATEX: return this->operator()(primitive.rotate_x);
  468. case PrimitiveVariant::ROTATEY: return this->operator()(primitive.rotate_y);
  469. case PrimitiveVariant::ROTATEZ: return this->operator()(primitive.rotate_z);
  470. case PrimitiveVariant::ROTATE2D: return this->operator()(primitive.rotate_2d);
  471. case PrimitiveVariant::ROTATE3D: return this->operator()(primitive.rotate_3d);
  472. case PrimitiveVariant::SKEWX: return this->operator()(primitive.skew_x);
  473. case PrimitiveVariant::SKEWY: return this->operator()(primitive.skew_y);
  474. case PrimitiveVariant::SKEW2D: return this->operator()(primitive.skew_2d);
  475. case PrimitiveVariant::PERSPECTIVE: return this->operator()(primitive.perspective);
  476. case PrimitiveVariant::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  477. default:
  478. break;
  479. }
  480. ROCKET_ASSERT(false);
  481. return false;
  482. }
  483. };
  484. bool Primitive::PrepareForInterpolation(Element & e) noexcept
  485. {
  486. return PrepareVisitor{ e }.run(primitive);
  487. }
  488. enum class GenericType { None, Scale3D, Translate3D };
  489. struct GetGenericTypeVisitor
  490. {
  491. GenericType common_type = GenericType::None;
  492. GenericType operator()(const TranslateX& p) { return GenericType::Translate3D; }
  493. GenericType operator()(const TranslateY& p) { return GenericType::Translate3D; }
  494. GenericType operator()(const TranslateZ& p) { return GenericType::Translate3D; }
  495. GenericType operator()(const Translate2D& p) { return GenericType::Translate3D; }
  496. GenericType operator()(const ScaleX& p) { return GenericType::Scale3D; }
  497. GenericType operator()(const ScaleY& p) { return GenericType::Scale3D; }
  498. GenericType operator()(const ScaleZ& p) { return GenericType::Scale3D; }
  499. GenericType operator()(const Scale2D& p) { return GenericType::Scale3D; }
  500. template <typename T>
  501. GenericType operator()(const T& p) { return GenericType::None; }
  502. GenericType run(const PrimitiveVariant& primitive)
  503. {
  504. PrimitiveVariant result = primitive;
  505. switch (primitive.type)
  506. {
  507. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x); break;
  508. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y); break;
  509. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z); break;
  510. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d); break;
  511. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x); break;
  512. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y); break;
  513. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z); break;
  514. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d); break;
  515. default:
  516. break;
  517. }
  518. return GenericType::None;
  519. }
  520. };
  521. struct ConvertToGenericTypeVisitor
  522. {
  523. Translate3D operator()(const TranslateX& p) { return Translate3D{ p.values[0], {0.0f, Property::PX}, {0.0f, Property::PX} }; }
  524. Translate3D operator()(const TranslateY& p) { return Translate3D{ {0.0f, Property::PX}, p.values[0], {0.0f, Property::PX} }; }
  525. Translate3D operator()(const TranslateZ& p) { return Translate3D{ {0.0f, Property::PX}, {0.0f, Property::PX}, p.values[0] }; }
  526. Translate3D operator()(const Translate2D& p) { return Translate3D{ p.values[0], p.values[1], {0.0f, Property::PX} }; }
  527. Scale3D operator()(const ScaleX& p) { return Scale3D{ p.values[0], 1.0f, 1.0f }; }
  528. Scale3D operator()(const ScaleY& p) { return Scale3D{ 1.0f, p.values[0], 1.0f }; }
  529. Scale3D operator()(const ScaleZ& p) { return Scale3D{ 1.0f, 1.0f, p.values[0] }; }
  530. Scale3D operator()(const Scale2D& p) { return Scale3D{ p.values[0], p.values[1], 1.0f }; }
  531. template <typename T>
  532. PrimitiveVariant operator()(const T& p) { ROCKET_ERROR; return p; }
  533. PrimitiveVariant run(const PrimitiveVariant& primitive)
  534. {
  535. PrimitiveVariant result = primitive;
  536. switch (primitive.type)
  537. {
  538. case PrimitiveVariant::TRANSLATEX: result.translate_3d = this->operator()(primitive.translate_x); break;
  539. case PrimitiveVariant::TRANSLATEY: result.translate_3d = this->operator()(primitive.translate_y); break;
  540. case PrimitiveVariant::TRANSLATEZ: result.translate_3d = this->operator()(primitive.translate_z); break;
  541. case PrimitiveVariant::TRANSLATE2D: result.translate_3d = this->operator()(primitive.translate_2d); break;
  542. case PrimitiveVariant::SCALEX: result.scale_3d = this->operator()(primitive.scale_x); break;
  543. case PrimitiveVariant::SCALEY: result.scale_3d = this->operator()(primitive.scale_y); break;
  544. case PrimitiveVariant::SCALEZ: result.scale_3d = this->operator()(primitive.scale_z); break;
  545. case PrimitiveVariant::SCALE2D: result.scale_3d = this->operator()(primitive.scale_2d); break;
  546. default:
  547. ROCKET_ASSERT(false);
  548. break;
  549. }
  550. return result;
  551. }
  552. };
  553. bool Primitive::TryConvertToMatchingGenericType(Primitive & p0, Primitive & p1) noexcept
  554. {
  555. if (p0.primitive.type == p1.primitive.type)
  556. return true;
  557. GenericType c0 = GetGenericTypeVisitor{}.run(p0.primitive);
  558. GenericType c1 = GetGenericTypeVisitor{}.run(p1.primitive);
  559. if (c0 == c1 && c0 != GenericType::None)
  560. {
  561. p0.primitive = ConvertToGenericTypeVisitor{}.run(p0.primitive);
  562. p1.primitive = ConvertToGenericTypeVisitor{}.run(p1.primitive);
  563. return true;
  564. }
  565. return false;
  566. }
  567. struct InterpolateVisitor
  568. {
  569. const PrimitiveVariant& other_variant;
  570. float alpha;
  571. template <size_t N>
  572. bool Interpolate(ResolvedPrimitive<N>& p0, const ResolvedPrimitive<N>& p1)
  573. {
  574. for (size_t i = 0; i < N; i++)
  575. p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha;
  576. return true;
  577. }
  578. template <size_t N>
  579. bool Interpolate(UnresolvedPrimitive<N>& p0, const UnresolvedPrimitive<N>& p1)
  580. {
  581. // Assumes that the underlying units have been resolved (e.g. to pixels)
  582. for (size_t i = 0; i < N; i++)
  583. p0.values[i].number = p0.values[i].number*(1.0f - alpha) + p1.values[i].number * alpha;
  584. return true;
  585. }
  586. bool Interpolate(Rotate3D& p0, const Rotate3D& p1)
  587. {
  588. // Currently, we promote Rotate3D to decomposed matrices in PrepareForInterpolation(), thus, it is an error if we get here. Make sure primitives are prepared and decomposed as necessary.
  589. // We may change this later by assuming that the underlying direction vectors are equivalent (else, need to do full matrix interpolation)
  590. // If we change this later: p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha;
  591. return false;
  592. }
  593. bool Interpolate(Matrix2D& p0, const Matrix2D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  594. bool Interpolate(Matrix3D& p0, const Matrix3D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  595. bool Interpolate(Perspective& p0, const Perspective& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  596. bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1)
  597. {
  598. p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha;
  599. p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha);
  600. p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha;
  601. p0.scale = p0.scale* (1.0f - alpha) + p1.scale* alpha;
  602. p0.skew = p0.skew* (1.0f - alpha) + p1.skew* alpha;
  603. return true;
  604. }
  605. bool run(PrimitiveVariant& variant)
  606. {
  607. ROCKET_ASSERT(variant.type == other_variant.type);
  608. switch (variant.type)
  609. {
  610. case PrimitiveVariant::MATRIX2D: return Interpolate(variant.matrix_2d, other_variant.matrix_2d);
  611. case PrimitiveVariant::MATRIX3D: return Interpolate(variant.matrix_3d, other_variant.matrix_3d);
  612. case PrimitiveVariant::TRANSLATEX: return Interpolate(variant.translate_x, other_variant.translate_x);
  613. case PrimitiveVariant::TRANSLATEY: return Interpolate(variant.translate_y, other_variant.translate_y);
  614. case PrimitiveVariant::TRANSLATEZ: return Interpolate(variant.translate_z, other_variant.translate_z);
  615. case PrimitiveVariant::TRANSLATE2D: return Interpolate(variant.translate_2d, other_variant.translate_2d);
  616. case PrimitiveVariant::TRANSLATE3D: return Interpolate(variant.translate_3d, other_variant.translate_3d);
  617. case PrimitiveVariant::SCALEX: return Interpolate(variant.scale_x, other_variant.scale_x);
  618. case PrimitiveVariant::SCALEY: return Interpolate(variant.scale_y, other_variant.scale_y);
  619. case PrimitiveVariant::SCALEZ: return Interpolate(variant.scale_z, other_variant.scale_z);
  620. case PrimitiveVariant::SCALE2D: return Interpolate(variant.scale_2d, other_variant.scale_2d);
  621. case PrimitiveVariant::SCALE3D: return Interpolate(variant.scale_3d, other_variant.scale_3d);
  622. case PrimitiveVariant::ROTATEX: return Interpolate(variant.rotate_x, other_variant.rotate_x);
  623. case PrimitiveVariant::ROTATEY: return Interpolate(variant.rotate_y, other_variant.rotate_y);
  624. case PrimitiveVariant::ROTATEZ: return Interpolate(variant.rotate_z, other_variant.rotate_z);
  625. case PrimitiveVariant::ROTATE2D: return Interpolate(variant.rotate_2d, other_variant.rotate_2d);
  626. case PrimitiveVariant::ROTATE3D: return Interpolate(variant.rotate_3d, other_variant.rotate_3d);
  627. case PrimitiveVariant::SKEWX: return Interpolate(variant.skew_x, other_variant.skew_x);
  628. case PrimitiveVariant::SKEWY: return Interpolate(variant.skew_y, other_variant.skew_y);
  629. case PrimitiveVariant::SKEW2D: return Interpolate(variant.skew_2d, other_variant.skew_2d);
  630. case PrimitiveVariant::PERSPECTIVE: return Interpolate(variant.perspective, other_variant.perspective);
  631. case PrimitiveVariant::DECOMPOSEDMATRIX4: return Interpolate(variant.decomposed_matrix_4, other_variant.decomposed_matrix_4);
  632. default:
  633. break;
  634. }
  635. ROCKET_ASSERT(false);
  636. return false;
  637. }
  638. };
  639. bool Primitive::InterpolateWith(const Primitive & other, float alpha) noexcept
  640. {
  641. if (primitive.type != other.primitive.type)
  642. return false;
  643. bool result = InterpolateVisitor{ other.primitive, alpha }.run(primitive);
  644. return result;
  645. }
  646. template<size_t N>
  647. inline String ToString(const Transforms::ResolvedPrimitive<N>& p, String unit, bool rad_to_deg = false, bool only_unit_on_last_value = false) noexcept {
  648. float multiplier = 1.0f;
  649. if (rad_to_deg) multiplier = 180.f / Math::ROCKET_PI;
  650. String tmp;
  651. String result = "(";
  652. for (size_t i = 0; i < N; i++) {
  653. if (TypeConverter<float, String>::Convert(p.values[i] * multiplier, tmp))
  654. result += tmp;
  655. if (!unit.empty() && (!only_unit_on_last_value || (i == N - 1)))
  656. result += unit;
  657. if (i != N - 1) result += ", ";
  658. }
  659. result += ")";
  660. return result;
  661. }
  662. template<size_t N>
  663. inline String ToString(const Transforms::UnresolvedPrimitive<N> & p) noexcept {
  664. String result = "(";
  665. for (size_t i = 0; i < N; i++) {
  666. result += p.values[i].ToString();
  667. if (i != N - 1) result += ", ";
  668. }
  669. result += ")";
  670. return result;
  671. }
  672. String ToString(const Transforms::Matrix2D & p) noexcept { return "matrix" + ToString(static_cast<const Transforms::ResolvedPrimitive< 6 >&>(p), ""); }
  673. String ToString(const Transforms::Matrix3D & p) noexcept { return "matrix3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 16 >&>(p), ""); }
  674. String ToString(const Transforms::TranslateX & p) noexcept { return "translateX" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  675. String ToString(const Transforms::TranslateY & p) noexcept { return "translateY" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  676. String ToString(const Transforms::TranslateZ & p) noexcept { return "translateZ" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  677. String ToString(const Transforms::Translate2D & p) noexcept { return "translate" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 2 >&>(p)); }
  678. String ToString(const Transforms::Translate3D & p) noexcept { return "translate3d" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 3 >&>(p)); }
  679. String ToString(const Transforms::ScaleX & p) noexcept { return "scaleX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  680. String ToString(const Transforms::ScaleY & p) noexcept { return "scaleY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  681. String ToString(const Transforms::ScaleZ & p) noexcept { return "scaleZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  682. String ToString(const Transforms::Scale2D & p) noexcept { return "scale" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), ""); }
  683. String ToString(const Transforms::Scale3D & p) noexcept { return "scale3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 3 >&>(p), ""); }
  684. String ToString(const Transforms::RotateX & p) noexcept { return "rotateX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  685. String ToString(const Transforms::RotateY & p) noexcept { return "rotateY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  686. String ToString(const Transforms::RotateZ & p) noexcept { return "rotateZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  687. String ToString(const Transforms::Rotate2D & p) noexcept { return "rotate" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  688. String ToString(const Transforms::Rotate3D & p) noexcept { return "rotate3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 4 >&>(p), "deg", true, true); }
  689. String ToString(const Transforms::SkewX & p) noexcept { return "skewX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  690. String ToString(const Transforms::SkewY & p) noexcept { return "skewY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  691. String ToString(const Transforms::Skew2D & p) noexcept { return "skew" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), "deg", true); }
  692. String ToString(const Transforms::Perspective & p) noexcept { return "perspective" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  693. String ToString(const Transforms::DecomposedMatrix4& p) noexcept { return "decomposedMatrix3d"; }
  694. struct ToStringVisitor
  695. {
  696. String run(const PrimitiveVariant& variant)
  697. {
  698. switch (variant.type)
  699. {
  700. case PrimitiveVariant::MATRIX2D: return ToString(variant.matrix_2d);
  701. case PrimitiveVariant::MATRIX3D: return ToString(variant.matrix_3d);
  702. case PrimitiveVariant::TRANSLATEX: return ToString(variant.translate_x);
  703. case PrimitiveVariant::TRANSLATEY: return ToString(variant.translate_y);
  704. case PrimitiveVariant::TRANSLATEZ: return ToString(variant.translate_z);
  705. case PrimitiveVariant::TRANSLATE2D: return ToString(variant.translate_2d);
  706. case PrimitiveVariant::TRANSLATE3D: return ToString(variant.translate_3d);
  707. case PrimitiveVariant::SCALEX: return ToString(variant.scale_x);
  708. case PrimitiveVariant::SCALEY: return ToString(variant.scale_y);
  709. case PrimitiveVariant::SCALEZ: return ToString(variant.scale_z);
  710. case PrimitiveVariant::SCALE2D: return ToString(variant.scale_2d);
  711. case PrimitiveVariant::SCALE3D: return ToString(variant.scale_3d);
  712. case PrimitiveVariant::ROTATEX: return ToString(variant.rotate_x);
  713. case PrimitiveVariant::ROTATEY: return ToString(variant.rotate_y);
  714. case PrimitiveVariant::ROTATEZ: return ToString(variant.rotate_z);
  715. case PrimitiveVariant::ROTATE2D: return ToString(variant.rotate_2d);
  716. case PrimitiveVariant::ROTATE3D: return ToString(variant.rotate_3d);
  717. case PrimitiveVariant::SKEWX: return ToString(variant.skew_x);
  718. case PrimitiveVariant::SKEWY: return ToString(variant.skew_y);
  719. case PrimitiveVariant::SKEW2D: return ToString(variant.skew_2d);
  720. case PrimitiveVariant::PERSPECTIVE: return ToString(variant.perspective);
  721. case PrimitiveVariant::DECOMPOSEDMATRIX4: return ToString(variant.decomposed_matrix_4);
  722. default:
  723. break;
  724. }
  725. ROCKET_ASSERT(false);
  726. return String();
  727. }
  728. };
  729. String Primitive::ToString() const noexcept
  730. {
  731. String result = ToStringVisitor{}.run(primitive);
  732. return result;
  733. }
  734. bool DecomposedMatrix4::Decompose(const Matrix4f & m)
  735. {
  736. // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices
  737. const float eps = 0.0005f;
  738. if (Math::AbsoluteValue(m[3][3]) < eps)
  739. return false;
  740. // Perspective matrix
  741. Matrix4f p = m;
  742. for (int i = 0; i < 3; i++)
  743. p[i][3] = 0;
  744. p[3][3] = 1;
  745. if (Math::AbsoluteValue(p.Determinant()) < eps)
  746. return false;
  747. if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0)
  748. {
  749. auto rhs = m.GetColumn(3);
  750. Matrix4f p_inv = p;
  751. if (!p_inv.Invert())
  752. return false;
  753. auto& p_inv_trans = p.Transpose();
  754. perspective = p_inv_trans * rhs;
  755. }
  756. else
  757. {
  758. perspective[0] = perspective[1] = perspective[2] = 0;
  759. perspective[3] = 1;
  760. }
  761. for (int i = 0; i < 3; i++)
  762. translation[i] = m[3][i];
  763. Vector3f row[3];
  764. for (int i = 0; i < 3; i++)
  765. {
  766. row[i][0] = m[i][0];
  767. row[i][1] = m[i][1];
  768. row[i][2] = m[i][2];
  769. }
  770. scale[0] = row[0].Magnitude();
  771. row[0] = row[0].Normalise();
  772. skew[0] = row[0].DotProduct(row[1]);
  773. row[1] = Combine(row[1], row[0], 1, -skew[0]);
  774. scale[1] = row[1].Magnitude();
  775. row[1] = row[1].Normalise();
  776. skew[0] /= scale[1];
  777. skew[1] = row[0].DotProduct(row[2]);
  778. row[2] = Combine(row[2], row[0], 1, -skew[1]);
  779. skew[2] = row[1].DotProduct(row[2]);
  780. row[2] = Combine(row[2], row[1], 1, -skew[2]);
  781. scale[2] = row[2].Magnitude();
  782. row[2] = row[2].Normalise();
  783. skew[1] /= scale[2];
  784. skew[2] /= scale[2];
  785. // Check if we need to flip coordinate system
  786. auto pdum3 = row[1].CrossProduct(row[2]);
  787. if (row[0].DotProduct(pdum3) < 0.0f)
  788. {
  789. for (int i = 0; i < 3; i++)
  790. {
  791. scale[i] *= -1.f;
  792. row[i] *= -1.f;
  793. }
  794. }
  795. quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f));
  796. quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f));
  797. quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f));
  798. quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f));
  799. if (row[2][1] > row[1][2])
  800. quaternion[0] *= -1.f;
  801. if (row[0][2] > row[2][0])
  802. quaternion[1] *= -1.f;
  803. if (row[1][0] > row[0][1])
  804. quaternion[2] *= -1.f;
  805. return true;
  806. }
  807. }
  808. }
  809. }