TransformUtilities.cpp 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2014 Markus Schöngart
  7. * Copyright (c) 2019-2023 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "TransformUtilities.h"
  29. #include "../../Include/RmlUi/Core/Element.h"
  30. #include "../../Include/RmlUi/Core/TransformPrimitive.h"
  31. namespace Rml {
  32. using namespace Transforms;
  33. static Vector3f Combine(const Vector3f a, const Vector3f b, float a_scale, float b_scale)
  34. {
  35. Vector3f result;
  36. result.x = a_scale * a.x + b_scale * b.x;
  37. result.y = a_scale * a.y + b_scale * b.y;
  38. result.z = a_scale * a.z + b_scale * b.z;
  39. return result;
  40. }
  41. // Interpolate two quaternions a, b with weight alpha [0, 1]
  42. static Vector4f QuaternionSlerp(const Vector4f a, const Vector4f b, float alpha)
  43. {
  44. using namespace Math;
  45. const float eps = 0.9995f;
  46. float dot = a.DotProduct(b);
  47. dot = Clamp(dot, -1.f, 1.f);
  48. if (dot > eps)
  49. return a;
  50. float theta = ACos(dot);
  51. float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot);
  52. float a_scale = Cos(alpha * theta) - dot * w;
  53. Vector4f result;
  54. for (int i = 0; i < 4; i++)
  55. {
  56. result[i] = a[i] * a_scale + b[i] * w;
  57. }
  58. return result;
  59. }
  60. /// Resolve a numeric property value for an element.
  61. static inline float ResolveLengthPercentage(NumericValue value, Element& e, float base) noexcept
  62. {
  63. Property prop;
  64. prop.value = Variant(value.number);
  65. prop.unit = value.unit;
  66. return e.ResolveNumericProperty(&prop, base);
  67. }
  68. /// Resolve a numeric property value with the element's width as relative base value.
  69. static inline float ResolveWidth(NumericValue value, Element& e) noexcept
  70. {
  71. if (value.unit & (Property::PX | Property::NUMBER))
  72. return value.number;
  73. return ResolveLengthPercentage(value, e, e.GetBox().GetSize(Box::BORDER).x);
  74. }
  75. /// Resolve a numeric property value with the element's height as relative base value.
  76. static inline float ResolveHeight(NumericValue value, Element& e) noexcept
  77. {
  78. if (value.unit & (Property::PX | Property::NUMBER))
  79. return value.number;
  80. return ResolveLengthPercentage(value, e, e.GetBox().GetSize(Box::BORDER).y);
  81. }
  82. /// Resolve a numeric property value with the element's depth as relative base value.
  83. static inline float ResolveDepth(NumericValue value, Element& e) noexcept
  84. {
  85. if (value.unit & (Property::PX | Property::NUMBER))
  86. return value.number;
  87. Vector2f size = e.GetBox().GetSize(Box::BORDER);
  88. return ResolveLengthPercentage(value, e, Math::Max(size.x, size.y));
  89. }
  90. static inline String ToString(NumericValue value) noexcept
  91. {
  92. Property prop;
  93. prop.value = Variant(value.number);
  94. prop.unit = value.unit;
  95. return prop.ToString();
  96. }
  97. struct SetIdentityVisitor {
  98. template <size_t N>
  99. void operator()(Transforms::ResolvedPrimitive<N>& p)
  100. {
  101. for (auto& value : p.values)
  102. value = 0.0f;
  103. }
  104. template <size_t N>
  105. void operator()(Transforms::UnresolvedPrimitive<N>& p)
  106. {
  107. for (auto& value : p.values)
  108. value.number = 0.0f;
  109. }
  110. void operator()(Transforms::Matrix2D& p)
  111. {
  112. for (int i = 0; i < 6; i++)
  113. p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f);
  114. }
  115. void operator()(Transforms::Matrix3D& p)
  116. {
  117. for (int i = 0; i < 16; i++)
  118. p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f);
  119. }
  120. void operator()(Transforms::ScaleX& p) { p.values[0] = 1; }
  121. void operator()(Transforms::ScaleY& p) { p.values[0] = 1; }
  122. void operator()(Transforms::ScaleZ& p) { p.values[0] = 1; }
  123. void operator()(Transforms::Scale2D& p) { p.values[0] = p.values[1] = 1; }
  124. void operator()(Transforms::Scale3D& p) { p.values[0] = p.values[1] = p.values[2] = 1; }
  125. void operator()(Transforms::DecomposedMatrix4& p)
  126. {
  127. p.perspective = Vector4f(0, 0, 0, 1);
  128. p.quaternion = Vector4f(0, 0, 0, 1);
  129. p.translation = Vector3f(0, 0, 0);
  130. p.scale = Vector3f(1, 1, 1);
  131. p.skew = Vector3f(0, 0, 0);
  132. }
  133. void run(TransformPrimitive& primitive)
  134. {
  135. switch (primitive.type)
  136. {
  137. case TransformPrimitive::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  138. case TransformPrimitive::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  139. case TransformPrimitive::TRANSLATEX: this->operator()(primitive.translate_x); break;
  140. case TransformPrimitive::TRANSLATEY: this->operator()(primitive.translate_y); break;
  141. case TransformPrimitive::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  142. case TransformPrimitive::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  143. case TransformPrimitive::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  144. case TransformPrimitive::SCALEX: this->operator()(primitive.scale_x); break;
  145. case TransformPrimitive::SCALEY: this->operator()(primitive.scale_y); break;
  146. case TransformPrimitive::SCALEZ: this->operator()(primitive.scale_z); break;
  147. case TransformPrimitive::SCALE2D: this->operator()(primitive.scale_2d); break;
  148. case TransformPrimitive::SCALE3D: this->operator()(primitive.scale_3d); break;
  149. case TransformPrimitive::ROTATEX: this->operator()(primitive.rotate_x); break;
  150. case TransformPrimitive::ROTATEY: this->operator()(primitive.rotate_y); break;
  151. case TransformPrimitive::ROTATEZ: this->operator()(primitive.rotate_z); break;
  152. case TransformPrimitive::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  153. case TransformPrimitive::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  154. case TransformPrimitive::SKEWX: this->operator()(primitive.skew_x); break;
  155. case TransformPrimitive::SKEWY: this->operator()(primitive.skew_y); break;
  156. case TransformPrimitive::SKEW2D: this->operator()(primitive.skew_2d); break;
  157. case TransformPrimitive::PERSPECTIVE: this->operator()(primitive.perspective); break;
  158. case TransformPrimitive::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  159. }
  160. }
  161. };
  162. void TransformUtilities::SetIdentity(TransformPrimitive& p) noexcept
  163. {
  164. SetIdentityVisitor{}.run(p);
  165. }
  166. struct ResolveTransformVisitor {
  167. Matrix4f& m;
  168. Element& e;
  169. void operator()(const Transforms::Matrix2D& p)
  170. {
  171. m = Matrix4f::FromRows(Vector4f(p.values[0], p.values[2], 0, p.values[4]), Vector4f(p.values[1], p.values[3], 0, p.values[5]),
  172. Vector4f(0, 0, 1, 0), Vector4f(0, 0, 0, 1));
  173. }
  174. void operator()(const Transforms::Matrix3D& p)
  175. {
  176. m = Matrix4f::FromColumns(Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]),
  177. Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]), Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]),
  178. Vector4f(p.values[12], p.values[13], p.values[14], p.values[15]));
  179. }
  180. void operator()(const Transforms::TranslateX& p) { m = Matrix4f::TranslateX(ResolveWidth(p.values[0], e)); }
  181. void operator()(const Transforms::TranslateY& p) { m = Matrix4f::TranslateY(ResolveHeight(p.values[0], e)); }
  182. void operator()(const Transforms::TranslateZ& p) { m = Matrix4f::TranslateZ(ResolveDepth(p.values[0], e)); }
  183. void operator()(const Transforms::Translate2D& p) { m = Matrix4f::Translate(ResolveWidth(p.values[0], e), ResolveHeight(p.values[1], e), 0); }
  184. void operator()(const Transforms::Translate3D& p)
  185. {
  186. m = Matrix4f::Translate(ResolveWidth(p.values[0], e), ResolveHeight(p.values[1], e), ResolveDepth(p.values[2], e));
  187. }
  188. void operator()(const Transforms::ScaleX& p) { m = Matrix4f::ScaleX(p.values[0]); }
  189. void operator()(const Transforms::ScaleY& p) { m = Matrix4f::ScaleY(p.values[0]); }
  190. void operator()(const Transforms::ScaleZ& p) { m = Matrix4f::ScaleZ(p.values[0]); }
  191. void operator()(const Transforms::Scale2D& p) { m = Matrix4f::Scale(p.values[0], p.values[1], 1); }
  192. void operator()(const Transforms::Scale3D& p) { m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]); }
  193. void operator()(const Transforms::RotateX& p) { m = Matrix4f::RotateX(p.values[0]); }
  194. void operator()(const Transforms::RotateY& p) { m = Matrix4f::RotateY(p.values[0]); }
  195. void operator()(const Transforms::RotateZ& p) { m = Matrix4f::RotateZ(p.values[0]); }
  196. void operator()(const Transforms::Rotate2D& p) { m = Matrix4f::RotateZ(p.values[0]); }
  197. void operator()(const Transforms::Rotate3D& p) { m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]); }
  198. void operator()(const Transforms::SkewX& p) { m = Matrix4f::SkewX(p.values[0]); }
  199. void operator()(const Transforms::SkewY& p) { m = Matrix4f::SkewY(p.values[0]); }
  200. void operator()(const Transforms::Skew2D& p) { m = Matrix4f::Skew(p.values[0], p.values[1]); }
  201. void operator()(const Transforms::DecomposedMatrix4& p) { m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion); }
  202. void operator()(const Transforms::Perspective& p) { m = Matrix4f::Perspective(ResolveDepth(p.values[0], e)); }
  203. void run(const TransformPrimitive& primitive)
  204. {
  205. switch (primitive.type)
  206. {
  207. case TransformPrimitive::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  208. case TransformPrimitive::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  209. case TransformPrimitive::TRANSLATEX: this->operator()(primitive.translate_x); break;
  210. case TransformPrimitive::TRANSLATEY: this->operator()(primitive.translate_y); break;
  211. case TransformPrimitive::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  212. case TransformPrimitive::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  213. case TransformPrimitive::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  214. case TransformPrimitive::SCALEX: this->operator()(primitive.scale_x); break;
  215. case TransformPrimitive::SCALEY: this->operator()(primitive.scale_y); break;
  216. case TransformPrimitive::SCALEZ: this->operator()(primitive.scale_z); break;
  217. case TransformPrimitive::SCALE2D: this->operator()(primitive.scale_2d); break;
  218. case TransformPrimitive::SCALE3D: this->operator()(primitive.scale_3d); break;
  219. case TransformPrimitive::ROTATEX: this->operator()(primitive.rotate_x); break;
  220. case TransformPrimitive::ROTATEY: this->operator()(primitive.rotate_y); break;
  221. case TransformPrimitive::ROTATEZ: this->operator()(primitive.rotate_z); break;
  222. case TransformPrimitive::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  223. case TransformPrimitive::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  224. case TransformPrimitive::SKEWX: this->operator()(primitive.skew_x); break;
  225. case TransformPrimitive::SKEWY: this->operator()(primitive.skew_y); break;
  226. case TransformPrimitive::SKEW2D: this->operator()(primitive.skew_2d); break;
  227. case TransformPrimitive::PERSPECTIVE: this->operator()(primitive.perspective); break;
  228. case TransformPrimitive::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  229. }
  230. }
  231. };
  232. Matrix4f TransformUtilities::ResolveTransform(const TransformPrimitive& p, Element& e) noexcept
  233. {
  234. Matrix4f m;
  235. ResolveTransformVisitor visitor{m, e};
  236. visitor.run(p);
  237. return m;
  238. }
  239. struct PrepareVisitor {
  240. Element& e;
  241. bool operator()(TranslateX& p)
  242. {
  243. p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Property::PX};
  244. return true;
  245. }
  246. bool operator()(TranslateY& p)
  247. {
  248. p.values[0] = NumericValue{ResolveHeight(p.values[0], e), Property::PX};
  249. return true;
  250. }
  251. bool operator()(TranslateZ& p)
  252. {
  253. p.values[0] = NumericValue{ResolveDepth(p.values[0], e), Property::PX};
  254. return true;
  255. }
  256. bool operator()(Translate2D& p)
  257. {
  258. p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Property::PX};
  259. p.values[1] = NumericValue{ResolveHeight(p.values[1], e), Property::PX};
  260. return true;
  261. }
  262. bool operator()(Translate3D& p)
  263. {
  264. p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Property::PX};
  265. p.values[1] = NumericValue{ResolveHeight(p.values[1], e), Property::PX};
  266. p.values[2] = NumericValue{ResolveDepth(p.values[2], e), Property::PX};
  267. return true;
  268. }
  269. template <size_t N>
  270. bool operator()(ResolvedPrimitive<N>& /*p*/)
  271. {
  272. // No conversion needed for resolved transforms (with some exceptions below)
  273. return true;
  274. }
  275. bool operator()(DecomposedMatrix4& /*p*/) { return true; }
  276. bool operator()(Rotate3D& p)
  277. {
  278. // Rotate3D can be interpolated if and only if their rotation axes point in the same direction.
  279. // We normalize the rotation vector here for easy comparison, and return true here. Later on we make the
  280. // pair-wise check in 'TryConvertToMatchingGenericType' to see if we need to decompose.
  281. Vector3f vec = Vector3f(p.values[0], p.values[1], p.values[2]).Normalise();
  282. p.values[0] = vec.x;
  283. p.values[1] = vec.y;
  284. p.values[2] = vec.z;
  285. return true;
  286. }
  287. bool operator()(Matrix3D& /*p*/)
  288. {
  289. // Matrices must be decomposed for interpolation
  290. return false;
  291. }
  292. bool operator()(Matrix2D& /*p*/)
  293. {
  294. // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4
  295. return false;
  296. }
  297. bool operator()(Perspective& /*p*/)
  298. {
  299. // Perspective must be decomposed
  300. return false;
  301. }
  302. bool run(TransformPrimitive& primitive)
  303. {
  304. switch (primitive.type)
  305. {
  306. case TransformPrimitive::MATRIX2D: return this->operator()(primitive.matrix_2d);
  307. case TransformPrimitive::MATRIX3D: return this->operator()(primitive.matrix_3d);
  308. case TransformPrimitive::TRANSLATEX: return this->operator()(primitive.translate_x);
  309. case TransformPrimitive::TRANSLATEY: return this->operator()(primitive.translate_y);
  310. case TransformPrimitive::TRANSLATEZ: return this->operator()(primitive.translate_z);
  311. case TransformPrimitive::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  312. case TransformPrimitive::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  313. case TransformPrimitive::SCALEX: return this->operator()(primitive.scale_x);
  314. case TransformPrimitive::SCALEY: return this->operator()(primitive.scale_y);
  315. case TransformPrimitive::SCALEZ: return this->operator()(primitive.scale_z);
  316. case TransformPrimitive::SCALE2D: return this->operator()(primitive.scale_2d);
  317. case TransformPrimitive::SCALE3D: return this->operator()(primitive.scale_3d);
  318. case TransformPrimitive::ROTATEX: return this->operator()(primitive.rotate_x);
  319. case TransformPrimitive::ROTATEY: return this->operator()(primitive.rotate_y);
  320. case TransformPrimitive::ROTATEZ: return this->operator()(primitive.rotate_z);
  321. case TransformPrimitive::ROTATE2D: return this->operator()(primitive.rotate_2d);
  322. case TransformPrimitive::ROTATE3D: return this->operator()(primitive.rotate_3d);
  323. case TransformPrimitive::SKEWX: return this->operator()(primitive.skew_x);
  324. case TransformPrimitive::SKEWY: return this->operator()(primitive.skew_y);
  325. case TransformPrimitive::SKEW2D: return this->operator()(primitive.skew_2d);
  326. case TransformPrimitive::PERSPECTIVE: return this->operator()(primitive.perspective);
  327. case TransformPrimitive::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  328. }
  329. RMLUI_ASSERT(false);
  330. return false;
  331. }
  332. };
  333. bool TransformUtilities::PrepareForInterpolation(TransformPrimitive& p, Element& e) noexcept
  334. {
  335. return PrepareVisitor{e}.run(p);
  336. }
  337. enum class GenericType { None, Scale3D, Translate3D, Rotate3D };
  338. struct GetGenericTypeVisitor {
  339. GenericType run(const TransformPrimitive& primitive)
  340. {
  341. switch (primitive.type)
  342. {
  343. case TransformPrimitive::TRANSLATEX:
  344. case TransformPrimitive::TRANSLATEY:
  345. case TransformPrimitive::TRANSLATEZ:
  346. case TransformPrimitive::TRANSLATE2D:
  347. case TransformPrimitive::TRANSLATE3D: return GenericType::Translate3D;
  348. case TransformPrimitive::SCALEX:
  349. case TransformPrimitive::SCALEY:
  350. case TransformPrimitive::SCALEZ:
  351. case TransformPrimitive::SCALE2D:
  352. case TransformPrimitive::SCALE3D: return GenericType::Scale3D;
  353. case TransformPrimitive::ROTATEX:
  354. case TransformPrimitive::ROTATEY:
  355. case TransformPrimitive::ROTATEZ:
  356. case TransformPrimitive::ROTATE2D:
  357. case TransformPrimitive::ROTATE3D: return GenericType::Rotate3D;
  358. case TransformPrimitive::MATRIX2D:
  359. case TransformPrimitive::MATRIX3D:
  360. case TransformPrimitive::SKEWX:
  361. case TransformPrimitive::SKEWY:
  362. case TransformPrimitive::SKEW2D:
  363. case TransformPrimitive::PERSPECTIVE:
  364. case TransformPrimitive::DECOMPOSEDMATRIX4: return GenericType::None;
  365. }
  366. RMLUI_ASSERT(false);
  367. return GenericType::None;
  368. }
  369. };
  370. struct ConvertToGenericTypeVisitor {
  371. Translate3D operator()(const TranslateX& p) { return Translate3D{p.values[0], {0.0f, Property::PX}, {0.0f, Property::PX}}; }
  372. Translate3D operator()(const TranslateY& p) { return Translate3D{{0.0f, Property::PX}, p.values[0], {0.0f, Property::PX}}; }
  373. Translate3D operator()(const TranslateZ& p) { return Translate3D{{0.0f, Property::PX}, {0.0f, Property::PX}, p.values[0]}; }
  374. Translate3D operator()(const Translate2D& p) { return Translate3D{p.values[0], p.values[1], {0.0f, Property::PX}}; }
  375. Scale3D operator()(const ScaleX& p) { return Scale3D{p.values[0], 1.0f, 1.0f}; }
  376. Scale3D operator()(const ScaleY& p) { return Scale3D{1.0f, p.values[0], 1.0f}; }
  377. Scale3D operator()(const ScaleZ& p) { return Scale3D{1.0f, 1.0f, p.values[0]}; }
  378. Scale3D operator()(const Scale2D& p) { return Scale3D{p.values[0], p.values[1], 1.0f}; }
  379. Rotate3D operator()(const RotateX& p) { return Rotate3D{1, 0, 0, p.values[0], Property::RAD}; }
  380. Rotate3D operator()(const RotateY& p) { return Rotate3D{0, 1, 0, p.values[0], Property::RAD}; }
  381. Rotate3D operator()(const RotateZ& p) { return Rotate3D{0, 0, 1, p.values[0], Property::RAD}; }
  382. Rotate3D operator()(const Rotate2D& p) { return Rotate3D{0, 0, 1, p.values[0], Property::RAD}; }
  383. template <typename T>
  384. TransformPrimitive operator()(const T& p)
  385. {
  386. RMLUI_ERROR;
  387. return p;
  388. }
  389. TransformPrimitive run(const TransformPrimitive& primitive)
  390. {
  391. TransformPrimitive result = primitive;
  392. // clang-format off
  393. switch (primitive.type)
  394. {
  395. case TransformPrimitive::TRANSLATEX: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_x); break;
  396. case TransformPrimitive::TRANSLATEY: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_y); break;
  397. case TransformPrimitive::TRANSLATEZ: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_z); break;
  398. case TransformPrimitive::TRANSLATE2D: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_2d); break;
  399. case TransformPrimitive::TRANSLATE3D: break;
  400. case TransformPrimitive::SCALEX: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_x); break;
  401. case TransformPrimitive::SCALEY: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_y); break;
  402. case TransformPrimitive::SCALEZ: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_z); break;
  403. case TransformPrimitive::SCALE2D: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_2d); break;
  404. case TransformPrimitive::SCALE3D: break;
  405. case TransformPrimitive::ROTATEX: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_x); break;
  406. case TransformPrimitive::ROTATEY: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_y); break;
  407. case TransformPrimitive::ROTATEZ: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_z); break;
  408. case TransformPrimitive::ROTATE2D: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_2d); break;
  409. case TransformPrimitive::ROTATE3D: break;
  410. default: RMLUI_ASSERT(false); break;
  411. }
  412. // clang-format on
  413. return result;
  414. }
  415. };
  416. static bool CanInterpolateRotate3D(const Rotate3D& p0, const Rotate3D& p1)
  417. {
  418. // Rotate3D can only be interpolated if and only if their rotation axes point in the same direction.
  419. // Assumes each rotation axis has already been normalized.
  420. auto& v0 = p0.values;
  421. auto& v1 = p1.values;
  422. return v0[0] == v1[0] && v0[1] == v1[1] && v0[2] == v1[2];
  423. }
  424. bool TransformUtilities::TryConvertToMatchingGenericType(TransformPrimitive& p0, TransformPrimitive& p1) noexcept
  425. {
  426. if (p0.type == p1.type)
  427. {
  428. if (p0.type == TransformPrimitive::ROTATE3D && !CanInterpolateRotate3D(p0.rotate_3d, p1.rotate_3d))
  429. return false;
  430. return true;
  431. }
  432. GenericType c0 = GetGenericTypeVisitor{}.run(p0);
  433. GenericType c1 = GetGenericTypeVisitor{}.run(p1);
  434. if (c0 == c1 && c0 != GenericType::None)
  435. {
  436. TransformPrimitive new_p0 = ConvertToGenericTypeVisitor{}.run(p0);
  437. TransformPrimitive new_p1 = ConvertToGenericTypeVisitor{}.run(p1);
  438. RMLUI_ASSERT(new_p0.type == new_p1.type);
  439. if (new_p0.type == TransformPrimitive::ROTATE3D && !CanInterpolateRotate3D(new_p0.rotate_3d, new_p1.rotate_3d))
  440. return false;
  441. p0 = new_p0;
  442. p1 = new_p1;
  443. return true;
  444. }
  445. return false;
  446. }
  447. struct InterpolateVisitor {
  448. const TransformPrimitive& other_variant;
  449. float alpha;
  450. template <size_t N>
  451. bool Interpolate(ResolvedPrimitive<N>& p0, const ResolvedPrimitive<N>& p1)
  452. {
  453. for (size_t i = 0; i < N; i++)
  454. p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha;
  455. return true;
  456. }
  457. template <size_t N>
  458. bool Interpolate(UnresolvedPrimitive<N>& p0, const UnresolvedPrimitive<N>& p1)
  459. {
  460. // Assumes that the underlying units have been resolved (e.g. to pixels)
  461. for (size_t i = 0; i < N; i++)
  462. p0.values[i].number = p0.values[i].number * (1.0f - alpha) + p1.values[i].number * alpha;
  463. return true;
  464. }
  465. bool Interpolate(Rotate3D& p0, const Rotate3D& p1)
  466. {
  467. RMLUI_ASSERT(CanInterpolateRotate3D(p0, p1));
  468. // We can only interpolate rotate3d if their rotation axes align. That should be the case if we get here,
  469. // otherwise the generic type matching should decompose them. Thus, we only need to interpolate
  470. // the angle value here.
  471. p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha;
  472. return true;
  473. }
  474. bool Interpolate(Matrix2D& /*p0*/, const Matrix2D& /*p1*/)
  475. {
  476. RMLUI_ERROR;
  477. return false; /* Error if we get here, see PrepareForInterpolation() */
  478. }
  479. bool Interpolate(Matrix3D& /*p0*/, const Matrix3D& /*p1*/)
  480. {
  481. RMLUI_ERROR;
  482. return false; /* Error if we get here, see PrepareForInterpolation() */
  483. }
  484. bool Interpolate(Perspective& /*p0*/, const Perspective& /*p1*/)
  485. {
  486. RMLUI_ERROR;
  487. return false; /* Error if we get here, see PrepareForInterpolation() */
  488. }
  489. bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1)
  490. {
  491. p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha;
  492. p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha);
  493. p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha;
  494. p0.scale = p0.scale * (1.0f - alpha) + p1.scale * alpha;
  495. p0.skew = p0.skew * (1.0f - alpha) + p1.skew * alpha;
  496. return true;
  497. }
  498. bool run(TransformPrimitive& variant)
  499. {
  500. RMLUI_ASSERT(variant.type == other_variant.type);
  501. switch (variant.type)
  502. {
  503. case TransformPrimitive::MATRIX2D: return Interpolate(variant.matrix_2d, other_variant.matrix_2d);
  504. case TransformPrimitive::MATRIX3D: return Interpolate(variant.matrix_3d, other_variant.matrix_3d);
  505. case TransformPrimitive::TRANSLATEX: return Interpolate(variant.translate_x, other_variant.translate_x);
  506. case TransformPrimitive::TRANSLATEY: return Interpolate(variant.translate_y, other_variant.translate_y);
  507. case TransformPrimitive::TRANSLATEZ: return Interpolate(variant.translate_z, other_variant.translate_z);
  508. case TransformPrimitive::TRANSLATE2D: return Interpolate(variant.translate_2d, other_variant.translate_2d);
  509. case TransformPrimitive::TRANSLATE3D: return Interpolate(variant.translate_3d, other_variant.translate_3d);
  510. case TransformPrimitive::SCALEX: return Interpolate(variant.scale_x, other_variant.scale_x);
  511. case TransformPrimitive::SCALEY: return Interpolate(variant.scale_y, other_variant.scale_y);
  512. case TransformPrimitive::SCALEZ: return Interpolate(variant.scale_z, other_variant.scale_z);
  513. case TransformPrimitive::SCALE2D: return Interpolate(variant.scale_2d, other_variant.scale_2d);
  514. case TransformPrimitive::SCALE3D: return Interpolate(variant.scale_3d, other_variant.scale_3d);
  515. case TransformPrimitive::ROTATEX: return Interpolate(variant.rotate_x, other_variant.rotate_x);
  516. case TransformPrimitive::ROTATEY: return Interpolate(variant.rotate_y, other_variant.rotate_y);
  517. case TransformPrimitive::ROTATEZ: return Interpolate(variant.rotate_z, other_variant.rotate_z);
  518. case TransformPrimitive::ROTATE2D: return Interpolate(variant.rotate_2d, other_variant.rotate_2d);
  519. case TransformPrimitive::ROTATE3D: return Interpolate(variant.rotate_3d, other_variant.rotate_3d);
  520. case TransformPrimitive::SKEWX: return Interpolate(variant.skew_x, other_variant.skew_x);
  521. case TransformPrimitive::SKEWY: return Interpolate(variant.skew_y, other_variant.skew_y);
  522. case TransformPrimitive::SKEW2D: return Interpolate(variant.skew_2d, other_variant.skew_2d);
  523. case TransformPrimitive::PERSPECTIVE: return Interpolate(variant.perspective, other_variant.perspective);
  524. case TransformPrimitive::DECOMPOSEDMATRIX4: return Interpolate(variant.decomposed_matrix_4, other_variant.decomposed_matrix_4);
  525. }
  526. RMLUI_ASSERT(false);
  527. return false;
  528. }
  529. };
  530. bool TransformUtilities::InterpolateWith(TransformPrimitive& target, const TransformPrimitive& other, float alpha) noexcept
  531. {
  532. if (target.type != other.type)
  533. return false;
  534. bool result = InterpolateVisitor{other, alpha}.run(target);
  535. return result;
  536. }
  537. template <size_t N>
  538. static String ToString(const Transforms::ResolvedPrimitive<N>& p, const String& unit, bool rad_to_deg = false,
  539. bool only_unit_on_last_value = false) noexcept
  540. {
  541. float multiplier = 1.0f;
  542. String tmp;
  543. String result = "(";
  544. for (size_t i = 0; i < N; i++)
  545. {
  546. if (only_unit_on_last_value && i < N - 1)
  547. multiplier = 1.0f;
  548. else if (rad_to_deg)
  549. multiplier = 180.f / Math::RMLUI_PI;
  550. if (TypeConverter<float, String>::Convert(p.values[i] * multiplier, tmp))
  551. result += tmp;
  552. if (!unit.empty() && (!only_unit_on_last_value || (i == N - 1)))
  553. result += unit;
  554. if (i < N - 1)
  555. result += ", ";
  556. }
  557. result += ")";
  558. return result;
  559. }
  560. template <size_t N>
  561. static inline String ToString(const Transforms::UnresolvedPrimitive<N>& p) noexcept
  562. {
  563. String result = "(";
  564. for (size_t i = 0; i < N; i++)
  565. {
  566. result += ToString(p.values[i]);
  567. if (i != N - 1)
  568. result += ", ";
  569. }
  570. result += ")";
  571. return result;
  572. }
  573. static inline String ToString(const Transforms::DecomposedMatrix4& p) noexcept
  574. {
  575. static const Transforms::DecomposedMatrix4 d{Vector4f(0, 0, 0, 1), Vector4f(0, 0, 0, 1), Vector3f(0, 0, 0), Vector3f(1, 1, 1), Vector3f(0, 0, 0)};
  576. String tmp;
  577. String result;
  578. if (p.perspective != d.perspective && TypeConverter<Vector4f, String>::Convert(p.perspective, tmp))
  579. result += "perspective(" + tmp + "), ";
  580. if (p.quaternion != d.quaternion && TypeConverter<Vector4f, String>::Convert(p.quaternion, tmp))
  581. result += "quaternion(" + tmp + "), ";
  582. if (p.translation != d.translation && TypeConverter<Vector3f, String>::Convert(p.translation, tmp))
  583. result += "translation(" + tmp + "), ";
  584. if (p.scale != d.scale && TypeConverter<Vector3f, String>::Convert(p.scale, tmp))
  585. result += "scale(" + tmp + "), ";
  586. if (p.skew != d.skew && TypeConverter<Vector3f, String>::Convert(p.skew, tmp))
  587. result += "skew(" + tmp + "), ";
  588. if (result.size() > 2)
  589. result.resize(result.size() - 2);
  590. result = "decomposedMatrix3d{ " + result + " }";
  591. return result;
  592. }
  593. // clang-format off
  594. static inline String ToString(const Transforms::Matrix2D& p) noexcept { return "matrix" + ToString(static_cast<const Transforms::ResolvedPrimitive< 6 >&>(p), ""); }
  595. static inline String ToString(const Transforms::Matrix3D& p) noexcept { return "matrix3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 16 >&>(p), ""); }
  596. static inline String ToString(const Transforms::TranslateX& p) noexcept { return "translateX" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  597. static inline String ToString(const Transforms::TranslateY& p) noexcept { return "translateY" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  598. static inline String ToString(const Transforms::TranslateZ& p) noexcept { return "translateZ" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  599. static inline String ToString(const Transforms::Translate2D& p) noexcept { return "translate" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 2 >&>(p)); }
  600. static inline String ToString(const Transforms::Translate3D& p) noexcept { return "translate3d" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 3 >&>(p)); }
  601. static inline String ToString(const Transforms::ScaleX& p) noexcept { return "scaleX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  602. static inline String ToString(const Transforms::ScaleY& p) noexcept { return "scaleY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  603. static inline String ToString(const Transforms::ScaleZ& p) noexcept { return "scaleZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  604. static inline String ToString(const Transforms::Scale2D& p) noexcept { return "scale" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), ""); }
  605. static inline String ToString(const Transforms::Scale3D& p) noexcept { return "scale3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 3 >&>(p), ""); }
  606. static inline String ToString(const Transforms::RotateX& p) noexcept { return "rotateX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  607. static inline String ToString(const Transforms::RotateY& p) noexcept { return "rotateY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  608. static inline String ToString(const Transforms::RotateZ& p) noexcept { return "rotateZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  609. static inline String ToString(const Transforms::Rotate2D& p) noexcept { return "rotate" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  610. static inline String ToString(const Transforms::Rotate3D& p) noexcept { return "rotate3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 4 >&>(p), "deg", true, true); }
  611. static inline String ToString(const Transforms::SkewX& p) noexcept { return "skewX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  612. static inline String ToString(const Transforms::SkewY& p) noexcept { return "skewY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  613. static inline String ToString(const Transforms::Skew2D& p) noexcept { return "skew" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), "deg", true); }
  614. static inline String ToString(const Transforms::Perspective& p) noexcept { return "perspective" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  615. // clang-format on
  616. struct ToStringVisitor {
  617. String run(const TransformPrimitive& variant)
  618. {
  619. switch (variant.type)
  620. {
  621. case TransformPrimitive::MATRIX2D: return ToString(variant.matrix_2d);
  622. case TransformPrimitive::MATRIX3D: return ToString(variant.matrix_3d);
  623. case TransformPrimitive::TRANSLATEX: return ToString(variant.translate_x);
  624. case TransformPrimitive::TRANSLATEY: return ToString(variant.translate_y);
  625. case TransformPrimitive::TRANSLATEZ: return ToString(variant.translate_z);
  626. case TransformPrimitive::TRANSLATE2D: return ToString(variant.translate_2d);
  627. case TransformPrimitive::TRANSLATE3D: return ToString(variant.translate_3d);
  628. case TransformPrimitive::SCALEX: return ToString(variant.scale_x);
  629. case TransformPrimitive::SCALEY: return ToString(variant.scale_y);
  630. case TransformPrimitive::SCALEZ: return ToString(variant.scale_z);
  631. case TransformPrimitive::SCALE2D: return ToString(variant.scale_2d);
  632. case TransformPrimitive::SCALE3D: return ToString(variant.scale_3d);
  633. case TransformPrimitive::ROTATEX: return ToString(variant.rotate_x);
  634. case TransformPrimitive::ROTATEY: return ToString(variant.rotate_y);
  635. case TransformPrimitive::ROTATEZ: return ToString(variant.rotate_z);
  636. case TransformPrimitive::ROTATE2D: return ToString(variant.rotate_2d);
  637. case TransformPrimitive::ROTATE3D: return ToString(variant.rotate_3d);
  638. case TransformPrimitive::SKEWX: return ToString(variant.skew_x);
  639. case TransformPrimitive::SKEWY: return ToString(variant.skew_y);
  640. case TransformPrimitive::SKEW2D: return ToString(variant.skew_2d);
  641. case TransformPrimitive::PERSPECTIVE: return ToString(variant.perspective);
  642. case TransformPrimitive::DECOMPOSEDMATRIX4: return ToString(variant.decomposed_matrix_4);
  643. }
  644. RMLUI_ASSERT(false);
  645. return String();
  646. }
  647. };
  648. String TransformUtilities::ToString(const TransformPrimitive& p) noexcept
  649. {
  650. String result = ToStringVisitor{}.run(p);
  651. return result;
  652. }
  653. bool TransformUtilities::Decompose(Transforms::DecomposedMatrix4& d, const Matrix4f& m) noexcept
  654. {
  655. // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices
  656. const float eps = 0.0005f;
  657. if (Math::Absolute(m[3][3]) < eps)
  658. return false;
  659. // Perspective matrix
  660. Matrix4f p = m;
  661. for (int i = 0; i < 3; i++)
  662. p[i][3] = 0;
  663. p[3][3] = 1;
  664. if (Math::Absolute(p.Determinant()) < eps)
  665. return false;
  666. if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0)
  667. {
  668. auto rhs = m.GetColumn(3);
  669. Matrix4f p_inv = p;
  670. if (!p_inv.Invert())
  671. return false;
  672. auto& p_inv_trans = p.Transpose();
  673. d.perspective = p_inv_trans * rhs;
  674. }
  675. else
  676. {
  677. d.perspective[0] = d.perspective[1] = d.perspective[2] = 0;
  678. d.perspective[3] = 1;
  679. }
  680. for (int i = 0; i < 3; i++)
  681. d.translation[i] = m[3][i];
  682. Vector3f row[3];
  683. for (int i = 0; i < 3; i++)
  684. {
  685. row[i][0] = m[i][0];
  686. row[i][1] = m[i][1];
  687. row[i][2] = m[i][2];
  688. }
  689. d.scale[0] = row[0].Magnitude();
  690. row[0] = row[0].Normalise();
  691. d.skew[0] = row[0].DotProduct(row[1]);
  692. row[1] = Combine(row[1], row[0], 1, -d.skew[0]);
  693. d.scale[1] = row[1].Magnitude();
  694. row[1] = row[1].Normalise();
  695. d.skew[0] /= d.scale[1];
  696. d.skew[1] = row[0].DotProduct(row[2]);
  697. row[2] = Combine(row[2], row[0], 1, -d.skew[1]);
  698. d.skew[2] = row[1].DotProduct(row[2]);
  699. row[2] = Combine(row[2], row[1], 1, -d.skew[2]);
  700. d.scale[2] = row[2].Magnitude();
  701. row[2] = row[2].Normalise();
  702. d.skew[2] /= d.scale[2];
  703. d.skew[1] /= d.scale[2];
  704. // Check if we need to flip coordinate system
  705. auto pdum3 = row[1].CrossProduct(row[2]);
  706. if (row[0].DotProduct(pdum3) < 0.0f)
  707. {
  708. for (int i = 0; i < 3; i++)
  709. {
  710. d.scale[i] *= -1.f;
  711. row[i] *= -1.f;
  712. }
  713. }
  714. d.quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f));
  715. d.quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f));
  716. d.quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f));
  717. d.quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f));
  718. if (row[2][1] > row[1][2])
  719. d.quaternion[0] *= -1.f;
  720. if (row[0][2] > row[2][0])
  721. d.quaternion[1] *= -1.f;
  722. if (row[1][0] > row[0][1])
  723. d.quaternion[2] *= -1.f;
  724. return true;
  725. }
  726. } // namespace Rml