TransformPrimitive.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678
  1. /*
  2. * This source file is part of libRocket, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://www.librocket.com
  5. *
  6. * Copyright (c) 2014 Markus Schöngart
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. *
  26. */
  27. #include "precompiled.h"
  28. #include "../../Include/Rocket/Core/TransformPrimitive.h"
  29. #include <iostream>
  30. #include <unordered_map>
  31. namespace Rocket {
  32. namespace Core {
  33. namespace Transforms {
  34. static Vector3f Combine(const Vector3f& a, const Vector3f& b, float a_scale, float b_scale)
  35. {
  36. Vector3f result;
  37. result.x = a_scale * a.x + b_scale * b.x;
  38. result.y = a_scale * a.y + b_scale * b.y;
  39. result.z = a_scale * a.z + b_scale * b.z;
  40. return result;
  41. }
  42. // Interpolate two quaternions a, b with weight alpha [0, 1]
  43. static Vector4f QuaternionSlerp(const Vector4f& a, const Vector4f& b, float alpha)
  44. {
  45. using namespace Math;
  46. const float eps = 0.9995f;
  47. float dot = a.DotProduct(b);
  48. dot = Clamp(dot, -1.f, 1.f);
  49. if (dot > eps)
  50. return a;
  51. float theta = ACos(dot);
  52. float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot);
  53. float a_scale = Cos(alpha*theta) - dot * w;
  54. Vector4f result;
  55. for (int i = 0; i < 4; i++)
  56. {
  57. result[i] = a[i] * a_scale + b[i] * w;
  58. }
  59. return result;
  60. }
  61. NumericValue::NumericValue() noexcept
  62. : number(), unit(Property::UNKNOWN)
  63. {
  64. }
  65. NumericValue::NumericValue(float number, Property::Unit unit) noexcept
  66. : number(number), unit(unit)
  67. {
  68. }
  69. float NumericValue::Resolve(Element& e, float base) const noexcept
  70. {
  71. Property prop;
  72. prop.value = Variant(number);
  73. prop.unit = unit;
  74. return e.ResolveProperty(&prop, base);
  75. }
  76. float NumericValue::ResolveWidth(Element& e) const noexcept
  77. {
  78. if(unit & (Property::PX | Property::NUMBER)) return number;
  79. return Resolve(e, e.GetBox().GetSize(Box::BORDER).x);
  80. }
  81. float NumericValue::ResolveHeight(Element& e) const noexcept
  82. {
  83. if (unit & (Property::PX | Property::NUMBER)) return number;
  84. return Resolve(e, e.GetBox().GetSize(Box::BORDER).y);
  85. }
  86. float NumericValue::ResolveDepth(Element& e) const noexcept
  87. {
  88. if (unit & (Property::PX | Property::NUMBER)) return number;
  89. Vector2f size = e.GetBox().GetSize(Box::BORDER);
  90. return Resolve(e, Math::Max(size.x, size.y));
  91. }
  92. float NumericValue::ResolveAbsoluteUnit(Property::Unit base_unit) const noexcept
  93. {
  94. switch (base_unit)
  95. {
  96. case Property::RAD:
  97. {
  98. switch (unit)
  99. {
  100. case Property::NUMBER:
  101. case Property::DEG:
  102. return Math::DegreesToRadians(number);
  103. case Property::RAD:
  104. return number;
  105. case Property::PERCENT:
  106. return number * 0.01f * 2.0f * Math::ROCKET_PI;
  107. break;
  108. }
  109. }
  110. }
  111. return number;
  112. }
  113. struct ResolveTransformVisitor
  114. {
  115. Matrix4f& m;
  116. Element& e;
  117. bool operator()(const Matrix2D& p)
  118. {
  119. m = Matrix4f::FromRows(
  120. Vector4f(p.values[0], p.values[2], 0, p.values[4]),
  121. Vector4f(p.values[1], p.values[3], 0, p.values[5]),
  122. Vector4f(0, 0, 1, 0),
  123. Vector4f(0, 0, 0, 1)
  124. );
  125. return true;
  126. }
  127. bool operator()(const Matrix3D& p)
  128. {
  129. m = Matrix4f::FromRows(
  130. Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]),
  131. Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]),
  132. Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]),
  133. Vector4f(p.values[12], p.values[13], p.values[14], p.values[15])
  134. );
  135. return true;
  136. }
  137. bool operator()(const TranslateX& p)
  138. {
  139. m = Matrix4f::TranslateX(p.values[0].ResolveWidth(e));
  140. return true;
  141. }
  142. bool operator()(const TranslateY& p)
  143. {
  144. m = Matrix4f::TranslateY(p.values[0].ResolveHeight(e));
  145. return true;
  146. }
  147. bool operator()(const TranslateZ& p)
  148. {
  149. m = Matrix4f::TranslateZ(p.values[0].ResolveDepth(e));
  150. return true;
  151. }
  152. bool operator()(const Translate2D& p)
  153. {
  154. m = Matrix4f::Translate(
  155. p.values[0].ResolveWidth(e),
  156. p.values[1].ResolveHeight(e),
  157. 0
  158. );
  159. return true;
  160. }
  161. bool operator()(const Translate3D& p)
  162. {
  163. m = Matrix4f::Translate(
  164. p.values[0].ResolveWidth(e),
  165. p.values[1].ResolveHeight(e),
  166. p.values[2].ResolveDepth(e)
  167. );
  168. return true;
  169. }
  170. bool operator()(const ScaleX& p)
  171. {
  172. m = Matrix4f::ScaleX(p.values[0]);
  173. return true;
  174. }
  175. bool operator()(const ScaleY& p)
  176. {
  177. m = Matrix4f::ScaleY(p.values[0]);
  178. return true;
  179. }
  180. bool operator()(const ScaleZ& p)
  181. {
  182. m = Matrix4f::ScaleZ(p.values[0]);
  183. return true;
  184. }
  185. bool operator()(const Scale2D& p)
  186. {
  187. m = Matrix4f::Scale(p.values[0], p.values[1], 1);
  188. return true;
  189. }
  190. bool operator()(const Scale3D& p)
  191. {
  192. m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]);
  193. return true;
  194. }
  195. bool operator()(const RotateX& p)
  196. {
  197. m = Matrix4f::RotateX(p.values[0]);
  198. return true;
  199. }
  200. bool operator()(const RotateY& p)
  201. {
  202. m = Matrix4f::RotateY(p.values[0]);
  203. return true;
  204. }
  205. bool operator()(const RotateZ& p)
  206. {
  207. m = Matrix4f::RotateZ(p.values[0]);
  208. return true;
  209. }
  210. bool operator()(const Rotate2D& p)
  211. {
  212. m = Matrix4f::RotateZ(p.values[0]);
  213. return true;
  214. }
  215. bool operator()(const Rotate3D& p)
  216. {
  217. m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]);
  218. return true;
  219. }
  220. bool operator()(const SkewX& p)
  221. {
  222. m = Matrix4f::SkewX(p.values[0]);
  223. return true;
  224. }
  225. bool operator()(const SkewY& p)
  226. {
  227. m = Matrix4f::SkewY(p.values[0]);
  228. return true;
  229. }
  230. bool operator()(const Skew2D& p)
  231. {
  232. m = Matrix4f::Skew(p.values[0], p.values[1]);
  233. return true;
  234. }
  235. bool operator()(const DecomposedMatrix4& p)
  236. {
  237. m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion);
  238. return true;
  239. }
  240. bool operator()(const Perspective& p)
  241. {
  242. return false;
  243. }
  244. };
  245. bool Primitive::ResolveTransform(Matrix4f & m, Element & e) const noexcept
  246. {
  247. ResolveTransformVisitor visitor{ m, e };
  248. bool result = std::visit(visitor, primitive);
  249. return result;
  250. }
  251. bool Primitive::ResolvePerspective(float & p, Element & e) const noexcept
  252. {
  253. bool result = false;
  254. if (const Perspective* perspective = std::get_if<Perspective>(&primitive))
  255. {
  256. p = perspective->values[0].ResolveDepth(e);
  257. result = true;
  258. }
  259. return result;
  260. }
  261. struct SetIdentityVisitor
  262. {
  263. template <size_t N>
  264. void operator()(ResolvedPrimitive<N>& p)
  265. {
  266. for (auto& value : p.values)
  267. value = 0.0f;
  268. }
  269. template <size_t N>
  270. void operator()(UnresolvedPrimitive<N>& p)
  271. {
  272. for (auto& value : p.values)
  273. value.number = 0.0f;
  274. }
  275. void operator()(Matrix2D& p)
  276. {
  277. for (int i = 0; i < 6; i++)
  278. p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f);
  279. }
  280. void operator()(Matrix3D& p)
  281. {
  282. for (int i = 0; i < 16; i++)
  283. p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f);
  284. }
  285. void operator()(ScaleX& p)
  286. {
  287. p.values[0] = 1;
  288. }
  289. void operator()(ScaleY& p)
  290. {
  291. p.values[0] = 1;
  292. }
  293. void operator()(ScaleZ& p)
  294. {
  295. p.values[0] = 1;
  296. }
  297. void operator()(Scale2D& p)
  298. {
  299. p.values[0] = p.values[1] = 1;
  300. }
  301. void operator()(Scale3D& p)
  302. {
  303. p.values[0] = p.values[1] = p.values[2] = 1;
  304. }
  305. void operator()(DecomposedMatrix4& p)
  306. {
  307. p.perspective = Vector4f(0, 0, 0, 1);
  308. p.quaternion = Vector4f(0, 0, 0, 1);
  309. p.translation = Vector3f(0, 0, 0);
  310. p.scale = Vector3f(1, 1, 1);
  311. p.skew = Vector3f(0, 0, 0);
  312. }
  313. };
  314. void Primitive::SetIdentity() noexcept
  315. {
  316. std::visit(SetIdentityVisitor{}, primitive);
  317. }
  318. struct PrepareVisitor
  319. {
  320. Element& e;
  321. bool operator()(TranslateX& p)
  322. {
  323. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  324. return true;
  325. }
  326. bool operator()(TranslateY& p)
  327. {
  328. p.values[0] = NumericValue{ p.values[0].ResolveHeight(e), Property::PX };
  329. return true;
  330. }
  331. bool operator()(TranslateZ& p)
  332. {
  333. p.values[0] = NumericValue{ p.values[0].ResolveDepth(e), Property::PX };
  334. return true;
  335. }
  336. bool operator()(Translate2D& p)
  337. {
  338. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  339. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  340. return true;
  341. }
  342. bool operator()(Translate3D& p)
  343. {
  344. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  345. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  346. p.values[2] = NumericValue{ p.values[2].ResolveDepth(e), Property::PX };
  347. return true;
  348. }
  349. template <size_t N>
  350. bool operator()(ResolvedPrimitive<N>& p)
  351. {
  352. // No conversion needed for resolved transforms (with some exceptions below)
  353. return true;
  354. }
  355. bool operator()(DecomposedMatrix4& p)
  356. {
  357. return true;
  358. }
  359. bool operator()(Rotate3D& p)
  360. {
  361. // Rotate3D must be resolved to a full matrix for interpolation.
  362. // There is an exception in CSS specs when the two interpolating rotation vectors are in the same direction, but for simplicity we ignore this optimization.
  363. return false;
  364. }
  365. bool operator()(Matrix3D& p)
  366. {
  367. // Matrices must be decomposed for interpolatino
  368. return false;
  369. }
  370. bool operator()(Matrix2D& p)
  371. {
  372. // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4
  373. return false;
  374. }
  375. bool operator()(Perspective& p)
  376. {
  377. // Perspective must be decomposed
  378. return false;
  379. }
  380. };
  381. bool Primitive::PrepareForInterpolation(Element & e) noexcept
  382. {
  383. return std::visit(PrepareVisitor{ e }, primitive);
  384. }
  385. enum class GenericType { None, Scale3D, Translate3D };
  386. struct GetGenericTypeVisitor
  387. {
  388. GenericType common_type = GenericType::None;
  389. GenericType operator()(const TranslateX& p) { return GenericType::Translate3D; }
  390. GenericType operator()(const TranslateY& p) { return GenericType::Translate3D; }
  391. GenericType operator()(const TranslateZ& p) { return GenericType::Translate3D; }
  392. GenericType operator()(const Translate2D& p) { return GenericType::Translate3D; }
  393. GenericType operator()(const ScaleX& p) { return GenericType::Scale3D; }
  394. GenericType operator()(const ScaleY& p) { return GenericType::Scale3D; }
  395. GenericType operator()(const ScaleZ& p) { return GenericType::Scale3D; }
  396. GenericType operator()(const Scale2D& p) { return GenericType::Scale3D; }
  397. template <typename T>
  398. GenericType operator()(const T& p) { return GenericType::None; }
  399. };
  400. struct ConvertToGenericTypeVisitor
  401. {
  402. PrimitiveVariant operator()(const TranslateX& p) { return Translate3D{ p.values[0], {0.0f, Property::PX}, {0.0f, Property::PX} }; }
  403. PrimitiveVariant operator()(const TranslateY& p) { return Translate3D{ {0.0f, Property::PX}, p.values[0], {0.0f, Property::PX} }; }
  404. PrimitiveVariant operator()(const TranslateZ& p) { return Translate3D{ {0.0f, Property::PX}, {0.0f, Property::PX}, p.values[0] }; }
  405. PrimitiveVariant operator()(const Translate2D& p) { return Translate3D{ p.values[0], p.values[1], {0.0f, Property::PX} }; }
  406. PrimitiveVariant operator()(const ScaleX& p) { return Scale3D{ p.values[0], 1.0f, 1.0f }; }
  407. PrimitiveVariant operator()(const ScaleY& p) { return Scale3D{ 1.0f, p.values[0], 1.0f }; }
  408. PrimitiveVariant operator()(const ScaleZ& p) { return Scale3D{ 1.0f, 1.0f, p.values[0] }; }
  409. PrimitiveVariant operator()(const Scale2D& p) { return Scale3D{ p.values[0], p.values[1], 1.0f }; }
  410. template <typename T>
  411. PrimitiveVariant operator()(const T& p) { ROCKET_ERROR; return p; }
  412. };
  413. bool Primitive::TryConvertToMatchingGenericType(Primitive & p0, Primitive & p1) noexcept
  414. {
  415. if (p0.primitive.index() == p1.primitive.index())
  416. return true;
  417. GenericType c0 = std::visit(GetGenericTypeVisitor{}, p0.primitive);
  418. GenericType c1 = std::visit(GetGenericTypeVisitor{}, p1.primitive);
  419. if (c0 == c1 && c0 != GenericType::None)
  420. {
  421. p0.primitive = std::visit(ConvertToGenericTypeVisitor{}, p0.primitive);
  422. p1.primitive = std::visit(ConvertToGenericTypeVisitor{}, p1.primitive);
  423. return true;
  424. }
  425. return false;
  426. }
  427. struct InterpolateVisitor
  428. {
  429. const PrimitiveVariant& other_variant;
  430. float alpha;
  431. template <size_t N>
  432. bool Interpolate(ResolvedPrimitive<N>& p0, const ResolvedPrimitive<N>& p1)
  433. {
  434. for (size_t i = 0; i < N; i++)
  435. p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha;
  436. return true;
  437. }
  438. template <size_t N>
  439. bool Interpolate(UnresolvedPrimitive<N>& p0, const UnresolvedPrimitive<N>& p1)
  440. {
  441. // Assumes that the underlying units have been resolved (e.g. to pixels)
  442. for (size_t i = 0; i < N; i++)
  443. p0.values[i].number = p0.values[i].number*(1.0f - alpha) + p1.values[i].number * alpha;
  444. return true;
  445. }
  446. bool Interpolate(Rotate3D& p0, const Rotate3D& p1)
  447. {
  448. // Currently, we promote Rotate3D to decomposed matrices in PrepareForInterpolation(), thus, it is an error if we get here. Make sure primitives are prepared and decomposed as necessary.
  449. // We may change this later by assuming that the underlying direction vectors are equivalent (else, need to do full matrix interpolation)
  450. // If we change this later: p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha;
  451. return false;
  452. }
  453. bool Interpolate(Matrix2D& p0, const Matrix2D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  454. bool Interpolate(Matrix3D& p0, const Matrix3D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  455. bool Interpolate(Perspective& p0, const Perspective& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  456. bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1)
  457. {
  458. p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha;
  459. p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha);
  460. p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha;
  461. p0.scale = p0.scale* (1.0f - alpha) + p1.scale* alpha;
  462. p0.skew = p0.skew* (1.0f - alpha) + p1.skew* alpha;
  463. return true;
  464. }
  465. template <typename T>
  466. bool operator()(T& p0)
  467. {
  468. auto& p1 = std::get<T>(other_variant);
  469. return Interpolate(p0, p1);
  470. }
  471. };
  472. bool Primitive::InterpolateWith(const Primitive & other, float alpha) noexcept
  473. {
  474. if (primitive.index() != other.primitive.index())
  475. return false;
  476. bool result = std::visit(InterpolateVisitor{ other.primitive, alpha }, primitive);
  477. return result;
  478. }
  479. bool DecomposedMatrix4::Decompose(const Matrix4f & m)
  480. {
  481. // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices
  482. const float eps = 0.0005f;
  483. if (Math::AbsoluteValue(m[3][3]) < eps)
  484. return false;
  485. // Perspective matrix
  486. Matrix4f p = m;
  487. for (int i = 0; i < 3; i++)
  488. p[i][3] = 0;
  489. p[3][3] = 1;
  490. if (Math::AbsoluteValue(p.Determinant()) < eps)
  491. return false;
  492. if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0)
  493. {
  494. auto rhs = m.GetColumn(3);
  495. Matrix4f p_inv = p;
  496. if (!p_inv.Invert())
  497. return false;
  498. auto& p_inv_trans = p.Transpose();
  499. perspective = p_inv_trans * rhs;
  500. }
  501. else
  502. {
  503. perspective[0] = perspective[1] = perspective[2] = 0;
  504. perspective[3] = 1;
  505. }
  506. for (int i = 0; i < 3; i++)
  507. translation[i] = m[3][i];
  508. Vector3f row[3];
  509. for (int i = 0; i < 3; i++)
  510. {
  511. row[i][0] = m[i][0];
  512. row[i][1] = m[i][1];
  513. row[i][2] = m[i][2];
  514. }
  515. scale[0] = row[0].Magnitude();
  516. row[0] = row[0].Normalise();
  517. skew[0] = row[0].DotProduct(row[1]);
  518. row[1] = Combine(row[1], row[0], 1, -skew[0]);
  519. scale[1] = row[1].Magnitude();
  520. row[1] = row[1].Normalise();
  521. skew[0] /= scale[1];
  522. skew[1] = row[0].DotProduct(row[2]);
  523. row[2] = Combine(row[2], row[0], 1, -skew[1]);
  524. skew[2] = row[1].DotProduct(row[2]);
  525. row[2] = Combine(row[2], row[1], 1, -skew[2]);
  526. scale[2] = row[2].Magnitude();
  527. row[2] = row[2].Normalise();
  528. skew[1] /= scale[2];
  529. skew[2] /= scale[2];
  530. // Check if we need to flip coordinate system
  531. auto pdum3 = row[1].CrossProduct(row[2]);
  532. if (row[0].DotProduct(pdum3) < 0.0f)
  533. {
  534. for (int i = 0; i < 3; i++)
  535. {
  536. scale[i] *= -1.f;
  537. row[i] *= -1.f;
  538. }
  539. }
  540. quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f));
  541. quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f));
  542. quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f));
  543. quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f));
  544. if (row[2][1] > row[1][2])
  545. quaternion[0] *= -1.f;
  546. if (row[0][2] > row[2][0])
  547. quaternion[1] *= -1.f;
  548. if (row[1][0] > row[0][1])
  549. quaternion[2] *= -1.f;
  550. return true;
  551. }
  552. }
  553. }
  554. }