FlexFormattingContext.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
  7. * Copyright (c) 2019-2023 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "FlexFormattingContext.h"
  29. #include "../../../Include/RmlUi/Core/ComputedValues.h"
  30. #include "../../../Include/RmlUi/Core/Element.h"
  31. #include "../../../Include/RmlUi/Core/ElementScroll.h"
  32. #include "../../../Include/RmlUi/Core/Profiling.h"
  33. #include "../../../Include/RmlUi/Core/Types.h"
  34. #include "ContainerBox.h"
  35. #include "LayoutDetails.h"
  36. #include <algorithm>
  37. #include <float.h>
  38. #include <numeric>
  39. namespace Rml {
  40. UniquePtr<LayoutBox> FlexFormattingContext::Format(ContainerBox* parent_container, Element* element, const Box* override_initial_box)
  41. {
  42. RMLUI_ZoneScopedC(0xAFAF4F);
  43. auto flex_container_box = MakeUnique<FlexContainer>(element, parent_container);
  44. ElementScroll* element_scroll = element->GetElementScroll();
  45. const ComputedValues& computed = element->GetComputedValues();
  46. const Vector2f containing_block = parent_container->GetContainingBlockSize(element->GetPosition());
  47. RMLUI_ASSERT(containing_block.x >= 0.f);
  48. // Build the initial box as specified by the flex's style, as if it was a normal block element.
  49. Box& box = flex_container_box->GetBox();
  50. if (override_initial_box)
  51. box = *override_initial_box;
  52. else
  53. LayoutDetails::BuildBox(box, containing_block, element, BuildBoxMode::ShrinkableBlock, &parent_container->GetFormattingMode());
  54. // Start with any auto-scrollbars off.
  55. flex_container_box->ResetScrollbars(box);
  56. FlexFormattingContext context;
  57. context.flex_container_box = flex_container_box.get();
  58. context.element_flex = element;
  59. LayoutDetails::GetMinMaxWidth(context.flex_min_size.x, context.flex_max_size.x, computed, box, containing_block.x);
  60. LayoutDetails::GetMinMaxHeight(context.flex_min_size.y, context.flex_max_size.y, computed, box, containing_block.y);
  61. const Vector2f box_content_size = box.GetSize();
  62. const bool auto_height = (box_content_size.y < 0.0f);
  63. context.flex_content_offset = box.GetPosition();
  64. for (int layout_iteration = 0; layout_iteration < 3; layout_iteration++)
  65. {
  66. // One or both scrollbars can be enabled between iterations.
  67. const Vector2f scrollbar_size = {
  68. element_scroll->GetScrollbarSize(ElementScroll::VERTICAL),
  69. element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL),
  70. };
  71. context.flex_available_content_size = Math::Max(box_content_size - scrollbar_size, Vector2f(0.f));
  72. context.flex_content_containing_block = context.flex_available_content_size;
  73. if (auto_height)
  74. {
  75. context.flex_available_content_size.y = -1.f; // Negative means infinite space
  76. context.flex_content_containing_block.y = containing_block.y;
  77. }
  78. // Format the flexbox and all its children.
  79. Vector2f flex_resulting_content_size, content_overflow_size;
  80. float flex_baseline = 0.f;
  81. context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
  82. // Output the size of the formatted flexbox. The width is determined as a normal block box so we don't need to change that.
  83. Vector2f formatted_content_size = box_content_size;
  84. if (auto_height)
  85. formatted_content_size.y = flex_resulting_content_size.y + scrollbar_size.y;
  86. Box sized_box = box;
  87. sized_box.SetContent(formatted_content_size);
  88. // Change the flex baseline coordinates to the element baseline, which is defined as the distance from the element's bottom margin edge.
  89. const float element_baseline =
  90. sized_box.GetSizeAcross(BoxDirection::Vertical, BoxArea::Border) + sized_box.GetEdge(BoxArea::Margin, BoxEdge::Bottom) - flex_baseline;
  91. // Close the box, and break out of the loop if it did not produce any new scrollbars, otherwise continue to format the flexbox again.
  92. if (flex_container_box->Close(content_overflow_size, sized_box, element_baseline))
  93. break;
  94. }
  95. return flex_container_box;
  96. }
  97. Vector2f FlexFormattingContext::GetMaxContentSize(Element* element, const FormattingMode& formatting_mode)
  98. {
  99. RMLUI_ASSERT(formatting_mode.constraint == FormattingMode::Constraint::MaxContent);
  100. RMLUI_ZoneScopedC(0xBFBF3F);
  101. // A large but finite number is used here, since layouting doesn't always work well with infinities.
  102. const Vector2f infinity(10000.0f, 10000.0f);
  103. RootBox root(Box(infinity), formatting_mode);
  104. auto flex_container_box = MakeUnique<FlexContainer>(element, &root);
  105. FlexFormattingContext context;
  106. context.flex_container_box = flex_container_box.get();
  107. context.element_flex = element;
  108. context.flex_available_content_size = Vector2f(-1, -1);
  109. context.flex_content_containing_block = infinity;
  110. context.flex_max_size = Vector2f(FLT_MAX, FLT_MAX);
  111. // Format the flexbox and all its children.
  112. Vector2f flex_resulting_content_size, content_overflow_size;
  113. float flex_baseline = 0.f;
  114. context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
  115. return flex_resulting_content_size;
  116. }
  117. struct FlexItem {
  118. // In the following, suffix '_a' means flex start edge while '_b' means flex end edge.
  119. struct Size {
  120. bool auto_margin_a, auto_margin_b;
  121. bool auto_size;
  122. float margin_a, margin_b;
  123. float sum_edges_a; // Start edge: margin (non-auto) + border + padding
  124. float sum_edges; // Inner->outer size
  125. float min_size, max_size; // Inner size
  126. };
  127. Element* element;
  128. Box box;
  129. // Filled during the build step.
  130. Size main;
  131. Size cross;
  132. float flex_shrink_factor;
  133. float flex_grow_factor;
  134. Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value
  135. float inner_flex_base_size; // Inner size
  136. float flex_base_size; // Outer size
  137. float hypothetical_main_size; // Outer size
  138. // Used for resolving flexible length
  139. enum class Violation : uint8_t { None = 0, Min, Max };
  140. bool frozen;
  141. Violation violation;
  142. float target_main_size; // Outer size
  143. float used_main_size; // Outer size (without auto margins)
  144. float main_auto_margin_size_a, main_auto_margin_size_b;
  145. float main_offset;
  146. // Used for resolving cross size
  147. float hypothetical_cross_size; // Outer size
  148. float used_cross_size; // Outer size
  149. float cross_offset; // Offset within line
  150. float cross_baseline_top; // Only used for baseline cross alignment
  151. };
  152. struct FlexLine {
  153. FlexLine(Vector<FlexItem>&& items) : items(std::move(items)) {}
  154. Vector<FlexItem> items;
  155. float accumulated_hypothetical_main_size = 0;
  156. float cross_size = 0; // Excludes line spacing
  157. float cross_spacing_a = 0, cross_spacing_b = 0;
  158. float cross_offset = 0;
  159. };
  160. struct FlexLineContainer {
  161. Vector<FlexLine> lines;
  162. };
  163. static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse)
  164. {
  165. float margin_a, margin_b, padding_border_a, padding_border_b;
  166. LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value);
  167. const float padding_border = padding_border_a + padding_border_b;
  168. const float margin = margin_a + margin_b;
  169. destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto);
  170. destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto);
  171. destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto);
  172. destination.margin_a = margin_a;
  173. destination.margin_b = margin_b;
  174. destination.sum_edges = padding_border + margin;
  175. destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a);
  176. destination.min_size = ResolveValue(computed_size.min_size, base_value);
  177. destination.max_size = ResolveValue(computed_size.max_size, base_value);
  178. if (computed_size.box_sizing == Style::BoxSizing::BorderBox)
  179. {
  180. destination.min_size = Math::Max(0.0f, destination.min_size - padding_border);
  181. if (destination.max_size < FLT_MAX)
  182. destination.max_size = Math::Max(0.0f, destination.max_size - padding_border);
  183. }
  184. if (direction_reverse)
  185. {
  186. std::swap(destination.auto_margin_a, destination.auto_margin_b);
  187. std::swap(destination.margin_a, destination.margin_b);
  188. }
  189. }
  190. static float GetInnerUsedMainSize(const FlexItem& item)
  191. {
  192. // Due to floating-point precision the outer size may be smaller than `sum_edges`, so clamp the result to zero.
  193. return Math::Max(item.used_main_size - item.main.sum_edges, 0.f);
  194. }
  195. static float GetInnerUsedCrossSize(const FlexItem& item)
  196. {
  197. return Math::Max(item.used_cross_size - item.cross.sum_edges, 0.f);
  198. }
  199. void FlexFormattingContext::Format(Vector2f& flex_resulting_content_size, Vector2f& flex_content_overflow_size, float& flex_baseline) const
  200. {
  201. RMLUI_ZoneScopedC(0xAFAF7F);
  202. // The following procedure is based on the CSS flexible box layout algorithm.
  203. // For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm
  204. const ComputedValues& computed_flex = element_flex->GetComputedValues();
  205. const Style::FlexDirection direction = computed_flex.flex_direction();
  206. const Style::LengthPercentage row_gap = computed_flex.row_gap();
  207. const Style::LengthPercentage column_gap = computed_flex.column_gap();
  208. const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse);
  209. const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse);
  210. const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap);
  211. const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse);
  212. const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  213. const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  214. const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y);
  215. const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y);
  216. const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x);
  217. const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x);
  218. // For the purpose of placing items we make infinite size a big value.
  219. const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size);
  220. // For the purpose of resolving lengths, infinite main size becomes zero.
  221. const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size);
  222. const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size);
  223. const float main_gap_size = ResolveValue(main_axis_horizontal ? column_gap : row_gap, main_size_base_value);
  224. const float cross_gap_size = ResolveValue(main_axis_horizontal ? row_gap : column_gap, cross_size_base_value);
  225. // -- Build a list of all flex items with base size information --
  226. const int num_flex_children = element_flex->GetNumChildren();
  227. Vector<FlexItem> items;
  228. items.reserve(num_flex_children);
  229. for (int i = 0; i < num_flex_children; i++)
  230. {
  231. Element* element = element_flex->GetChild(i);
  232. const ComputedValues& computed = element->GetComputedValues();
  233. if (computed.display() == Style::Display::None)
  234. {
  235. continue;
  236. }
  237. else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed)
  238. {
  239. flex_container_box->AddAbsoluteElement(element, {}, element_flex);
  240. continue;
  241. }
  242. else if (computed.position() == Style::Position::Relative)
  243. {
  244. flex_container_box->AddRelativeElement(element);
  245. }
  246. FlexItem item = {};
  247. item.element = element;
  248. LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BuildBoxMode::UnalignedBlock);
  249. Style::LengthPercentageAuto item_main_size;
  250. {
  251. const ComputedAxisSize computed_main_size =
  252. main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  253. const ComputedAxisSize computed_cross_size =
  254. !main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  255. GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse);
  256. GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse);
  257. item_main_size = computed_main_size.size;
  258. }
  259. item.flex_shrink_factor = computed.flex_shrink();
  260. item.flex_grow_factor = computed.flex_grow();
  261. item.align_self = computed.align_self();
  262. static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 &&
  263. int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1,
  264. "It is assumed below that align items is a shifted version (no auto value) of align self.");
  265. // Use the container's align-items property if align-self is auto.
  266. if (item.align_self == Style::AlignSelf::Auto)
  267. item.align_self = static_cast<Style::AlignSelf>(static_cast<int>(computed_flex.align_items()) + 1);
  268. auto GetMainSize = [&](const Box& box) { return box.GetSize()[main_axis_horizontal ? 0 : 1]; };
  269. const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b);
  270. // Find the flex base size (possibly negative when using border box sizing)
  271. if (computed.flex_basis().type != Style::FlexBasis::Auto)
  272. {
  273. item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value);
  274. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  275. item.inner_flex_base_size -= sum_padding_border;
  276. }
  277. else if (!item.main.auto_size)
  278. {
  279. item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value);
  280. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  281. item.inner_flex_base_size -= sum_padding_border;
  282. }
  283. else if (GetMainSize(item.box) >= 0.f)
  284. {
  285. // The element is auto-sized, and yet its box was given a definite size. This can happen e.g. due to intrinsic sizing or aspect ratios.
  286. item.inner_flex_base_size = GetMainSize(item.box);
  287. }
  288. else if (main_axis_horizontal)
  289. {
  290. item.inner_flex_base_size =
  291. LayoutDetails::GetShrinkToFitWidth(element, flex_content_containing_block, flex_container_box->GetFormattingMode());
  292. }
  293. else
  294. {
  295. const Vector2f initial_box_size = item.box.GetSize();
  296. RMLUI_ASSERT(initial_box_size.y < 0.f);
  297. Box format_box = item.box;
  298. if (initial_box_size.x < 0.f && flex_available_content_size.x >= 0.f)
  299. format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y));
  300. FormattingContext::FormatIndependent(flex_container_box, element, (format_box.GetSize().x >= 0 ? &format_box : nullptr),
  301. FormattingContextType::Block);
  302. item.inner_flex_base_size = element->GetBox().GetSize().y;
  303. // Apply the automatic block size as minimum size (§4.5). Strictly speaking, we should also apply this to
  304. // the other branches in column mode (and inline min-content size in row mode). However, the formatting step
  305. // can be expensive, here we have already done that step so the value is readily accessible to us.
  306. if (item.main.min_size == 0.f && !LayoutDetails::IsScrollContainer(computed.overflow_x(), computed.overflow_y()))
  307. item.main.min_size = Math::Min(item.inner_flex_base_size, item.main.max_size);
  308. }
  309. // Calculate the hypothetical main size (clamped flex base size).
  310. item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  311. item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges;
  312. items.push_back(std::move(item));
  313. }
  314. if (items.empty())
  315. {
  316. return;
  317. }
  318. // -- Collect the items into lines --
  319. FlexLineContainer container;
  320. if (flex_single_line)
  321. {
  322. container.lines.emplace_back(std::move(items));
  323. }
  324. else
  325. {
  326. float cursor = 0;
  327. Vector<FlexItem> line_items;
  328. for (FlexItem& item : items)
  329. {
  330. cursor += item.hypothetical_main_size;
  331. if (!line_items.empty() && cursor > main_wrap_size)
  332. {
  333. // Break into new line.
  334. container.lines.emplace_back(std::move(line_items));
  335. cursor = item.hypothetical_main_size;
  336. line_items = {std::move(item)};
  337. }
  338. else
  339. {
  340. // Add item to current line.
  341. line_items.push_back(std::move(item));
  342. }
  343. cursor += main_gap_size;
  344. }
  345. if (!line_items.empty())
  346. container.lines.emplace_back(std::move(line_items));
  347. items.clear();
  348. items.shrink_to_fit();
  349. }
  350. for (FlexLine& line : container.lines)
  351. {
  352. // now that items are in lines, we can add the main gap size to all but the last item
  353. if (main_gap_size > 0.f)
  354. {
  355. for (size_t i = 0; i < line.items.size() - 1; i++)
  356. {
  357. line.items[i].hypothetical_main_size += main_gap_size;
  358. line.items[i].flex_base_size += main_gap_size;
  359. line.items[i].main.margin_b += main_gap_size;
  360. line.items[i].main.sum_edges += main_gap_size;
  361. }
  362. }
  363. line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f,
  364. [](float value, const FlexItem& item) { return value + item.hypothetical_main_size; });
  365. }
  366. // If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line.
  367. const float used_main_size_unconstrained = main_available_size >= 0.f
  368. ? main_available_size
  369. : std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) {
  370. return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size;
  371. })->accumulated_hypothetical_main_size;
  372. const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size);
  373. // -- Determine main size --
  374. // Resolve flexible lengths to find the used main size of all items.
  375. for (FlexLine& line : container.lines)
  376. {
  377. const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative
  378. const bool flex_mode_grow = (available_flex_space > 0.f);
  379. auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); };
  380. // Initialize items and freeze inflexible items.
  381. for (FlexItem& item : line.items)
  382. {
  383. item.target_main_size = item.flex_base_size;
  384. if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) ||
  385. (!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size))
  386. {
  387. item.frozen = true;
  388. item.target_main_size = item.hypothetical_main_size;
  389. }
  390. }
  391. auto RemainingFreeSpace = [used_main_size, &line]() {
  392. return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  393. return value + (item.frozen ? item.target_main_size : item.flex_base_size);
  394. });
  395. };
  396. const float initial_free_space = RemainingFreeSpace();
  397. // Now iteratively distribute or shrink the size of all the items, until all the items are frozen.
  398. while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; }))
  399. {
  400. float remaining_free_space = RemainingFreeSpace();
  401. const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f,
  402. [&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); });
  403. if (flex_factor_sum < 1.f)
  404. {
  405. const float scaled_initial_free_space = initial_free_space * flex_factor_sum;
  406. if (Math::Absolute(scaled_initial_free_space) < Math::Absolute(remaining_free_space))
  407. remaining_free_space = scaled_initial_free_space;
  408. }
  409. if (remaining_free_space != 0.f)
  410. {
  411. // Distribute free space proportionally to flex factors
  412. if (flex_mode_grow)
  413. {
  414. for (FlexItem& item : line.items)
  415. {
  416. if (!item.frozen)
  417. {
  418. const float distribute_ratio = item.flex_grow_factor / flex_factor_sum;
  419. item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space;
  420. }
  421. }
  422. }
  423. else
  424. {
  425. const float scaled_flex_shrink_factor_sum =
  426. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  427. return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size);
  428. });
  429. const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum);
  430. for (FlexItem& item : line.items)
  431. {
  432. if (!item.frozen)
  433. {
  434. const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size;
  435. const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero;
  436. item.target_main_size = item.flex_base_size - distribute_ratio * Math::Absolute(remaining_free_space);
  437. }
  438. }
  439. }
  440. }
  441. // Clamp min/max violations
  442. float total_minmax_violation = 0.f;
  443. for (FlexItem& item : line.items)
  444. {
  445. if (!item.frozen)
  446. {
  447. const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges);
  448. const float clamped_target_main_size =
  449. Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  450. const float violation_diff = clamped_target_main_size - item.target_main_size;
  451. item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min
  452. : (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None));
  453. item.target_main_size = clamped_target_main_size;
  454. total_minmax_violation += violation_diff;
  455. }
  456. }
  457. for (FlexItem& item : line.items)
  458. {
  459. if (total_minmax_violation > 0.0f)
  460. item.frozen |= (item.violation == FlexItem::Violation::Min);
  461. else if (total_minmax_violation < 0.0f)
  462. item.frozen |= (item.violation == FlexItem::Violation::Max);
  463. else
  464. item.frozen = true;
  465. }
  466. }
  467. // Now, each item's used main size is found!
  468. for (FlexItem& item : line.items)
  469. item.used_main_size = item.target_main_size;
  470. }
  471. // -- Align main axis (§9.5) --
  472. // Main alignment is done before cross sizing. Previously, doing it in this order was important due to pixel
  473. // rounding, since changing the main offset could change the main size after rounding, which in turn could influence
  474. // the cross size. However, now we no longer do pixel rounding, so we may be free to do cross sizing first if we
  475. // want to do it in that order for some particular reason.
  476. for (FlexLine& line : container.lines)
  477. {
  478. const float remaining_free_space = used_main_size -
  479. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; });
  480. if (remaining_free_space > 0.0f)
  481. {
  482. const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0,
  483. [](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); });
  484. if (num_auto_margins > 0)
  485. {
  486. // Distribute the remaining space to the auto margins.
  487. const float space_per_auto_margin = remaining_free_space / float(num_auto_margins);
  488. for (FlexItem& item : line.items)
  489. {
  490. if (item.main.auto_margin_a)
  491. item.main_auto_margin_size_a = space_per_auto_margin;
  492. if (item.main.auto_margin_b)
  493. item.main_auto_margin_size_b = space_per_auto_margin;
  494. }
  495. }
  496. else
  497. {
  498. // Distribute the remaining space based on the 'justify-content' property.
  499. using Style::JustifyContent;
  500. const int num_items = int(line.items.size());
  501. switch (computed_flex.justify_content())
  502. {
  503. case JustifyContent::SpaceBetween:
  504. if (num_items > 1)
  505. {
  506. const float space_per_edge = remaining_free_space / float(2 * num_items - 2);
  507. for (int i = 0; i < num_items; i++)
  508. {
  509. FlexItem& item = line.items[i];
  510. if (i > 0)
  511. item.main_auto_margin_size_a = space_per_edge;
  512. if (i < num_items - 1)
  513. item.main_auto_margin_size_b = space_per_edge;
  514. }
  515. break;
  516. }
  517. //-fallthrough
  518. case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break;
  519. case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break;
  520. case JustifyContent::Center:
  521. line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space;
  522. line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space;
  523. break;
  524. case JustifyContent::SpaceAround:
  525. {
  526. const float space_per_edge = remaining_free_space / float(2 * num_items);
  527. for (FlexItem& item : line.items)
  528. {
  529. item.main_auto_margin_size_a = space_per_edge;
  530. item.main_auto_margin_size_b = space_per_edge;
  531. }
  532. }
  533. break;
  534. case JustifyContent::SpaceEvenly:
  535. {
  536. const float space_per_edge = remaining_free_space / float(2 * (num_items + 1));
  537. for (int i = 0; i < num_items; i++)
  538. {
  539. FlexItem& item = line.items[i];
  540. item.main_auto_margin_size_a = space_per_edge;
  541. item.main_auto_margin_size_b = space_per_edge;
  542. if (i == 0)
  543. item.main_auto_margin_size_a *= 2.0f;
  544. else if (i == num_items - 1)
  545. item.main_auto_margin_size_b *= 2.0f;
  546. }
  547. }
  548. break;
  549. }
  550. }
  551. }
  552. // Now find the offset for each item.
  553. float cursor = 0.0f;
  554. for (FlexItem& item : line.items)
  555. {
  556. if (direction_reverse)
  557. item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b);
  558. else
  559. item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a;
  560. cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b;
  561. }
  562. }
  563. // Apply cross axis gaps to every item in every line except the last line.
  564. if (cross_gap_size > 0.f)
  565. {
  566. for (size_t i = 0; i < container.lines.size() - 1; i++)
  567. {
  568. FlexLine& line = container.lines[i];
  569. for (FlexItem& item : line.items)
  570. {
  571. item.cross.margin_b += cross_gap_size;
  572. item.cross.sum_edges += cross_gap_size;
  573. }
  574. }
  575. }
  576. auto CanSkipHypotheticalCrossSize = [=](const FlexItem& item) {
  577. // If the following conditions are met, the hypothetical cross size will never be used. This allows us to skip a
  578. // potentially slow step with content-based sizing.
  579. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  580. const bool stretched = (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b);
  581. const bool single_line_definite_cross_size = (cross_available_size >= 0.f && flex_single_line);
  582. return stretched && single_line_definite_cross_size;
  583. };
  584. // -- Determine cross size (§9.4) --
  585. // First, determine the cross size of each item, format it if necessary.
  586. for (FlexLine& line : container.lines)
  587. {
  588. for (FlexItem& item : line.items)
  589. {
  590. if (CanSkipHypotheticalCrossSize(item))
  591. continue;
  592. const Vector2f content_size = item.box.GetSize();
  593. if (main_axis_horizontal)
  594. {
  595. if (content_size.y < 0.0f)
  596. {
  597. item.box.SetContent(Vector2f(GetInnerUsedMainSize(item), content_size.y));
  598. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  599. item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges;
  600. }
  601. else
  602. {
  603. item.hypothetical_cross_size = content_size.y + item.cross.sum_edges;
  604. }
  605. }
  606. else
  607. {
  608. if (content_size.x < 0.0f)
  609. {
  610. item.box.SetContent(Vector2f(content_size.x, GetInnerUsedMainSize(item)));
  611. item.hypothetical_cross_size =
  612. LayoutDetails::GetShrinkToFitWidth(item.element, flex_content_containing_block, flex_container_box->GetFormattingMode()) +
  613. item.cross.sum_edges;
  614. }
  615. else
  616. {
  617. item.hypothetical_cross_size = content_size.x + item.cross.sum_edges;
  618. }
  619. }
  620. }
  621. }
  622. // Determine cross size of each line.
  623. if (cross_available_size >= 0.f && flex_single_line)
  624. {
  625. RMLUI_ASSERT(container.lines.size() == 1);
  626. container.lines[0].cross_size = cross_available_size;
  627. }
  628. else
  629. {
  630. for (FlexLine& line : container.lines)
  631. {
  632. RMLUI_ASSERT(std::none_of(line.items.begin(), line.items.end(), [&](const auto& item) { return CanSkipHypotheticalCrossSize(item); }));
  633. const float largest_hypothetical_cross_size =
  634. std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) {
  635. return a.hypothetical_cross_size < b.hypothetical_cross_size;
  636. })->hypothetical_cross_size;
  637. // Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8.
  638. line.cross_size = Math::Max(0.0f, largest_hypothetical_cross_size);
  639. if (flex_single_line)
  640. line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size);
  641. }
  642. }
  643. // Stretch out the lines if we have extra space.
  644. if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch)
  645. {
  646. int remaining_space = static_cast<int>(cross_available_size -
  647. std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  648. [](float value, const FlexLine& line) { return value + line.cross_size; }));
  649. if (remaining_space > 0)
  650. {
  651. // Here we use integer math to ensure all space is distributed to pixel boundaries.
  652. const int num_lines = (int)container.lines.size();
  653. for (int i = 0; i < num_lines; i++)
  654. {
  655. const int add_space_to_line = remaining_space / (num_lines - i);
  656. remaining_space -= add_space_to_line;
  657. container.lines[i].cross_size += static_cast<float>(add_space_to_line);
  658. }
  659. }
  660. }
  661. // Determine the used cross size of items.
  662. for (FlexLine& line : container.lines)
  663. {
  664. for (FlexItem& item : line.items)
  665. {
  666. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  667. if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b)
  668. {
  669. item.used_cross_size =
  670. Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
  671. // Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems
  672. // very slow, we skip this for now.
  673. }
  674. else
  675. {
  676. RMLUI_ASSERT(!CanSkipHypotheticalCrossSize(item));
  677. item.used_cross_size = item.hypothetical_cross_size;
  678. }
  679. }
  680. }
  681. // -- Align cross axis (§9.6) --
  682. for (FlexLine& line : container.lines)
  683. {
  684. constexpr float UndefinedBaseline = -FLT_MAX;
  685. float max_baseline_edge_distance = UndefinedBaseline;
  686. FlexItem* max_baseline_item = nullptr;
  687. for (FlexItem& item : line.items)
  688. {
  689. const float remaining_space = line.cross_size - item.used_cross_size;
  690. item.cross_offset = item.cross.margin_a;
  691. item.cross_baseline_top = UndefinedBaseline;
  692. const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b);
  693. if (num_auto_margins > 0)
  694. {
  695. const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins);
  696. item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f);
  697. }
  698. else
  699. {
  700. using Style::AlignSelf;
  701. const AlignSelf align_self = item.align_self;
  702. switch (align_self)
  703. {
  704. case AlignSelf::Auto:
  705. // Never encountered here: should already have been replaced by container's align-items property.
  706. RMLUI_ERROR;
  707. break;
  708. case AlignSelf::FlexStart:
  709. // Do nothing, cross offset set above with this behavior.
  710. break;
  711. case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break;
  712. case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break;
  713. case AlignSelf::Baseline:
  714. {
  715. // We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation.
  716. const float baseline_heuristic = 0.5f * item.element->GetLineHeight();
  717. const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a);
  718. item.cross_baseline_top = sum_edges_top + baseline_heuristic;
  719. const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top);
  720. if (baseline_edge_distance > max_baseline_edge_distance)
  721. {
  722. max_baseline_item = &item;
  723. max_baseline_edge_distance = baseline_edge_distance;
  724. }
  725. }
  726. break;
  727. case AlignSelf::Stretch:
  728. // Handled above
  729. break;
  730. }
  731. }
  732. if (wrap_reverse)
  733. {
  734. const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b;
  735. item.cross_offset = reverse_offset - item.cross_offset;
  736. }
  737. }
  738. if (max_baseline_item)
  739. {
  740. // Align all baseline items such that their baselines are aligned with the one with the max. baseline distance.
  741. // Cross offset for all baseline items are currently set as in 'flex-start'.
  742. const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a);
  743. const float line_top_to_baseline_distance =
  744. max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top;
  745. for (FlexItem& item : line.items)
  746. {
  747. if (item.cross_baseline_top != UndefinedBaseline)
  748. {
  749. const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a);
  750. item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top;
  751. }
  752. }
  753. }
  754. }
  755. const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  756. [](float value, const FlexLine& line) { return value + line.cross_size; });
  757. // If the available cross size is infinite, the used cross size becomes the accumulated line cross size.
  758. const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size;
  759. const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size);
  760. // Align the lines along the cross-axis.
  761. {
  762. const float remaining_free_space = used_cross_size - accumulated_lines_cross_size;
  763. const int num_lines = int(container.lines.size());
  764. if (remaining_free_space > 0.f)
  765. {
  766. using Style::AlignContent;
  767. switch (computed_flex.align_content())
  768. {
  769. case AlignContent::SpaceBetween:
  770. if (num_lines > 1)
  771. {
  772. const float space_per_edge = remaining_free_space / float(2 * num_lines - 2);
  773. for (int i = 0; i < num_lines; i++)
  774. {
  775. FlexLine& line = container.lines[i];
  776. if (i > 0)
  777. line.cross_spacing_a = space_per_edge;
  778. if (i < num_lines - 1)
  779. line.cross_spacing_b = space_per_edge;
  780. }
  781. }
  782. //-fallthrough
  783. case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break;
  784. case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break;
  785. case AlignContent::Center:
  786. container.lines.front().cross_spacing_a = 0.5f * remaining_free_space;
  787. container.lines.back().cross_spacing_b = 0.5f * remaining_free_space;
  788. break;
  789. case AlignContent::SpaceAround:
  790. {
  791. const float space_per_edge = remaining_free_space / float(2 * num_lines);
  792. for (FlexLine& line : container.lines)
  793. {
  794. line.cross_spacing_a = space_per_edge;
  795. line.cross_spacing_b = space_per_edge;
  796. }
  797. }
  798. break;
  799. case AlignContent::SpaceEvenly:
  800. {
  801. const float space_per_edge = remaining_free_space / float(2 * (num_lines + 1));
  802. for (int i = 0; i < num_lines; i++)
  803. {
  804. FlexLine& line = container.lines[i];
  805. line.cross_spacing_a = space_per_edge;
  806. line.cross_spacing_b = space_per_edge;
  807. if (i == 0)
  808. line.cross_spacing_a *= 2.0f;
  809. else if (i == num_lines - 1)
  810. line.cross_spacing_b *= 2.0f;
  811. }
  812. }
  813. break;
  814. case AlignContent::Stretch:
  815. // Handled above.
  816. break;
  817. }
  818. }
  819. // Now find the offset and snap the line edges to the pixel grid.
  820. float cursor = 0.f;
  821. for (FlexLine& line : container.lines)
  822. {
  823. if (wrap_reverse)
  824. line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size);
  825. else
  826. line.cross_offset = cursor + line.cross_spacing_a;
  827. cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b;
  828. }
  829. }
  830. auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) {
  831. return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main);
  832. };
  833. bool baseline_set = false;
  834. // -- Format items --
  835. for (FlexLine& line : container.lines)
  836. {
  837. for (FlexItem& item : line.items)
  838. {
  839. const Vector2f item_size = MainCrossToVec2(GetInnerUsedMainSize(item), GetInnerUsedCrossSize(item));
  840. const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset);
  841. item.box.SetContent(item_size);
  842. UniquePtr<LayoutBox> item_layout_box =
  843. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  844. // Set the position of the element within the flex container
  845. item.element->SetOffset(flex_content_offset + item_offset, element_flex);
  846. // The flex container baseline is simply set to the first flex item that has a baseline.
  847. if (!baseline_set && item_layout_box->GetBaselineOfLastLine(flex_baseline))
  848. {
  849. flex_baseline += flex_content_offset.y + item_offset.y;
  850. baseline_set = true;
  851. }
  852. // The cell contents may overflow, propagate this to the flex container.
  853. const Vector2f overflow_size = item_offset + item_layout_box->GetVisibleOverflowSize();
  854. flex_content_overflow_size = Math::Max(flex_content_overflow_size, overflow_size);
  855. }
  856. }
  857. flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size);
  858. }
  859. } // namespace Rml