FlexFormattingContext.cpp 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
  7. * Copyright (c) 2019-2023 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "FlexFormattingContext.h"
  29. #include "../../../Include/RmlUi/Core/ComputedValues.h"
  30. #include "../../../Include/RmlUi/Core/Element.h"
  31. #include "../../../Include/RmlUi/Core/ElementScroll.h"
  32. #include "../../../Include/RmlUi/Core/Profiling.h"
  33. #include "../../../Include/RmlUi/Core/Types.h"
  34. #include "ContainerBox.h"
  35. #include "LayoutDetails.h"
  36. #include <algorithm>
  37. #include <float.h>
  38. #include <numeric>
  39. namespace Rml {
  40. UniquePtr<LayoutBox> FlexFormattingContext::Format(ContainerBox* parent_container, Element* element, Vector2f containing_block,
  41. const Box& initial_box)
  42. {
  43. RMLUI_ZoneScopedC(0xAFAF4F);
  44. auto flex_container_box = MakeUnique<FlexContainer>(element, parent_container, initial_box);
  45. ElementScroll* element_scroll = element->GetElementScroll();
  46. const ComputedValues& computed = element->GetComputedValues();
  47. const FormattingMode::Constraint formatting_constraint = parent_container->GetFormattingMode().constraint;
  48. RMLUI_ASSERT(containing_block.x >= 0.f || formatting_constraint == FormattingMode::Constraint::MaxContent);
  49. // if (formatting_constraint == FormattingMode::Constraint::MaxContent)
  50. // LayoutDetails::BuildBox(box, containing_block, element, BuildBoxMode::UnalignedBlock);
  51. Box& box = flex_container_box->GetBox();
  52. // Start with any auto-scrollbars off.
  53. flex_container_box->ResetScrollbars(box);
  54. FlexFormattingContext context;
  55. context.flex_container_box = flex_container_box.get();
  56. context.element_flex = element;
  57. if (formatting_constraint == FormattingMode::Constraint::MaxContent)
  58. {
  59. // Format max-content as if unconstrained, clamping is instead done later during normal formatting.
  60. context.flex_min_size = Vector2f(0.f);
  61. context.flex_max_size = Vector2f(FLT_MAX);
  62. }
  63. else
  64. {
  65. LayoutDetails::GetMinMaxWidth(context.flex_min_size.x, context.flex_max_size.x, computed, box, containing_block.x);
  66. LayoutDetails::GetMinMaxHeight(context.flex_min_size.y, context.flex_max_size.y, computed, box, containing_block.y);
  67. }
  68. const Vector2f box_content_size = box.GetSize(); // Can be negative for auto size (infinite available space).
  69. context.flex_content_offset = box.GetPosition();
  70. for (int layout_iteration = 0; layout_iteration < 3; layout_iteration++)
  71. {
  72. // One or both scrollbars can be enabled between iterations.
  73. const Vector2f scrollbar_size = {
  74. element_scroll->GetScrollbarSize(ElementScroll::VERTICAL),
  75. element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL),
  76. };
  77. for (int i = 0; i < 2; i++)
  78. context.flex_available_content_size[i] = (box_content_size[i] < 0.f ? -1.f : Math::Max(box_content_size[i] - scrollbar_size[i], 0.f));
  79. context.flex_content_containing_block = context.flex_available_content_size;
  80. // Format the flexbox and all its children.
  81. Vector2f flex_resulting_content_size, content_overflow_size;
  82. float flex_baseline = 0.f;
  83. context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
  84. // Output the size of the formatted flexbox. Any auto size is replaced by the resulting content size.
  85. Vector2f formatted_content_size = box_content_size;
  86. for (int i = 0; i < 2; i++)
  87. {
  88. if (box_content_size[i] < 0.0f)
  89. formatted_content_size[i] = flex_resulting_content_size[i] + scrollbar_size[i];
  90. }
  91. Box sized_box = box;
  92. sized_box.SetContent(formatted_content_size);
  93. // Change the flex baseline coordinates to the element baseline, which is defined as the distance from the element's bottom margin edge.
  94. const float element_baseline =
  95. sized_box.GetSizeAcross(BoxDirection::Vertical, BoxArea::Border) + sized_box.GetEdge(BoxArea::Margin, BoxEdge::Bottom) - flex_baseline;
  96. // Close the box, and break out of the loop if it did not produce any new scrollbars, otherwise continue to format the flexbox again.
  97. if (flex_container_box->Close(content_overflow_size, sized_box, element_baseline))
  98. {
  99. box.SetContent(formatted_content_size);
  100. break;
  101. }
  102. }
  103. return flex_container_box;
  104. }
  105. struct FlexItem {
  106. // In the following, suffix '_a' means flex start edge while '_b' means flex end edge.
  107. struct Size {
  108. bool auto_margin_a, auto_margin_b;
  109. bool auto_size;
  110. float margin_a, margin_b;
  111. float sum_edges_a; // Start edge: margin (non-auto) + border + padding
  112. float sum_edges; // Inner->outer size
  113. float min_size, max_size; // Inner size
  114. };
  115. Element* element;
  116. Box box;
  117. // Filled during the build step.
  118. Size main;
  119. Size cross;
  120. float flex_shrink_factor;
  121. float flex_grow_factor;
  122. Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value
  123. float inner_flex_base_size; // Inner size
  124. float flex_base_size; // Outer size
  125. float hypothetical_main_size; // Outer size
  126. // Used for resolving flexible length
  127. enum class Violation : uint8_t { None = 0, Min, Max };
  128. bool frozen;
  129. Violation violation;
  130. float target_main_size; // Outer size
  131. float used_main_size; // Outer size (without auto margins)
  132. float main_auto_margin_size_a, main_auto_margin_size_b;
  133. float main_offset;
  134. // Used for resolving cross size
  135. float hypothetical_cross_size; // Outer size
  136. float used_cross_size; // Outer size
  137. float cross_offset; // Offset within line
  138. float cross_baseline_top; // Only used for baseline cross alignment
  139. };
  140. struct FlexLine {
  141. FlexLine(Vector<FlexItem>&& items) : items(std::move(items)) {}
  142. Vector<FlexItem> items;
  143. float accumulated_hypothetical_main_size = 0;
  144. float cross_size = 0; // Excludes line spacing
  145. float cross_spacing_a = 0, cross_spacing_b = 0;
  146. float cross_offset = 0;
  147. };
  148. struct FlexLineContainer {
  149. Vector<FlexLine> lines;
  150. };
  151. static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse)
  152. {
  153. float margin_a, margin_b, padding_border_a, padding_border_b;
  154. LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value);
  155. const float padding_border = padding_border_a + padding_border_b;
  156. const float margin = margin_a + margin_b;
  157. destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto);
  158. destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto);
  159. destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto);
  160. destination.margin_a = margin_a;
  161. destination.margin_b = margin_b;
  162. destination.sum_edges = padding_border + margin;
  163. destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a);
  164. destination.min_size = ResolveValue(computed_size.min_size, base_value);
  165. destination.max_size = ResolveValue(computed_size.max_size, base_value);
  166. if (computed_size.box_sizing == Style::BoxSizing::BorderBox)
  167. {
  168. destination.min_size = Math::Max(0.0f, destination.min_size - padding_border);
  169. if (destination.max_size < FLT_MAX)
  170. destination.max_size = Math::Max(0.0f, destination.max_size - padding_border);
  171. }
  172. if (direction_reverse)
  173. {
  174. std::swap(destination.auto_margin_a, destination.auto_margin_b);
  175. std::swap(destination.margin_a, destination.margin_b);
  176. }
  177. }
  178. static float GetInnerUsedMainSize(const FlexItem& item)
  179. {
  180. // Due to floating-point precision the outer size may be smaller than `sum_edges`, so clamp the result to zero.
  181. return Math::Max(item.used_main_size - item.main.sum_edges, 0.f);
  182. }
  183. static float GetInnerUsedCrossSize(const FlexItem& item)
  184. {
  185. return Math::Max(item.used_cross_size - item.cross.sum_edges, 0.f);
  186. }
  187. void FlexFormattingContext::Format(Vector2f& flex_resulting_content_size, Vector2f& flex_content_overflow_size, float& flex_baseline) const
  188. {
  189. RMLUI_ZoneScopedC(0xAFAF7F);
  190. // The following procedure is based on the CSS flexible box layout algorithm.
  191. // For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm
  192. const ComputedValues& computed_flex = element_flex->GetComputedValues();
  193. const Style::FlexDirection direction = computed_flex.flex_direction();
  194. const Style::LengthPercentage row_gap = computed_flex.row_gap();
  195. const Style::LengthPercentage column_gap = computed_flex.column_gap();
  196. const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse);
  197. const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse);
  198. const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap);
  199. const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse);
  200. const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  201. const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  202. const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y);
  203. const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y);
  204. const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x);
  205. const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x);
  206. // For the purpose of placing items we make infinite size a big value.
  207. const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size);
  208. // For the purpose of resolving lengths, infinite main size becomes zero.
  209. const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size);
  210. const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size);
  211. const float main_gap_size = ResolveValue(main_axis_horizontal ? column_gap : row_gap, main_size_base_value);
  212. const float cross_gap_size = ResolveValue(main_axis_horizontal ? row_gap : column_gap, cross_size_base_value);
  213. // -- Build a list of all flex items with base size information --
  214. const int num_flex_children = element_flex->GetNumChildren();
  215. Vector<FlexItem> items;
  216. items.reserve(num_flex_children);
  217. for (int i = 0; i < num_flex_children; i++)
  218. {
  219. Element* element = element_flex->GetChild(i);
  220. const ComputedValues& computed = element->GetComputedValues();
  221. if (computed.display() == Style::Display::None)
  222. {
  223. continue;
  224. }
  225. else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed)
  226. {
  227. flex_container_box->AddAbsoluteElement(element, {}, element_flex);
  228. continue;
  229. }
  230. else if (computed.position() == Style::Position::Relative)
  231. {
  232. flex_container_box->AddRelativeElement(element);
  233. }
  234. FlexItem item = {};
  235. item.element = element;
  236. LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BuildBoxMode::UnalignedBlock);
  237. Style::LengthPercentageAuto item_main_size;
  238. {
  239. const ComputedAxisSize computed_main_size =
  240. main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  241. const ComputedAxisSize computed_cross_size =
  242. !main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  243. GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse);
  244. GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse);
  245. item_main_size = computed_main_size.size;
  246. }
  247. item.flex_shrink_factor = computed.flex_shrink();
  248. item.flex_grow_factor = computed.flex_grow();
  249. item.align_self = computed.align_self();
  250. static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 &&
  251. int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1,
  252. "It is assumed below that align items is a shifted version (no auto value) of align self.");
  253. // Use the container's align-items property if align-self is auto.
  254. if (item.align_self == Style::AlignSelf::Auto)
  255. item.align_self = static_cast<Style::AlignSelf>(static_cast<int>(computed_flex.align_items()) + 1);
  256. auto GetMainSize = [&](const Box& box) { return box.GetSize()[main_axis_horizontal ? 0 : 1]; };
  257. const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b);
  258. // Find the flex base size (possibly negative when using border box sizing)
  259. if (computed.flex_basis().type != Style::FlexBasis::Auto)
  260. {
  261. item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value);
  262. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  263. item.inner_flex_base_size -= sum_padding_border;
  264. }
  265. else if (!item.main.auto_size)
  266. {
  267. item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value);
  268. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  269. item.inner_flex_base_size -= sum_padding_border;
  270. }
  271. else if (GetMainSize(item.box) >= 0.f)
  272. {
  273. // The element is auto-sized, and yet its box was given a definite size. This can happen e.g. due to intrinsic sizing or aspect ratios.
  274. item.inner_flex_base_size = GetMainSize(item.box);
  275. }
  276. else if (main_axis_horizontal)
  277. {
  278. item.inner_flex_base_size =
  279. LayoutDetails::GetShrinkToFitWidth(element, flex_content_containing_block, flex_container_box->GetFormattingMode());
  280. }
  281. else
  282. {
  283. const Vector2f initial_box_size = item.box.GetSize();
  284. RMLUI_ASSERT(initial_box_size.y < 0.f);
  285. Box format_box = item.box;
  286. if (initial_box_size.x < 0.f && flex_available_content_size.x >= 0.f)
  287. format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y));
  288. FormattingContext::FormatIndependent(flex_container_box, element, (format_box.GetSize().x >= 0 ? &format_box : nullptr),
  289. FormattingContextType::Block);
  290. item.inner_flex_base_size = element->GetBox().GetSize().y;
  291. // Apply the automatic block size as minimum size (§4.5). Strictly speaking, we should also apply this to
  292. // the other branches in column mode (and inline min-content size in row mode). However, the formatting step
  293. // can be expensive, here we have already done that step so the value is readily accessible to us.
  294. if (item.main.min_size == 0.f && !LayoutDetails::IsScrollContainer(computed.overflow_x(), computed.overflow_y()))
  295. item.main.min_size = Math::Min(item.inner_flex_base_size, item.main.max_size);
  296. }
  297. // Calculate the hypothetical main size (clamped flex base size).
  298. item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  299. item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges;
  300. items.push_back(std::move(item));
  301. }
  302. if (items.empty())
  303. {
  304. return;
  305. }
  306. // -- Collect the items into lines --
  307. FlexLineContainer container;
  308. if (flex_single_line)
  309. {
  310. container.lines.emplace_back(std::move(items));
  311. }
  312. else
  313. {
  314. float cursor = 0;
  315. Vector<FlexItem> line_items;
  316. for (FlexItem& item : items)
  317. {
  318. cursor += item.hypothetical_main_size;
  319. if (!line_items.empty() && cursor > main_wrap_size)
  320. {
  321. // Break into new line.
  322. container.lines.emplace_back(std::move(line_items));
  323. cursor = item.hypothetical_main_size;
  324. line_items = {std::move(item)};
  325. }
  326. else
  327. {
  328. // Add item to current line.
  329. line_items.push_back(std::move(item));
  330. }
  331. cursor += main_gap_size;
  332. }
  333. if (!line_items.empty())
  334. container.lines.emplace_back(std::move(line_items));
  335. items.clear();
  336. items.shrink_to_fit();
  337. }
  338. for (FlexLine& line : container.lines)
  339. {
  340. // now that items are in lines, we can add the main gap size to all but the last item
  341. if (main_gap_size > 0.f)
  342. {
  343. for (size_t i = 0; i < line.items.size() - 1; i++)
  344. {
  345. line.items[i].hypothetical_main_size += main_gap_size;
  346. line.items[i].flex_base_size += main_gap_size;
  347. line.items[i].main.margin_b += main_gap_size;
  348. line.items[i].main.sum_edges += main_gap_size;
  349. }
  350. }
  351. line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f,
  352. [](float value, const FlexItem& item) { return value + item.hypothetical_main_size; });
  353. }
  354. // If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line.
  355. const float used_main_size_unconstrained = main_available_size >= 0.f
  356. ? main_available_size
  357. : std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) {
  358. return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size;
  359. })->accumulated_hypothetical_main_size;
  360. const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size);
  361. // -- Determine main size --
  362. // Resolve flexible lengths to find the used main size of all items.
  363. for (FlexLine& line : container.lines)
  364. {
  365. const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative
  366. const bool flex_mode_grow = (available_flex_space > 0.f);
  367. auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); };
  368. // Initialize items and freeze inflexible items.
  369. for (FlexItem& item : line.items)
  370. {
  371. item.target_main_size = item.flex_base_size;
  372. if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) ||
  373. (!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size))
  374. {
  375. item.frozen = true;
  376. item.target_main_size = item.hypothetical_main_size;
  377. }
  378. }
  379. auto RemainingFreeSpace = [used_main_size, &line]() {
  380. return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  381. return value + (item.frozen ? item.target_main_size : item.flex_base_size);
  382. });
  383. };
  384. const float initial_free_space = RemainingFreeSpace();
  385. // Now iteratively distribute or shrink the size of all the items, until all the items are frozen.
  386. while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; }))
  387. {
  388. float remaining_free_space = RemainingFreeSpace();
  389. const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f,
  390. [&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); });
  391. if (flex_factor_sum < 1.f)
  392. {
  393. const float scaled_initial_free_space = initial_free_space * flex_factor_sum;
  394. if (Math::Absolute(scaled_initial_free_space) < Math::Absolute(remaining_free_space))
  395. remaining_free_space = scaled_initial_free_space;
  396. }
  397. if (remaining_free_space != 0.f)
  398. {
  399. // Distribute free space proportionally to flex factors
  400. if (flex_mode_grow)
  401. {
  402. for (FlexItem& item : line.items)
  403. {
  404. if (!item.frozen)
  405. {
  406. const float distribute_ratio = item.flex_grow_factor / flex_factor_sum;
  407. item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space;
  408. }
  409. }
  410. }
  411. else
  412. {
  413. const float scaled_flex_shrink_factor_sum =
  414. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  415. return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size);
  416. });
  417. const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum);
  418. for (FlexItem& item : line.items)
  419. {
  420. if (!item.frozen)
  421. {
  422. const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size;
  423. const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero;
  424. item.target_main_size = item.flex_base_size - distribute_ratio * Math::Absolute(remaining_free_space);
  425. }
  426. }
  427. }
  428. }
  429. // Clamp min/max violations
  430. float total_minmax_violation = 0.f;
  431. for (FlexItem& item : line.items)
  432. {
  433. if (!item.frozen)
  434. {
  435. const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges);
  436. const float clamped_target_main_size =
  437. Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  438. const float violation_diff = clamped_target_main_size - item.target_main_size;
  439. item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min
  440. : (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None));
  441. item.target_main_size = clamped_target_main_size;
  442. total_minmax_violation += violation_diff;
  443. }
  444. }
  445. for (FlexItem& item : line.items)
  446. {
  447. if (total_minmax_violation > 0.0f)
  448. item.frozen |= (item.violation == FlexItem::Violation::Min);
  449. else if (total_minmax_violation < 0.0f)
  450. item.frozen |= (item.violation == FlexItem::Violation::Max);
  451. else
  452. item.frozen = true;
  453. }
  454. }
  455. // Now, each item's used main size is found!
  456. for (FlexItem& item : line.items)
  457. item.used_main_size = item.target_main_size;
  458. }
  459. // -- Align main axis (§9.5) --
  460. // Main alignment is done before cross sizing. Previously, doing it in this order was important due to pixel
  461. // rounding, since changing the main offset could change the main size after rounding, which in turn could influence
  462. // the cross size. However, now we no longer do pixel rounding, so we may be free to do cross sizing first if we
  463. // want to do it in that order for some particular reason.
  464. for (FlexLine& line : container.lines)
  465. {
  466. const float remaining_free_space = used_main_size -
  467. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; });
  468. if (remaining_free_space > 0.0f)
  469. {
  470. const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0,
  471. [](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); });
  472. if (num_auto_margins > 0)
  473. {
  474. // Distribute the remaining space to the auto margins.
  475. const float space_per_auto_margin = remaining_free_space / float(num_auto_margins);
  476. for (FlexItem& item : line.items)
  477. {
  478. if (item.main.auto_margin_a)
  479. item.main_auto_margin_size_a = space_per_auto_margin;
  480. if (item.main.auto_margin_b)
  481. item.main_auto_margin_size_b = space_per_auto_margin;
  482. }
  483. }
  484. else
  485. {
  486. // Distribute the remaining space based on the 'justify-content' property.
  487. using Style::JustifyContent;
  488. const int num_items = int(line.items.size());
  489. switch (computed_flex.justify_content())
  490. {
  491. case JustifyContent::SpaceBetween:
  492. if (num_items > 1)
  493. {
  494. const float space_per_edge = remaining_free_space / float(2 * num_items - 2);
  495. for (int i = 0; i < num_items; i++)
  496. {
  497. FlexItem& item = line.items[i];
  498. if (i > 0)
  499. item.main_auto_margin_size_a = space_per_edge;
  500. if (i < num_items - 1)
  501. item.main_auto_margin_size_b = space_per_edge;
  502. }
  503. break;
  504. }
  505. //-fallthrough
  506. case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break;
  507. case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break;
  508. case JustifyContent::Center:
  509. line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space;
  510. line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space;
  511. break;
  512. case JustifyContent::SpaceAround:
  513. {
  514. const float space_per_edge = remaining_free_space / float(2 * num_items);
  515. for (FlexItem& item : line.items)
  516. {
  517. item.main_auto_margin_size_a = space_per_edge;
  518. item.main_auto_margin_size_b = space_per_edge;
  519. }
  520. }
  521. break;
  522. case JustifyContent::SpaceEvenly:
  523. {
  524. const float space_per_edge = remaining_free_space / float(2 * (num_items + 1));
  525. for (int i = 0; i < num_items; i++)
  526. {
  527. FlexItem& item = line.items[i];
  528. item.main_auto_margin_size_a = space_per_edge;
  529. item.main_auto_margin_size_b = space_per_edge;
  530. if (i == 0)
  531. item.main_auto_margin_size_a *= 2.0f;
  532. else if (i == num_items - 1)
  533. item.main_auto_margin_size_b *= 2.0f;
  534. }
  535. }
  536. break;
  537. }
  538. }
  539. }
  540. // Now find the offset for each item.
  541. float cursor = 0.0f;
  542. for (FlexItem& item : line.items)
  543. {
  544. if (direction_reverse)
  545. item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b);
  546. else
  547. item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a;
  548. cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b;
  549. }
  550. }
  551. // Apply cross axis gaps to every item in every line except the last line.
  552. if (cross_gap_size > 0.f)
  553. {
  554. for (size_t i = 0; i < container.lines.size() - 1; i++)
  555. {
  556. FlexLine& line = container.lines[i];
  557. for (FlexItem& item : line.items)
  558. {
  559. item.cross.margin_b += cross_gap_size;
  560. item.cross.sum_edges += cross_gap_size;
  561. }
  562. }
  563. }
  564. auto CanSkipHypotheticalCrossSize = [=](const FlexItem& item) {
  565. // If the following conditions are met, the hypothetical cross size will never be used. This allows us to skip a
  566. // potentially slow step with content-based sizing.
  567. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  568. const bool stretched = (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b);
  569. const bool single_line_definite_cross_size = (cross_available_size >= 0.f && flex_single_line);
  570. return stretched && single_line_definite_cross_size;
  571. };
  572. // -- Determine cross size (§9.4) --
  573. // First, determine the cross size of each item, format it if necessary.
  574. for (FlexLine& line : container.lines)
  575. {
  576. for (FlexItem& item : line.items)
  577. {
  578. if (CanSkipHypotheticalCrossSize(item))
  579. continue;
  580. const Vector2f content_size = item.box.GetSize();
  581. if (main_axis_horizontal)
  582. {
  583. if (content_size.y < 0.0f)
  584. {
  585. item.box.SetContent(Vector2f(GetInnerUsedMainSize(item), content_size.y));
  586. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  587. item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges;
  588. }
  589. else
  590. {
  591. item.hypothetical_cross_size = content_size.y + item.cross.sum_edges;
  592. }
  593. }
  594. else
  595. {
  596. if (content_size.x < 0.0f)
  597. {
  598. item.box.SetContent(Vector2f(content_size.x, GetInnerUsedMainSize(item)));
  599. item.hypothetical_cross_size =
  600. LayoutDetails::GetShrinkToFitWidth(item.element, flex_content_containing_block, flex_container_box->GetFormattingMode()) +
  601. item.cross.sum_edges;
  602. }
  603. else
  604. {
  605. item.hypothetical_cross_size = content_size.x + item.cross.sum_edges;
  606. }
  607. }
  608. }
  609. }
  610. // Determine cross size of each line.
  611. if (cross_available_size >= 0.f && flex_single_line)
  612. {
  613. RMLUI_ASSERT(container.lines.size() == 1);
  614. container.lines[0].cross_size = cross_available_size;
  615. }
  616. else
  617. {
  618. for (FlexLine& line : container.lines)
  619. {
  620. RMLUI_ASSERT(std::none_of(line.items.begin(), line.items.end(), [&](const auto& item) { return CanSkipHypotheticalCrossSize(item); }));
  621. const float largest_hypothetical_cross_size =
  622. std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) {
  623. return a.hypothetical_cross_size < b.hypothetical_cross_size;
  624. })->hypothetical_cross_size;
  625. // Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8.
  626. line.cross_size = Math::Max(0.0f, largest_hypothetical_cross_size);
  627. if (flex_single_line)
  628. line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size);
  629. }
  630. }
  631. // Stretch out the lines if we have extra space.
  632. if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch)
  633. {
  634. int remaining_space = static_cast<int>(cross_available_size -
  635. std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  636. [](float value, const FlexLine& line) { return value + line.cross_size; }));
  637. if (remaining_space > 0)
  638. {
  639. // Here we use integer math to ensure all space is distributed to pixel boundaries.
  640. const int num_lines = (int)container.lines.size();
  641. for (int i = 0; i < num_lines; i++)
  642. {
  643. const int add_space_to_line = remaining_space / (num_lines - i);
  644. remaining_space -= add_space_to_line;
  645. container.lines[i].cross_size += static_cast<float>(add_space_to_line);
  646. }
  647. }
  648. }
  649. // Determine the used cross size of items.
  650. for (FlexLine& line : container.lines)
  651. {
  652. for (FlexItem& item : line.items)
  653. {
  654. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  655. if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b)
  656. {
  657. item.used_cross_size =
  658. Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
  659. // Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems
  660. // very slow, we skip this for now.
  661. }
  662. else
  663. {
  664. RMLUI_ASSERT(!CanSkipHypotheticalCrossSize(item));
  665. item.used_cross_size = item.hypothetical_cross_size;
  666. }
  667. }
  668. }
  669. // -- Align cross axis (§9.6) --
  670. for (FlexLine& line : container.lines)
  671. {
  672. constexpr float UndefinedBaseline = -FLT_MAX;
  673. float max_baseline_edge_distance = UndefinedBaseline;
  674. FlexItem* max_baseline_item = nullptr;
  675. for (FlexItem& item : line.items)
  676. {
  677. const float remaining_space = line.cross_size - item.used_cross_size;
  678. item.cross_offset = item.cross.margin_a;
  679. item.cross_baseline_top = UndefinedBaseline;
  680. const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b);
  681. if (num_auto_margins > 0)
  682. {
  683. const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins);
  684. item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f);
  685. }
  686. else
  687. {
  688. using Style::AlignSelf;
  689. const AlignSelf align_self = item.align_self;
  690. switch (align_self)
  691. {
  692. case AlignSelf::Auto:
  693. // Never encountered here: should already have been replaced by container's align-items property.
  694. RMLUI_ERROR;
  695. break;
  696. case AlignSelf::FlexStart:
  697. // Do nothing, cross offset set above with this behavior.
  698. break;
  699. case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break;
  700. case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break;
  701. case AlignSelf::Baseline:
  702. {
  703. // We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation.
  704. const float baseline_heuristic = 0.5f * item.element->GetLineHeight();
  705. const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a);
  706. item.cross_baseline_top = sum_edges_top + baseline_heuristic;
  707. const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top);
  708. if (baseline_edge_distance > max_baseline_edge_distance)
  709. {
  710. max_baseline_item = &item;
  711. max_baseline_edge_distance = baseline_edge_distance;
  712. }
  713. }
  714. break;
  715. case AlignSelf::Stretch:
  716. // Handled above
  717. break;
  718. }
  719. }
  720. if (wrap_reverse)
  721. {
  722. const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b;
  723. item.cross_offset = reverse_offset - item.cross_offset;
  724. }
  725. }
  726. if (max_baseline_item)
  727. {
  728. // Align all baseline items such that their baselines are aligned with the one with the max. baseline distance.
  729. // Cross offset for all baseline items are currently set as in 'flex-start'.
  730. const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a);
  731. const float line_top_to_baseline_distance =
  732. max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top;
  733. for (FlexItem& item : line.items)
  734. {
  735. if (item.cross_baseline_top != UndefinedBaseline)
  736. {
  737. const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a);
  738. item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top;
  739. }
  740. }
  741. }
  742. }
  743. const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  744. [](float value, const FlexLine& line) { return value + line.cross_size; });
  745. // If the available cross size is infinite, the used cross size becomes the accumulated line cross size.
  746. const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size;
  747. const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size);
  748. // Align the lines along the cross-axis.
  749. {
  750. const float remaining_free_space = used_cross_size - accumulated_lines_cross_size;
  751. const int num_lines = int(container.lines.size());
  752. if (remaining_free_space > 0.f)
  753. {
  754. using Style::AlignContent;
  755. switch (computed_flex.align_content())
  756. {
  757. case AlignContent::SpaceBetween:
  758. if (num_lines > 1)
  759. {
  760. const float space_per_edge = remaining_free_space / float(2 * num_lines - 2);
  761. for (int i = 0; i < num_lines; i++)
  762. {
  763. FlexLine& line = container.lines[i];
  764. if (i > 0)
  765. line.cross_spacing_a = space_per_edge;
  766. if (i < num_lines - 1)
  767. line.cross_spacing_b = space_per_edge;
  768. }
  769. }
  770. //-fallthrough
  771. case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break;
  772. case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break;
  773. case AlignContent::Center:
  774. container.lines.front().cross_spacing_a = 0.5f * remaining_free_space;
  775. container.lines.back().cross_spacing_b = 0.5f * remaining_free_space;
  776. break;
  777. case AlignContent::SpaceAround:
  778. {
  779. const float space_per_edge = remaining_free_space / float(2 * num_lines);
  780. for (FlexLine& line : container.lines)
  781. {
  782. line.cross_spacing_a = space_per_edge;
  783. line.cross_spacing_b = space_per_edge;
  784. }
  785. }
  786. break;
  787. case AlignContent::SpaceEvenly:
  788. {
  789. const float space_per_edge = remaining_free_space / float(2 * (num_lines + 1));
  790. for (int i = 0; i < num_lines; i++)
  791. {
  792. FlexLine& line = container.lines[i];
  793. line.cross_spacing_a = space_per_edge;
  794. line.cross_spacing_b = space_per_edge;
  795. if (i == 0)
  796. line.cross_spacing_a *= 2.0f;
  797. else if (i == num_lines - 1)
  798. line.cross_spacing_b *= 2.0f;
  799. }
  800. }
  801. break;
  802. case AlignContent::Stretch:
  803. // Handled above.
  804. break;
  805. }
  806. }
  807. // Now find the offset and snap the line edges to the pixel grid.
  808. float cursor = 0.f;
  809. for (FlexLine& line : container.lines)
  810. {
  811. if (wrap_reverse)
  812. line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size);
  813. else
  814. line.cross_offset = cursor + line.cross_spacing_a;
  815. cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b;
  816. }
  817. }
  818. auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) {
  819. return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main);
  820. };
  821. bool baseline_set = false;
  822. // -- Format items --
  823. for (FlexLine& line : container.lines)
  824. {
  825. for (FlexItem& item : line.items)
  826. {
  827. const Vector2f item_size = MainCrossToVec2(GetInnerUsedMainSize(item), GetInnerUsedCrossSize(item));
  828. const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset);
  829. item.box.SetContent(item_size);
  830. UniquePtr<LayoutBox> item_layout_box =
  831. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  832. // Set the position of the element within the flex container
  833. item.element->SetOffset(flex_content_offset + item_offset, element_flex);
  834. // The flex container baseline is simply set to the first flex item that has a baseline.
  835. if (!baseline_set && item_layout_box->GetBaselineOfLastLine(flex_baseline))
  836. {
  837. flex_baseline += flex_content_offset.y + item_offset.y;
  838. baseline_set = true;
  839. }
  840. // The cell contents may overflow, propagate this to the flex container.
  841. const Vector2f overflow_size = item_offset + item_layout_box->GetVisibleOverflowSize();
  842. flex_content_overflow_size = Math::Max(flex_content_overflow_size, overflow_size);
  843. }
  844. }
  845. flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size);
  846. }
  847. } // namespace Rml