FlexFormattingContext.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
  7. * Copyright (c) 2019-2023 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "FlexFormattingContext.h"
  29. #include "../../../Include/RmlUi/Core/ComputedValues.h"
  30. #include "../../../Include/RmlUi/Core/Element.h"
  31. #include "../../../Include/RmlUi/Core/ElementScroll.h"
  32. #include "../../../Include/RmlUi/Core/Profiling.h"
  33. #include "../../../Include/RmlUi/Core/Types.h"
  34. #include "ContainerBox.h"
  35. #include "LayoutDetails.h"
  36. #include "LayoutEngine.h"
  37. #include <algorithm>
  38. #include <float.h>
  39. #include <numeric>
  40. namespace Rml {
  41. UniquePtr<LayoutBox> FlexFormattingContext::Format(ContainerBox* parent_container, Element* element, const Box* override_initial_box)
  42. {
  43. RMLUI_ZoneScopedC(0xAFAF4F);
  44. auto flex_container_box = MakeUnique<FlexContainer>(element, parent_container);
  45. ElementScroll* element_scroll = element->GetElementScroll();
  46. const ComputedValues& computed = element->GetComputedValues();
  47. const Vector2f containing_block = LayoutDetails::GetContainingBlock(parent_container, element->GetPosition()).size;
  48. RMLUI_ASSERT(containing_block.x >= 0.f);
  49. // Build the initial box as specified by the flex's style, as if it was a normal block element.
  50. Box& box = flex_container_box->GetBox();
  51. if (override_initial_box)
  52. box = *override_initial_box;
  53. else
  54. LayoutDetails::BuildBox(box, containing_block, element, BuildBoxMode::Block);
  55. // Start with any auto-scrollbars off.
  56. flex_container_box->ResetScrollbars(box);
  57. FlexFormattingContext context;
  58. context.flex_container_box = flex_container_box.get();
  59. context.element_flex = element;
  60. LayoutDetails::GetMinMaxWidth(context.flex_min_size.x, context.flex_max_size.x, computed, box, containing_block.x);
  61. LayoutDetails::GetMinMaxHeight(context.flex_min_size.y, context.flex_max_size.y, computed, box, containing_block.y);
  62. const Vector2f box_content_size = box.GetSize();
  63. const bool auto_height = (box_content_size.y < 0.0f);
  64. context.flex_content_offset = box.GetPosition();
  65. for (int layout_iteration = 0; layout_iteration < 3; layout_iteration++)
  66. {
  67. // One or both scrollbars can be enabled between iterations.
  68. const Vector2f scrollbar_size = {
  69. element_scroll->GetScrollbarSize(ElementScroll::VERTICAL),
  70. element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL),
  71. };
  72. context.flex_available_content_size = Math::Max(box_content_size - scrollbar_size, Vector2f(0.f));
  73. context.flex_content_containing_block = context.flex_available_content_size;
  74. if (auto_height)
  75. {
  76. context.flex_available_content_size.y = -1.f; // Negative means infinite space
  77. context.flex_content_containing_block.y = containing_block.y;
  78. }
  79. Math::SnapToPixelGrid(context.flex_content_offset, context.flex_available_content_size);
  80. // Format the flexbox and all its children.
  81. Vector2f flex_resulting_content_size, content_overflow_size;
  82. float flex_baseline = 0.f;
  83. context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
  84. // Output the size of the formatted flexbox. The width is determined as a normal block box so we don't need to change that.
  85. Vector2f formatted_content_size = box_content_size;
  86. if (auto_height)
  87. formatted_content_size.y = flex_resulting_content_size.y + scrollbar_size.y;
  88. Box sized_box = box;
  89. sized_box.SetContent(formatted_content_size);
  90. // Change the flex baseline coordinates to the element baseline, which is defined as the distance from the element's bottom margin edge.
  91. const float element_baseline =
  92. sized_box.GetSizeAcross(BoxDirection::Vertical, BoxArea::Border) + sized_box.GetEdge(BoxArea::Margin, BoxEdge::Bottom) - flex_baseline;
  93. // Close the box, and break out of the loop if it did not produce any new scrollbars, otherwise continue to format the flexbox again.
  94. if (flex_container_box->Close(content_overflow_size, sized_box, element_baseline))
  95. break;
  96. }
  97. return flex_container_box;
  98. }
  99. struct FlexItem {
  100. // In the following, suffix '_a' means flex start edge while '_b' means flex end edge.
  101. struct Size {
  102. bool auto_margin_a, auto_margin_b;
  103. bool auto_size;
  104. float margin_a, margin_b;
  105. float sum_edges_a; // Start edge: margin (non-auto) + border + padding
  106. float sum_edges; // Inner->outer size
  107. float min_size, max_size; // Inner size
  108. };
  109. Element* element;
  110. Box box;
  111. // Filled during the build step.
  112. Size main;
  113. Size cross;
  114. float flex_shrink_factor;
  115. float flex_grow_factor;
  116. Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value
  117. float inner_flex_base_size; // Inner size
  118. float flex_base_size; // Outer size
  119. float hypothetical_main_size; // Outer size
  120. // Used for resolving flexible length
  121. enum class Violation : uint8_t { None = 0, Min, Max };
  122. bool frozen;
  123. Violation violation;
  124. float target_main_size; // Outer size
  125. float used_main_size; // Outer size (without auto margins)
  126. float main_auto_margin_size_a, main_auto_margin_size_b;
  127. float main_offset;
  128. // Used for resolving cross size
  129. float hypothetical_cross_size; // Outer size
  130. float used_cross_size; // Outer size
  131. float cross_offset; // Offset within line
  132. float cross_baseline_top; // Only used for baseline cross alignment
  133. };
  134. struct FlexLine {
  135. FlexLine(Vector<FlexItem>&& items) : items(std::move(items)) {}
  136. Vector<FlexItem> items;
  137. float accumulated_hypothetical_main_size = 0;
  138. float cross_size = 0; // Excludes line spacing
  139. float cross_spacing_a = 0, cross_spacing_b = 0;
  140. float cross_offset = 0;
  141. };
  142. struct FlexLineContainer {
  143. Vector<FlexLine> lines;
  144. };
  145. static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse)
  146. {
  147. float margin_a, margin_b, padding_border_a, padding_border_b;
  148. LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value);
  149. const float padding_border = padding_border_a + padding_border_b;
  150. const float margin = margin_a + margin_b;
  151. destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto);
  152. destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto);
  153. destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto);
  154. destination.margin_a = margin_a;
  155. destination.margin_b = margin_b;
  156. destination.sum_edges = padding_border + margin;
  157. destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a);
  158. destination.min_size = ResolveValue(computed_size.min_size, base_value);
  159. destination.max_size = ResolveValue(computed_size.max_size, base_value);
  160. if (computed_size.box_sizing == Style::BoxSizing::BorderBox)
  161. {
  162. destination.min_size = Math::Max(0.0f, destination.min_size - padding_border);
  163. if (destination.max_size < FLT_MAX)
  164. destination.max_size = Math::Max(0.0f, destination.max_size - padding_border);
  165. }
  166. if (direction_reverse)
  167. {
  168. std::swap(destination.auto_margin_a, destination.auto_margin_b);
  169. std::swap(destination.margin_a, destination.margin_b);
  170. }
  171. }
  172. void FlexFormattingContext::Format(Vector2f& flex_resulting_content_size, Vector2f& flex_content_overflow_size, float& flex_baseline) const
  173. {
  174. // The following procedure is based on the CSS flexible box layout algorithm.
  175. // For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm
  176. const ComputedValues& computed_flex = element_flex->GetComputedValues();
  177. const Style::FlexDirection direction = computed_flex.flex_direction();
  178. const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse);
  179. const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse);
  180. const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap);
  181. const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse);
  182. const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  183. const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  184. const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y);
  185. const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y);
  186. const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x);
  187. const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x);
  188. // For the purpose of placing items we make infinite size a big value.
  189. const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size);
  190. // For the purpose of resolving lengths, infinite main size becomes zero.
  191. const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size);
  192. const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size);
  193. // -- Build a list of all flex items with base size information --
  194. const int num_flex_children = element_flex->GetNumChildren();
  195. Vector<FlexItem> items;
  196. items.reserve(num_flex_children);
  197. for (int i = 0; i < num_flex_children; i++)
  198. {
  199. Element* element = element_flex->GetChild(i);
  200. const ComputedValues& computed = element->GetComputedValues();
  201. if (computed.display() == Style::Display::None)
  202. {
  203. continue;
  204. }
  205. else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed)
  206. {
  207. ContainerBox* absolute_containing_block = LayoutDetails::GetContainingBlock(flex_container_box, computed.position()).container;
  208. absolute_containing_block->AddAbsoluteElement(element, {}, element_flex);
  209. continue;
  210. }
  211. else if (computed.position() == Style::Position::Relative)
  212. {
  213. flex_container_box->AddRelativeElement(element);
  214. }
  215. FlexItem item = {};
  216. item.element = element;
  217. LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BuildBoxMode::UnalignedBlock);
  218. Style::LengthPercentageAuto item_main_size;
  219. {
  220. const ComputedAxisSize computed_main_size =
  221. main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  222. const ComputedAxisSize computed_cross_size =
  223. !main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  224. GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse);
  225. GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse);
  226. item_main_size = computed_main_size.size;
  227. }
  228. item.flex_shrink_factor = computed.flex_shrink();
  229. item.flex_grow_factor = computed.flex_grow();
  230. item.align_self = computed.align_self();
  231. static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 &&
  232. int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1,
  233. "It is assumed below that align items is a shifted version (no auto value) of align self.");
  234. // Use the container's align-items property if align-self is auto.
  235. if (item.align_self == Style::AlignSelf::Auto)
  236. item.align_self = static_cast<Style::AlignSelf>(static_cast<int>(computed_flex.align_items()) + 1);
  237. const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b);
  238. // Find the flex base size (possibly negative when using border box sizing)
  239. if (computed.flex_basis().type != Style::FlexBasis::Auto)
  240. {
  241. item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value);
  242. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  243. item.inner_flex_base_size -= sum_padding_border;
  244. }
  245. else if (!item.main.auto_size)
  246. {
  247. item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value);
  248. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  249. item.inner_flex_base_size -= sum_padding_border;
  250. }
  251. else if (main_axis_horizontal)
  252. {
  253. item.inner_flex_base_size = LayoutDetails::GetShrinkToFitWidth(element, flex_content_containing_block);
  254. }
  255. else
  256. {
  257. const Vector2f initial_box_size = item.box.GetSize();
  258. RMLUI_ASSERT(initial_box_size.y < 0.f);
  259. Box format_box = item.box;
  260. if (initial_box_size.x < 0.f)
  261. format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y));
  262. FormattingContext::FormatIndependent(flex_container_box, element, &format_box, FormattingContextType::Block);
  263. item.inner_flex_base_size = element->GetBox().GetSize().y;
  264. }
  265. // Calculate the hypothetical main size (clamped flex base size).
  266. item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  267. item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges;
  268. items.push_back(std::move(item));
  269. }
  270. if (items.empty())
  271. {
  272. return;
  273. }
  274. // -- Collect the items into lines --
  275. FlexLineContainer container;
  276. if (flex_single_line)
  277. {
  278. container.lines.emplace_back(std::move(items));
  279. }
  280. else
  281. {
  282. float cursor = 0;
  283. Vector<FlexItem> line_items;
  284. for (FlexItem& item : items)
  285. {
  286. cursor += item.hypothetical_main_size;
  287. if (!line_items.empty() && cursor > main_wrap_size)
  288. {
  289. // Break into new line.
  290. container.lines.emplace_back(std::move(line_items));
  291. cursor = item.hypothetical_main_size;
  292. line_items = {std::move(item)};
  293. }
  294. else
  295. {
  296. // Add item to current line.
  297. line_items.push_back(std::move(item));
  298. }
  299. }
  300. if (!line_items.empty())
  301. container.lines.emplace_back(std::move(line_items));
  302. items.clear();
  303. items.shrink_to_fit();
  304. }
  305. for (FlexLine& line : container.lines)
  306. {
  307. line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f,
  308. [](float value, const FlexItem& item) { return value + item.hypothetical_main_size; });
  309. }
  310. // If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line.
  311. const float used_main_size_unconstrained = main_available_size >= 0.f
  312. ? main_available_size
  313. : std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) {
  314. return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size;
  315. })->accumulated_hypothetical_main_size;
  316. const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size);
  317. // -- Determine main size --
  318. // Resolve flexible lengths to find the used main size of all items.
  319. for (FlexLine& line : container.lines)
  320. {
  321. const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative
  322. const bool flex_mode_grow = (available_flex_space > 0.f);
  323. auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); };
  324. // Initialize items and freeze inflexible items.
  325. for (FlexItem& item : line.items)
  326. {
  327. item.target_main_size = item.flex_base_size;
  328. if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) ||
  329. (!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size))
  330. {
  331. item.frozen = true;
  332. item.target_main_size = item.hypothetical_main_size;
  333. }
  334. }
  335. auto RemainingFreeSpace = [used_main_size, &line]() {
  336. return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  337. return value + (item.frozen ? item.target_main_size : item.flex_base_size);
  338. });
  339. };
  340. const float initial_free_space = RemainingFreeSpace();
  341. // Now iteratively distribute or shrink the size of all the items, until all the items are frozen.
  342. while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; }))
  343. {
  344. float remaining_free_space = RemainingFreeSpace();
  345. const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f,
  346. [&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); });
  347. if (flex_factor_sum < 1.f)
  348. {
  349. const float scaled_initial_free_space = initial_free_space * flex_factor_sum;
  350. if (Math::Absolute(scaled_initial_free_space) < Math::Absolute(remaining_free_space))
  351. remaining_free_space = scaled_initial_free_space;
  352. }
  353. if (remaining_free_space != 0.f)
  354. {
  355. // Distribute free space proportionally to flex factors
  356. if (flex_mode_grow)
  357. {
  358. for (FlexItem& item : line.items)
  359. {
  360. if (!item.frozen)
  361. {
  362. const float distribute_ratio = item.flex_grow_factor / flex_factor_sum;
  363. item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space;
  364. }
  365. }
  366. }
  367. else
  368. {
  369. const float scaled_flex_shrink_factor_sum =
  370. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  371. return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size);
  372. });
  373. const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum);
  374. for (FlexItem& item : line.items)
  375. {
  376. if (!item.frozen)
  377. {
  378. const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size;
  379. const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero;
  380. item.target_main_size = item.flex_base_size - distribute_ratio * Math::Absolute(remaining_free_space);
  381. }
  382. }
  383. }
  384. }
  385. // Clamp min/max violations
  386. float total_minmax_violation = 0.f;
  387. for (FlexItem& item : line.items)
  388. {
  389. if (!item.frozen)
  390. {
  391. const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges);
  392. const float clamped_target_main_size =
  393. Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  394. const float violation_diff = clamped_target_main_size - item.target_main_size;
  395. item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min
  396. : (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None));
  397. item.target_main_size = clamped_target_main_size;
  398. total_minmax_violation += violation_diff;
  399. }
  400. }
  401. for (FlexItem& item : line.items)
  402. {
  403. if (total_minmax_violation > 0.0f)
  404. item.frozen |= (item.violation == FlexItem::Violation::Min);
  405. else if (total_minmax_violation < 0.0f)
  406. item.frozen |= (item.violation == FlexItem::Violation::Max);
  407. else
  408. item.frozen = true;
  409. }
  410. }
  411. // Now, each item's used main size is found!
  412. for (FlexItem& item : line.items)
  413. item.used_main_size = item.target_main_size;
  414. }
  415. // -- Align main axis (§9.5) --
  416. // Main alignment is done before cross sizing. Due to rounding to the pixel grid, the main size can
  417. // change slightly after main alignment/offseting. Also, the cross sizing depends on the main sizing
  418. // so doing it in this order ensures no surprises (overflow/wrapping issues) due to pixel rounding.
  419. for (FlexLine& line : container.lines)
  420. {
  421. const float remaining_free_space = used_main_size -
  422. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; });
  423. if (remaining_free_space > 0.0f)
  424. {
  425. const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0,
  426. [](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); });
  427. if (num_auto_margins > 0)
  428. {
  429. // Distribute the remaining space to the auto margins.
  430. const float space_per_auto_margin = remaining_free_space / float(num_auto_margins);
  431. for (FlexItem& item : line.items)
  432. {
  433. if (item.main.auto_margin_a)
  434. item.main_auto_margin_size_a = space_per_auto_margin;
  435. if (item.main.auto_margin_b)
  436. item.main_auto_margin_size_b = space_per_auto_margin;
  437. }
  438. }
  439. else
  440. {
  441. // Distribute the remaining space based on the 'justify-content' property.
  442. using Style::JustifyContent;
  443. const int num_items = int(line.items.size());
  444. switch (computed_flex.justify_content())
  445. {
  446. case JustifyContent::SpaceBetween:
  447. if (num_items > 1)
  448. {
  449. const float space_per_edge = remaining_free_space / float(2 * num_items - 2);
  450. for (int i = 0; i < num_items; i++)
  451. {
  452. FlexItem& item = line.items[i];
  453. if (i > 0)
  454. item.main_auto_margin_size_a = space_per_edge;
  455. if (i < num_items - 1)
  456. item.main_auto_margin_size_b = space_per_edge;
  457. }
  458. break;
  459. }
  460. //-fallthrough
  461. case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break;
  462. case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break;
  463. case JustifyContent::Center:
  464. line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space;
  465. line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space;
  466. break;
  467. case JustifyContent::SpaceAround:
  468. {
  469. const float space_per_edge = remaining_free_space / float(2 * num_items);
  470. for (FlexItem& item : line.items)
  471. {
  472. item.main_auto_margin_size_a = space_per_edge;
  473. item.main_auto_margin_size_b = space_per_edge;
  474. }
  475. }
  476. break;
  477. }
  478. }
  479. }
  480. // Now find the offset and snap the outer edges to the pixel grid.
  481. float cursor = 0.0f;
  482. for (FlexItem& item : line.items)
  483. {
  484. if (direction_reverse)
  485. item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b);
  486. else
  487. item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a;
  488. cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b;
  489. Math::SnapToPixelGrid(item.main_offset, item.used_main_size);
  490. }
  491. }
  492. // -- Determine cross size (§9.4) --
  493. // First, determine the cross size of each item, format it if necessary.
  494. for (FlexLine& line : container.lines)
  495. {
  496. for (FlexItem& item : line.items)
  497. {
  498. const Vector2f content_size = item.box.GetSize();
  499. const float used_main_size_inner = item.used_main_size - item.main.sum_edges;
  500. if (main_axis_horizontal)
  501. {
  502. if (content_size.y < 0.0f)
  503. {
  504. item.box.SetContent(Vector2f(used_main_size_inner, content_size.y));
  505. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  506. item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges;
  507. }
  508. else
  509. {
  510. item.hypothetical_cross_size = content_size.y + item.cross.sum_edges;
  511. }
  512. }
  513. else
  514. {
  515. if (content_size.x < 0.0f || item.cross.auto_size)
  516. {
  517. item.box.SetContent(Vector2f(content_size.x, used_main_size_inner));
  518. item.hypothetical_cross_size =
  519. LayoutDetails::GetShrinkToFitWidth(item.element, flex_content_containing_block) + item.cross.sum_edges;
  520. }
  521. else
  522. {
  523. item.hypothetical_cross_size = content_size.x + item.cross.sum_edges;
  524. }
  525. }
  526. }
  527. }
  528. // Determine cross size of each line.
  529. if (cross_available_size >= 0.f && flex_single_line && container.lines.size() == 1)
  530. {
  531. container.lines[0].cross_size = cross_available_size;
  532. }
  533. else
  534. {
  535. for (FlexLine& line : container.lines)
  536. {
  537. const float largest_hypothetical_cross_size =
  538. std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) {
  539. return a.hypothetical_cross_size < b.hypothetical_cross_size;
  540. })->hypothetical_cross_size;
  541. // Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8.
  542. line.cross_size = Math::Max(0.0f, Math::Round(largest_hypothetical_cross_size));
  543. if (flex_single_line)
  544. line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size);
  545. }
  546. }
  547. // Stretch out the lines if we have extra space.
  548. if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch)
  549. {
  550. int remaining_space = static_cast<int>(cross_available_size -
  551. std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  552. [](float value, const FlexLine& line) { return value + line.cross_size; }));
  553. if (remaining_space > 0)
  554. {
  555. // Here we use integer math to ensure all space is distributed to pixel boundaries.
  556. const int num_lines = (int)container.lines.size();
  557. for (int i = 0; i < num_lines; i++)
  558. {
  559. const int add_space_to_line = remaining_space / (num_lines - i);
  560. remaining_space -= add_space_to_line;
  561. container.lines[i].cross_size += static_cast<float>(add_space_to_line);
  562. }
  563. }
  564. }
  565. // Determine the used cross size of items.
  566. for (FlexLine& line : container.lines)
  567. {
  568. for (FlexItem& item : line.items)
  569. {
  570. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  571. if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b)
  572. {
  573. item.used_cross_size =
  574. Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
  575. // Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems
  576. // very slow, we skip this for now.
  577. }
  578. else
  579. {
  580. item.used_cross_size = item.hypothetical_cross_size;
  581. }
  582. }
  583. }
  584. // -- Align cross axis (§9.6) --
  585. for (FlexLine& line : container.lines)
  586. {
  587. constexpr float UndefinedBaseline = -FLT_MAX;
  588. float max_baseline_edge_distance = UndefinedBaseline;
  589. FlexItem* max_baseline_item = nullptr;
  590. for (FlexItem& item : line.items)
  591. {
  592. const float remaining_space = line.cross_size - item.used_cross_size;
  593. item.cross_offset = item.cross.margin_a;
  594. item.cross_baseline_top = UndefinedBaseline;
  595. const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b);
  596. if (num_auto_margins > 0)
  597. {
  598. const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins);
  599. item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f);
  600. }
  601. else
  602. {
  603. using Style::AlignSelf;
  604. const AlignSelf align_self = item.align_self;
  605. switch (align_self)
  606. {
  607. case AlignSelf::Auto:
  608. // Never encountered here: should already have been replaced by container's align-items property.
  609. RMLUI_ERROR;
  610. break;
  611. case AlignSelf::FlexStart:
  612. // Do nothing, cross offset set above with this behavior.
  613. break;
  614. case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break;
  615. case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break;
  616. case AlignSelf::Baseline:
  617. {
  618. // We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation.
  619. const float baseline_heuristic = 0.5f * item.element->GetLineHeight();
  620. const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a);
  621. item.cross_baseline_top = sum_edges_top + baseline_heuristic;
  622. const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top);
  623. if (baseline_edge_distance > max_baseline_edge_distance)
  624. {
  625. max_baseline_item = &item;
  626. max_baseline_edge_distance = baseline_edge_distance;
  627. }
  628. }
  629. break;
  630. case AlignSelf::Stretch:
  631. // Handled above
  632. break;
  633. }
  634. }
  635. if (wrap_reverse)
  636. {
  637. const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b;
  638. item.cross_offset = reverse_offset - item.cross_offset;
  639. }
  640. }
  641. if (max_baseline_item)
  642. {
  643. // Align all baseline items such that their baselines are aligned with the one with the max. baseline distance.
  644. // Cross offset for all baseline items are currently set as in 'flex-start'.
  645. const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a);
  646. const float line_top_to_baseline_distance =
  647. max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top;
  648. for (FlexItem& item : line.items)
  649. {
  650. if (item.cross_baseline_top != UndefinedBaseline)
  651. {
  652. const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a);
  653. item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top;
  654. }
  655. }
  656. }
  657. // Snap the outer item cross edges to the pixel grid.
  658. for (FlexItem& item : line.items)
  659. Math::SnapToPixelGrid(item.cross_offset, item.used_cross_size);
  660. }
  661. const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  662. [](float value, const FlexLine& line) { return value + line.cross_size; });
  663. // If the available cross size is infinite, the used cross size becomes the accumulated line cross size.
  664. const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size;
  665. const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size);
  666. // Align the lines along the cross-axis.
  667. {
  668. const float remaining_free_space = used_cross_size - accumulated_lines_cross_size;
  669. const int num_lines = int(container.lines.size());
  670. if (remaining_free_space > 0.f)
  671. {
  672. using Style::AlignContent;
  673. switch (computed_flex.align_content())
  674. {
  675. case AlignContent::SpaceBetween:
  676. if (num_lines > 1)
  677. {
  678. const float space_per_edge = remaining_free_space / float(2 * num_lines - 2);
  679. for (int i = 0; i < num_lines; i++)
  680. {
  681. FlexLine& line = container.lines[i];
  682. if (i > 0)
  683. line.cross_spacing_a = space_per_edge;
  684. if (i < num_lines - 1)
  685. line.cross_spacing_b = space_per_edge;
  686. }
  687. }
  688. //-fallthrough
  689. case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break;
  690. case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break;
  691. case AlignContent::Center:
  692. container.lines.front().cross_spacing_a = 0.5f * remaining_free_space;
  693. container.lines.back().cross_spacing_b = 0.5f * remaining_free_space;
  694. break;
  695. case AlignContent::SpaceAround:
  696. {
  697. const float space_per_edge = remaining_free_space / float(2 * num_lines);
  698. for (FlexLine& line : container.lines)
  699. {
  700. line.cross_spacing_a = space_per_edge;
  701. line.cross_spacing_b = space_per_edge;
  702. }
  703. }
  704. break;
  705. case AlignContent::Stretch:
  706. // Handled above.
  707. break;
  708. }
  709. }
  710. // Now find the offset and snap the line edges to the pixel grid.
  711. float cursor = 0.f;
  712. for (FlexLine& line : container.lines)
  713. {
  714. if (wrap_reverse)
  715. line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size);
  716. else
  717. line.cross_offset = cursor + line.cross_spacing_a;
  718. cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b;
  719. Math::SnapToPixelGrid(line.cross_offset, line.cross_size);
  720. }
  721. }
  722. auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) {
  723. return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main);
  724. };
  725. bool baseline_set = false;
  726. // -- Format items --
  727. for (FlexLine& line : container.lines)
  728. {
  729. for (FlexItem& item : line.items)
  730. {
  731. const Vector2f item_size = MainCrossToVec2(item.used_main_size - item.main.sum_edges, item.used_cross_size - item.cross.sum_edges);
  732. const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset);
  733. item.box.SetContent(item_size);
  734. UniquePtr<LayoutBox> item_layout_box =
  735. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  736. // Set the position of the element within the the flex container
  737. item.element->SetOffset(flex_content_offset + item_offset, element_flex);
  738. // The flex container baseline is simply set to the first flex item that has a baseline.
  739. if (!baseline_set && item_layout_box->GetBaselineOfLastLine(flex_baseline))
  740. {
  741. flex_baseline += flex_content_offset.y + item_offset.y;
  742. baseline_set = true;
  743. }
  744. // The cell contents may overflow, propagate this to the flex container.
  745. const Vector2f overflow_size = item_offset + item_layout_box->GetVisibleOverflowSize();
  746. flex_content_overflow_size = Math::Max(flex_content_overflow_size, overflow_size);
  747. }
  748. }
  749. flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size);
  750. }
  751. } // namespace Rml