TransformPrimitive.cpp 32 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947
  1. /*
  2. * This source file is part of libRocket, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://www.librocket.com
  5. *
  6. * Copyright (c) 2014 Markus Schöngart
  7. *
  8. * Permission is hereby granted, free of charge, to any person obtaining a copy
  9. * of this software and associated documentation files (the "Software"), to deal
  10. * in the Software without restriction, including without limitation the rights
  11. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  12. * copies of the Software, and to permit persons to whom the Software is
  13. * furnished to do so, subject to the following conditions:
  14. *
  15. * The above copyright notice and this permission notice shall be included in
  16. * all copies or substantial portions of the Software.
  17. *
  18. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  21. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  22. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  23. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  24. * THE SOFTWARE.
  25. *
  26. */
  27. #include "precompiled.h"
  28. #include "../../Include/Rocket/Core/TransformPrimitive.h"
  29. #include "../../Include/Rocket/Core/TypeConverter.h"
  30. #include <iostream>
  31. #include <unordered_map>
  32. namespace Rocket {
  33. namespace Core {
  34. namespace Transforms {
  35. static Vector3f Combine(const Vector3f& a, const Vector3f& b, float a_scale, float b_scale)
  36. {
  37. Vector3f result;
  38. result.x = a_scale * a.x + b_scale * b.x;
  39. result.y = a_scale * a.y + b_scale * b.y;
  40. result.z = a_scale * a.z + b_scale * b.z;
  41. return result;
  42. }
  43. // Interpolate two quaternions a, b with weight alpha [0, 1]
  44. static Vector4f QuaternionSlerp(const Vector4f& a, const Vector4f& b, float alpha)
  45. {
  46. using namespace Math;
  47. const float eps = 0.9995f;
  48. float dot = a.DotProduct(b);
  49. dot = Clamp(dot, -1.f, 1.f);
  50. if (dot > eps)
  51. return a;
  52. float theta = ACos(dot);
  53. float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot);
  54. float a_scale = Cos(alpha*theta) - dot * w;
  55. Vector4f result;
  56. for (int i = 0; i < 4; i++)
  57. {
  58. result[i] = a[i] * a_scale + b[i] * w;
  59. }
  60. return result;
  61. }
  62. NumericValue::NumericValue() noexcept
  63. : number(), unit(Property::UNKNOWN)
  64. {
  65. }
  66. NumericValue::NumericValue(float number, Property::Unit unit) noexcept
  67. : number(number), unit(unit)
  68. {
  69. }
  70. float NumericValue::ResolveLengthPercentage(Element& e, float base) const noexcept
  71. {
  72. Property prop;
  73. prop.value = Variant(number);
  74. prop.unit = unit;
  75. return e.ResolveLengthPercentage(&prop, base);
  76. }
  77. float NumericValue::ResolveWidth(Element& e) const noexcept
  78. {
  79. if(unit & (Property::PX | Property::NUMBER)) return number;
  80. return ResolveLengthPercentage(e, e.GetBox().GetSize(Box::BORDER).x);
  81. }
  82. float NumericValue::ResolveHeight(Element& e) const noexcept
  83. {
  84. if (unit & (Property::PX | Property::NUMBER)) return number;
  85. return ResolveLengthPercentage(e, e.GetBox().GetSize(Box::BORDER).y);
  86. }
  87. float NumericValue::ResolveDepth(Element& e) const noexcept
  88. {
  89. if (unit & (Property::PX | Property::NUMBER)) return number;
  90. Vector2f size = e.GetBox().GetSize(Box::BORDER);
  91. return ResolveLengthPercentage(e, Math::Max(size.x, size.y));
  92. }
  93. float NumericValue::ResolveAbsoluteUnit(Property::Unit base_unit) const noexcept
  94. {
  95. if(base_unit == Property::RAD)
  96. {
  97. switch (unit)
  98. {
  99. case Property::NUMBER:
  100. case Property::DEG:
  101. return Math::DegreesToRadians(number);
  102. case Property::RAD:
  103. return number;
  104. case Property::PERCENT:
  105. return number * 0.01f * 2.0f * Math::ROCKET_PI;
  106. default:
  107. break;
  108. }
  109. }
  110. return number;
  111. }
  112. String NumericValue::ToString() const noexcept
  113. {
  114. Property prop;
  115. prop.value = Variant(number);
  116. prop.unit = unit;
  117. return prop.ToString();
  118. }
  119. struct ResolveTransformVisitor
  120. {
  121. Matrix4f& m;
  122. Element& e;
  123. bool operator()(const Matrix2D& p)
  124. {
  125. m = Matrix4f::FromRows(
  126. Vector4f(p.values[0], p.values[2], 0, p.values[4]),
  127. Vector4f(p.values[1], p.values[3], 0, p.values[5]),
  128. Vector4f(0, 0, 1, 0),
  129. Vector4f(0, 0, 0, 1)
  130. );
  131. return true;
  132. }
  133. bool operator()(const Matrix3D& p)
  134. {
  135. m = Matrix4f::FromColumns(
  136. Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]),
  137. Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]),
  138. Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]),
  139. Vector4f(p.values[12], p.values[13], p.values[14], p.values[15])
  140. );
  141. return true;
  142. }
  143. bool operator()(const TranslateX& p)
  144. {
  145. m = Matrix4f::TranslateX(p.values[0].ResolveWidth(e));
  146. return true;
  147. }
  148. bool operator()(const TranslateY& p)
  149. {
  150. m = Matrix4f::TranslateY(p.values[0].ResolveHeight(e));
  151. return true;
  152. }
  153. bool operator()(const TranslateZ& p)
  154. {
  155. m = Matrix4f::TranslateZ(p.values[0].ResolveDepth(e));
  156. return true;
  157. }
  158. bool operator()(const Translate2D& p)
  159. {
  160. m = Matrix4f::Translate(
  161. p.values[0].ResolveWidth(e),
  162. p.values[1].ResolveHeight(e),
  163. 0
  164. );
  165. return true;
  166. }
  167. bool operator()(const Translate3D& p)
  168. {
  169. m = Matrix4f::Translate(
  170. p.values[0].ResolveWidth(e),
  171. p.values[1].ResolveHeight(e),
  172. p.values[2].ResolveDepth(e)
  173. );
  174. return true;
  175. }
  176. bool operator()(const ScaleX& p)
  177. {
  178. m = Matrix4f::ScaleX(p.values[0]);
  179. return true;
  180. }
  181. bool operator()(const ScaleY& p)
  182. {
  183. m = Matrix4f::ScaleY(p.values[0]);
  184. return true;
  185. }
  186. bool operator()(const ScaleZ& p)
  187. {
  188. m = Matrix4f::ScaleZ(p.values[0]);
  189. return true;
  190. }
  191. bool operator()(const Scale2D& p)
  192. {
  193. m = Matrix4f::Scale(p.values[0], p.values[1], 1);
  194. return true;
  195. }
  196. bool operator()(const Scale3D& p)
  197. {
  198. m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]);
  199. return true;
  200. }
  201. bool operator()(const RotateX& p)
  202. {
  203. m = Matrix4f::RotateX(p.values[0]);
  204. return true;
  205. }
  206. bool operator()(const RotateY& p)
  207. {
  208. m = Matrix4f::RotateY(p.values[0]);
  209. return true;
  210. }
  211. bool operator()(const RotateZ& p)
  212. {
  213. m = Matrix4f::RotateZ(p.values[0]);
  214. return true;
  215. }
  216. bool operator()(const Rotate2D& p)
  217. {
  218. m = Matrix4f::RotateZ(p.values[0]);
  219. return true;
  220. }
  221. bool operator()(const Rotate3D& p)
  222. {
  223. m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]);
  224. return true;
  225. }
  226. bool operator()(const SkewX& p)
  227. {
  228. m = Matrix4f::SkewX(p.values[0]);
  229. return true;
  230. }
  231. bool operator()(const SkewY& p)
  232. {
  233. m = Matrix4f::SkewY(p.values[0]);
  234. return true;
  235. }
  236. bool operator()(const Skew2D& p)
  237. {
  238. m = Matrix4f::Skew(p.values[0], p.values[1]);
  239. return true;
  240. }
  241. bool operator()(const DecomposedMatrix4& p)
  242. {
  243. m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion);
  244. return true;
  245. }
  246. bool operator()(const Perspective& p)
  247. {
  248. return false;
  249. }
  250. bool run(const PrimitiveVariant& primitive)
  251. {
  252. switch (primitive.type)
  253. {
  254. case PrimitiveVariant::MATRIX2D: return this->operator()(primitive.matrix_2d);
  255. case PrimitiveVariant::MATRIX3D: return this->operator()(primitive.matrix_3d);
  256. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x);
  257. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y);
  258. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z);
  259. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  260. case PrimitiveVariant::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  261. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x);
  262. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y);
  263. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z);
  264. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d);
  265. case PrimitiveVariant::SCALE3D: return this->operator()(primitive.scale_3d);
  266. case PrimitiveVariant::ROTATEX: return this->operator()(primitive.rotate_x);
  267. case PrimitiveVariant::ROTATEY: return this->operator()(primitive.rotate_y);
  268. case PrimitiveVariant::ROTATEZ: return this->operator()(primitive.rotate_z);
  269. case PrimitiveVariant::ROTATE2D: return this->operator()(primitive.rotate_2d);
  270. case PrimitiveVariant::ROTATE3D: return this->operator()(primitive.rotate_3d);
  271. case PrimitiveVariant::SKEWX: return this->operator()(primitive.skew_x);
  272. case PrimitiveVariant::SKEWY: return this->operator()(primitive.skew_y);
  273. case PrimitiveVariant::SKEW2D: return this->operator()(primitive.skew_2d);
  274. case PrimitiveVariant::PERSPECTIVE: return this->operator()(primitive.perspective);
  275. case PrimitiveVariant::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  276. default:
  277. break;
  278. }
  279. ROCKET_ASSERT(false);
  280. return false;
  281. }
  282. };
  283. bool Primitive::ResolveTransform(Matrix4f & m, Element & e) const noexcept
  284. {
  285. ResolveTransformVisitor visitor{ m, e };
  286. bool result = visitor.run(primitive);
  287. return result;
  288. }
  289. bool Primitive::ResolvePerspective(float & p, Element & e) const noexcept
  290. {
  291. bool result = false;
  292. if (primitive.type == PrimitiveVariant::PERSPECTIVE)
  293. {
  294. p = primitive.perspective.values[0].ResolveDepth(e);
  295. result = true;
  296. }
  297. return result;
  298. }
  299. struct SetIdentityVisitor
  300. {
  301. template <size_t N>
  302. void operator()(ResolvedPrimitive<N>& p)
  303. {
  304. for (auto& value : p.values)
  305. value = 0.0f;
  306. }
  307. template <size_t N>
  308. void operator()(UnresolvedPrimitive<N>& p)
  309. {
  310. for (auto& value : p.values)
  311. value.number = 0.0f;
  312. }
  313. void operator()(Matrix2D& p)
  314. {
  315. for (int i = 0; i < 6; i++)
  316. p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f);
  317. }
  318. void operator()(Matrix3D& p)
  319. {
  320. for (int i = 0; i < 16; i++)
  321. p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f);
  322. }
  323. void operator()(ScaleX& p)
  324. {
  325. p.values[0] = 1;
  326. }
  327. void operator()(ScaleY& p)
  328. {
  329. p.values[0] = 1;
  330. }
  331. void operator()(ScaleZ& p)
  332. {
  333. p.values[0] = 1;
  334. }
  335. void operator()(Scale2D& p)
  336. {
  337. p.values[0] = p.values[1] = 1;
  338. }
  339. void operator()(Scale3D& p)
  340. {
  341. p.values[0] = p.values[1] = p.values[2] = 1;
  342. }
  343. void operator()(DecomposedMatrix4& p)
  344. {
  345. p.perspective = Vector4f(0, 0, 0, 1);
  346. p.quaternion = Vector4f(0, 0, 0, 1);
  347. p.translation = Vector3f(0, 0, 0);
  348. p.scale = Vector3f(1, 1, 1);
  349. p.skew = Vector3f(0, 0, 0);
  350. }
  351. void run(PrimitiveVariant& primitive)
  352. {
  353. switch (primitive.type)
  354. {
  355. case PrimitiveVariant::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  356. case PrimitiveVariant::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  357. case PrimitiveVariant::TRANSLATEX: this->operator()(primitive.translate_x); break;
  358. case PrimitiveVariant::TRANSLATEY: this->operator()(primitive.translate_y); break;
  359. case PrimitiveVariant::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  360. case PrimitiveVariant::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  361. case PrimitiveVariant::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  362. case PrimitiveVariant::SCALEX: this->operator()(primitive.scale_x); break;
  363. case PrimitiveVariant::SCALEY: this->operator()(primitive.scale_y); break;
  364. case PrimitiveVariant::SCALEZ: this->operator()(primitive.scale_z); break;
  365. case PrimitiveVariant::SCALE2D: this->operator()(primitive.scale_2d); break;
  366. case PrimitiveVariant::SCALE3D: this->operator()(primitive.scale_3d); break;
  367. case PrimitiveVariant::ROTATEX: this->operator()(primitive.rotate_x); break;
  368. case PrimitiveVariant::ROTATEY: this->operator()(primitive.rotate_y); break;
  369. case PrimitiveVariant::ROTATEZ: this->operator()(primitive.rotate_z); break;
  370. case PrimitiveVariant::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  371. case PrimitiveVariant::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  372. case PrimitiveVariant::SKEWX: this->operator()(primitive.skew_x); break;
  373. case PrimitiveVariant::SKEWY: this->operator()(primitive.skew_y); break;
  374. case PrimitiveVariant::SKEW2D: this->operator()(primitive.skew_2d); break;
  375. case PrimitiveVariant::PERSPECTIVE: this->operator()(primitive.perspective); break;
  376. case PrimitiveVariant::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  377. default:
  378. ROCKET_ASSERT(false);
  379. break;
  380. }
  381. }
  382. };
  383. void Primitive::SetIdentity() noexcept
  384. {
  385. SetIdentityVisitor{}.run(primitive);
  386. }
  387. struct PrepareVisitor
  388. {
  389. Element& e;
  390. bool operator()(TranslateX& p)
  391. {
  392. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  393. return true;
  394. }
  395. bool operator()(TranslateY& p)
  396. {
  397. p.values[0] = NumericValue{ p.values[0].ResolveHeight(e), Property::PX };
  398. return true;
  399. }
  400. bool operator()(TranslateZ& p)
  401. {
  402. p.values[0] = NumericValue{ p.values[0].ResolveDepth(e), Property::PX };
  403. return true;
  404. }
  405. bool operator()(Translate2D& p)
  406. {
  407. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  408. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  409. return true;
  410. }
  411. bool operator()(Translate3D& p)
  412. {
  413. p.values[0] = NumericValue{ p.values[0].ResolveWidth(e), Property::PX };
  414. p.values[1] = NumericValue{ p.values[1].ResolveHeight(e), Property::PX };
  415. p.values[2] = NumericValue{ p.values[2].ResolveDepth(e), Property::PX };
  416. return true;
  417. }
  418. template <size_t N>
  419. bool operator()(ResolvedPrimitive<N>& p)
  420. {
  421. // No conversion needed for resolved transforms (with some exceptions below)
  422. return true;
  423. }
  424. bool operator()(DecomposedMatrix4& p)
  425. {
  426. return true;
  427. }
  428. bool operator()(Rotate3D& p)
  429. {
  430. // Rotate3D must be resolved to a full matrix for interpolation.
  431. // There is an exception in CSS specs when the two interpolating rotation vectors are in the same direction, but for simplicity we ignore this optimization.
  432. return false;
  433. }
  434. bool operator()(Matrix3D& p)
  435. {
  436. // Matrices must be decomposed for interpolation
  437. return false;
  438. }
  439. bool operator()(Matrix2D& p)
  440. {
  441. // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4
  442. return false;
  443. }
  444. bool operator()(Perspective& p)
  445. {
  446. // Perspective must be decomposed
  447. return false;
  448. }
  449. bool run(PrimitiveVariant& primitive)
  450. {
  451. switch (primitive.type)
  452. {
  453. case PrimitiveVariant::MATRIX2D: return this->operator()(primitive.matrix_2d);
  454. case PrimitiveVariant::MATRIX3D: return this->operator()(primitive.matrix_3d);
  455. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x);
  456. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y);
  457. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z);
  458. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  459. case PrimitiveVariant::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  460. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x);
  461. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y);
  462. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z);
  463. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d);
  464. case PrimitiveVariant::SCALE3D: return this->operator()(primitive.scale_3d);
  465. case PrimitiveVariant::ROTATEX: return this->operator()(primitive.rotate_x);
  466. case PrimitiveVariant::ROTATEY: return this->operator()(primitive.rotate_y);
  467. case PrimitiveVariant::ROTATEZ: return this->operator()(primitive.rotate_z);
  468. case PrimitiveVariant::ROTATE2D: return this->operator()(primitive.rotate_2d);
  469. case PrimitiveVariant::ROTATE3D: return this->operator()(primitive.rotate_3d);
  470. case PrimitiveVariant::SKEWX: return this->operator()(primitive.skew_x);
  471. case PrimitiveVariant::SKEWY: return this->operator()(primitive.skew_y);
  472. case PrimitiveVariant::SKEW2D: return this->operator()(primitive.skew_2d);
  473. case PrimitiveVariant::PERSPECTIVE: return this->operator()(primitive.perspective);
  474. case PrimitiveVariant::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  475. default:
  476. break;
  477. }
  478. ROCKET_ASSERT(false);
  479. return false;
  480. }
  481. };
  482. bool Primitive::PrepareForInterpolation(Element & e) noexcept
  483. {
  484. return PrepareVisitor{ e }.run(primitive);
  485. }
  486. enum class GenericType { None, Scale3D, Translate3D };
  487. struct GetGenericTypeVisitor
  488. {
  489. GenericType common_type = GenericType::None;
  490. GenericType operator()(const TranslateX& p) { return GenericType::Translate3D; }
  491. GenericType operator()(const TranslateY& p) { return GenericType::Translate3D; }
  492. GenericType operator()(const TranslateZ& p) { return GenericType::Translate3D; }
  493. GenericType operator()(const Translate2D& p) { return GenericType::Translate3D; }
  494. GenericType operator()(const ScaleX& p) { return GenericType::Scale3D; }
  495. GenericType operator()(const ScaleY& p) { return GenericType::Scale3D; }
  496. GenericType operator()(const ScaleZ& p) { return GenericType::Scale3D; }
  497. GenericType operator()(const Scale2D& p) { return GenericType::Scale3D; }
  498. template <typename T>
  499. GenericType operator()(const T& p) { return GenericType::None; }
  500. GenericType run(const PrimitiveVariant& primitive)
  501. {
  502. switch (primitive.type)
  503. {
  504. case PrimitiveVariant::TRANSLATEX: return this->operator()(primitive.translate_x); break;
  505. case PrimitiveVariant::TRANSLATEY: return this->operator()(primitive.translate_y); break;
  506. case PrimitiveVariant::TRANSLATEZ: return this->operator()(primitive.translate_z); break;
  507. case PrimitiveVariant::TRANSLATE2D: return this->operator()(primitive.translate_2d); break;
  508. case PrimitiveVariant::SCALEX: return this->operator()(primitive.scale_x); break;
  509. case PrimitiveVariant::SCALEY: return this->operator()(primitive.scale_y); break;
  510. case PrimitiveVariant::SCALEZ: return this->operator()(primitive.scale_z); break;
  511. case PrimitiveVariant::SCALE2D: return this->operator()(primitive.scale_2d); break;
  512. default:
  513. break;
  514. }
  515. return GenericType::None;
  516. }
  517. };
  518. struct ConvertToGenericTypeVisitor
  519. {
  520. Translate3D operator()(const TranslateX& p) { return Translate3D{ p.values[0], {0.0f, Property::PX}, {0.0f, Property::PX} }; }
  521. Translate3D operator()(const TranslateY& p) { return Translate3D{ {0.0f, Property::PX}, p.values[0], {0.0f, Property::PX} }; }
  522. Translate3D operator()(const TranslateZ& p) { return Translate3D{ {0.0f, Property::PX}, {0.0f, Property::PX}, p.values[0] }; }
  523. Translate3D operator()(const Translate2D& p) { return Translate3D{ p.values[0], p.values[1], {0.0f, Property::PX} }; }
  524. Scale3D operator()(const ScaleX& p) { return Scale3D{ p.values[0], 1.0f, 1.0f }; }
  525. Scale3D operator()(const ScaleY& p) { return Scale3D{ 1.0f, p.values[0], 1.0f }; }
  526. Scale3D operator()(const ScaleZ& p) { return Scale3D{ 1.0f, 1.0f, p.values[0] }; }
  527. Scale3D operator()(const Scale2D& p) { return Scale3D{ p.values[0], p.values[1], 1.0f }; }
  528. template <typename T>
  529. PrimitiveVariant operator()(const T& p) { ROCKET_ERROR; return p; }
  530. PrimitiveVariant run(const PrimitiveVariant& primitive)
  531. {
  532. PrimitiveVariant result = primitive;
  533. switch (primitive.type)
  534. {
  535. case PrimitiveVariant::TRANSLATEX: result.translate_3d = this->operator()(primitive.translate_x); break;
  536. case PrimitiveVariant::TRANSLATEY: result.translate_3d = this->operator()(primitive.translate_y); break;
  537. case PrimitiveVariant::TRANSLATEZ: result.translate_3d = this->operator()(primitive.translate_z); break;
  538. case PrimitiveVariant::TRANSLATE2D: result.translate_3d = this->operator()(primitive.translate_2d); break;
  539. case PrimitiveVariant::SCALEX: result.scale_3d = this->operator()(primitive.scale_x); break;
  540. case PrimitiveVariant::SCALEY: result.scale_3d = this->operator()(primitive.scale_y); break;
  541. case PrimitiveVariant::SCALEZ: result.scale_3d = this->operator()(primitive.scale_z); break;
  542. case PrimitiveVariant::SCALE2D: result.scale_3d = this->operator()(primitive.scale_2d); break;
  543. default:
  544. ROCKET_ASSERT(false);
  545. break;
  546. }
  547. return result;
  548. }
  549. };
  550. bool Primitive::TryConvertToMatchingGenericType(Primitive & p0, Primitive & p1) noexcept
  551. {
  552. if (p0.primitive.type == p1.primitive.type)
  553. return true;
  554. GenericType c0 = GetGenericTypeVisitor{}.run(p0.primitive);
  555. GenericType c1 = GetGenericTypeVisitor{}.run(p1.primitive);
  556. if (c0 == c1 && c0 != GenericType::None)
  557. {
  558. p0.primitive = ConvertToGenericTypeVisitor{}.run(p0.primitive);
  559. p1.primitive = ConvertToGenericTypeVisitor{}.run(p1.primitive);
  560. return true;
  561. }
  562. return false;
  563. }
  564. struct InterpolateVisitor
  565. {
  566. const PrimitiveVariant& other_variant;
  567. float alpha;
  568. template <size_t N>
  569. bool Interpolate(ResolvedPrimitive<N>& p0, const ResolvedPrimitive<N>& p1)
  570. {
  571. for (size_t i = 0; i < N; i++)
  572. p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha;
  573. return true;
  574. }
  575. template <size_t N>
  576. bool Interpolate(UnresolvedPrimitive<N>& p0, const UnresolvedPrimitive<N>& p1)
  577. {
  578. // Assumes that the underlying units have been resolved (e.g. to pixels)
  579. for (size_t i = 0; i < N; i++)
  580. p0.values[i].number = p0.values[i].number*(1.0f - alpha) + p1.values[i].number * alpha;
  581. return true;
  582. }
  583. bool Interpolate(Rotate3D& p0, const Rotate3D& p1)
  584. {
  585. // Currently, we promote Rotate3D to decomposed matrices in PrepareForInterpolation(), thus, it is an error if we get here. Make sure primitives are prepared and decomposed as necessary.
  586. // We may change this later by assuming that the underlying direction vectors are equivalent (else, need to do full matrix interpolation)
  587. // If we change this later: p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha;
  588. return false;
  589. }
  590. bool Interpolate(Matrix2D& p0, const Matrix2D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  591. bool Interpolate(Matrix3D& p0, const Matrix3D& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  592. bool Interpolate(Perspective& p0, const Perspective& p1) { return false; /* Error if we get here, see PrepareForInterpolation() */ }
  593. bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1)
  594. {
  595. p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha;
  596. p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha);
  597. p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha;
  598. p0.scale = p0.scale* (1.0f - alpha) + p1.scale* alpha;
  599. p0.skew = p0.skew* (1.0f - alpha) + p1.skew* alpha;
  600. return true;
  601. }
  602. bool run(PrimitiveVariant& variant)
  603. {
  604. ROCKET_ASSERT(variant.type == other_variant.type);
  605. switch (variant.type)
  606. {
  607. case PrimitiveVariant::MATRIX2D: return Interpolate(variant.matrix_2d, other_variant.matrix_2d);
  608. case PrimitiveVariant::MATRIX3D: return Interpolate(variant.matrix_3d, other_variant.matrix_3d);
  609. case PrimitiveVariant::TRANSLATEX: return Interpolate(variant.translate_x, other_variant.translate_x);
  610. case PrimitiveVariant::TRANSLATEY: return Interpolate(variant.translate_y, other_variant.translate_y);
  611. case PrimitiveVariant::TRANSLATEZ: return Interpolate(variant.translate_z, other_variant.translate_z);
  612. case PrimitiveVariant::TRANSLATE2D: return Interpolate(variant.translate_2d, other_variant.translate_2d);
  613. case PrimitiveVariant::TRANSLATE3D: return Interpolate(variant.translate_3d, other_variant.translate_3d);
  614. case PrimitiveVariant::SCALEX: return Interpolate(variant.scale_x, other_variant.scale_x);
  615. case PrimitiveVariant::SCALEY: return Interpolate(variant.scale_y, other_variant.scale_y);
  616. case PrimitiveVariant::SCALEZ: return Interpolate(variant.scale_z, other_variant.scale_z);
  617. case PrimitiveVariant::SCALE2D: return Interpolate(variant.scale_2d, other_variant.scale_2d);
  618. case PrimitiveVariant::SCALE3D: return Interpolate(variant.scale_3d, other_variant.scale_3d);
  619. case PrimitiveVariant::ROTATEX: return Interpolate(variant.rotate_x, other_variant.rotate_x);
  620. case PrimitiveVariant::ROTATEY: return Interpolate(variant.rotate_y, other_variant.rotate_y);
  621. case PrimitiveVariant::ROTATEZ: return Interpolate(variant.rotate_z, other_variant.rotate_z);
  622. case PrimitiveVariant::ROTATE2D: return Interpolate(variant.rotate_2d, other_variant.rotate_2d);
  623. case PrimitiveVariant::ROTATE3D: return Interpolate(variant.rotate_3d, other_variant.rotate_3d);
  624. case PrimitiveVariant::SKEWX: return Interpolate(variant.skew_x, other_variant.skew_x);
  625. case PrimitiveVariant::SKEWY: return Interpolate(variant.skew_y, other_variant.skew_y);
  626. case PrimitiveVariant::SKEW2D: return Interpolate(variant.skew_2d, other_variant.skew_2d);
  627. case PrimitiveVariant::PERSPECTIVE: return Interpolate(variant.perspective, other_variant.perspective);
  628. case PrimitiveVariant::DECOMPOSEDMATRIX4: return Interpolate(variant.decomposed_matrix_4, other_variant.decomposed_matrix_4);
  629. default:
  630. break;
  631. }
  632. ROCKET_ASSERT(false);
  633. return false;
  634. }
  635. };
  636. bool Primitive::InterpolateWith(const Primitive & other, float alpha) noexcept
  637. {
  638. if (primitive.type != other.primitive.type)
  639. return false;
  640. bool result = InterpolateVisitor{ other.primitive, alpha }.run(primitive);
  641. return result;
  642. }
  643. template<size_t N>
  644. inline String ToString(const Transforms::ResolvedPrimitive<N>& p, String unit, bool rad_to_deg = false, bool only_unit_on_last_value = false) noexcept {
  645. float multiplier = 1.0f;
  646. if (rad_to_deg) multiplier = 180.f / Math::ROCKET_PI;
  647. String tmp;
  648. String result = "(";
  649. for (size_t i = 0; i < N; i++) {
  650. if (TypeConverter<float, String>::Convert(p.values[i] * multiplier, tmp))
  651. result += tmp;
  652. if (!unit.empty() && (!only_unit_on_last_value || (i == N - 1)))
  653. result += unit;
  654. if (i != N - 1) result += ", ";
  655. }
  656. result += ")";
  657. return result;
  658. }
  659. template<size_t N>
  660. inline String ToString(const Transforms::UnresolvedPrimitive<N> & p) noexcept {
  661. String result = "(";
  662. for (size_t i = 0; i < N; i++) {
  663. result += p.values[i].ToString();
  664. if (i != N - 1) result += ", ";
  665. }
  666. result += ")";
  667. return result;
  668. }
  669. String ToString(const Transforms::Matrix2D & p) noexcept { return "matrix" + ToString(static_cast<const Transforms::ResolvedPrimitive< 6 >&>(p), ""); }
  670. String ToString(const Transforms::Matrix3D & p) noexcept { return "matrix3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 16 >&>(p), ""); }
  671. String ToString(const Transforms::TranslateX & p) noexcept { return "translateX" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  672. String ToString(const Transforms::TranslateY & p) noexcept { return "translateY" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  673. String ToString(const Transforms::TranslateZ & p) noexcept { return "translateZ" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  674. String ToString(const Transforms::Translate2D & p) noexcept { return "translate" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 2 >&>(p)); }
  675. String ToString(const Transforms::Translate3D & p) noexcept { return "translate3d" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 3 >&>(p)); }
  676. String ToString(const Transforms::ScaleX & p) noexcept { return "scaleX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  677. String ToString(const Transforms::ScaleY & p) noexcept { return "scaleY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  678. String ToString(const Transforms::ScaleZ & p) noexcept { return "scaleZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  679. String ToString(const Transforms::Scale2D & p) noexcept { return "scale" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), ""); }
  680. String ToString(const Transforms::Scale3D & p) noexcept { return "scale3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 3 >&>(p), ""); }
  681. String ToString(const Transforms::RotateX & p) noexcept { return "rotateX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  682. String ToString(const Transforms::RotateY & p) noexcept { return "rotateY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  683. String ToString(const Transforms::RotateZ & p) noexcept { return "rotateZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  684. String ToString(const Transforms::Rotate2D & p) noexcept { return "rotate" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  685. String ToString(const Transforms::Rotate3D & p) noexcept { return "rotate3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 4 >&>(p), "deg", true, true); }
  686. String ToString(const Transforms::SkewX & p) noexcept { return "skewX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  687. String ToString(const Transforms::SkewY & p) noexcept { return "skewY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  688. String ToString(const Transforms::Skew2D & p) noexcept { return "skew" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), "deg", true); }
  689. String ToString(const Transforms::Perspective & p) noexcept { return "perspective" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  690. String ToString(const Transforms::DecomposedMatrix4& p) noexcept { return "decomposedMatrix3d"; }
  691. struct ToStringVisitor
  692. {
  693. String run(const PrimitiveVariant& variant)
  694. {
  695. switch (variant.type)
  696. {
  697. case PrimitiveVariant::MATRIX2D: return ToString(variant.matrix_2d);
  698. case PrimitiveVariant::MATRIX3D: return ToString(variant.matrix_3d);
  699. case PrimitiveVariant::TRANSLATEX: return ToString(variant.translate_x);
  700. case PrimitiveVariant::TRANSLATEY: return ToString(variant.translate_y);
  701. case PrimitiveVariant::TRANSLATEZ: return ToString(variant.translate_z);
  702. case PrimitiveVariant::TRANSLATE2D: return ToString(variant.translate_2d);
  703. case PrimitiveVariant::TRANSLATE3D: return ToString(variant.translate_3d);
  704. case PrimitiveVariant::SCALEX: return ToString(variant.scale_x);
  705. case PrimitiveVariant::SCALEY: return ToString(variant.scale_y);
  706. case PrimitiveVariant::SCALEZ: return ToString(variant.scale_z);
  707. case PrimitiveVariant::SCALE2D: return ToString(variant.scale_2d);
  708. case PrimitiveVariant::SCALE3D: return ToString(variant.scale_3d);
  709. case PrimitiveVariant::ROTATEX: return ToString(variant.rotate_x);
  710. case PrimitiveVariant::ROTATEY: return ToString(variant.rotate_y);
  711. case PrimitiveVariant::ROTATEZ: return ToString(variant.rotate_z);
  712. case PrimitiveVariant::ROTATE2D: return ToString(variant.rotate_2d);
  713. case PrimitiveVariant::ROTATE3D: return ToString(variant.rotate_3d);
  714. case PrimitiveVariant::SKEWX: return ToString(variant.skew_x);
  715. case PrimitiveVariant::SKEWY: return ToString(variant.skew_y);
  716. case PrimitiveVariant::SKEW2D: return ToString(variant.skew_2d);
  717. case PrimitiveVariant::PERSPECTIVE: return ToString(variant.perspective);
  718. case PrimitiveVariant::DECOMPOSEDMATRIX4: return ToString(variant.decomposed_matrix_4);
  719. default:
  720. break;
  721. }
  722. ROCKET_ASSERT(false);
  723. return String();
  724. }
  725. };
  726. String Primitive::ToString() const noexcept
  727. {
  728. String result = ToStringVisitor{}.run(primitive);
  729. return result;
  730. }
  731. bool DecomposedMatrix4::Decompose(const Matrix4f & m)
  732. {
  733. // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices
  734. const float eps = 0.0005f;
  735. if (Math::AbsoluteValue(m[3][3]) < eps)
  736. return false;
  737. // Perspective matrix
  738. Matrix4f p = m;
  739. for (int i = 0; i < 3; i++)
  740. p[i][3] = 0;
  741. p[3][3] = 1;
  742. if (Math::AbsoluteValue(p.Determinant()) < eps)
  743. return false;
  744. if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0)
  745. {
  746. auto rhs = m.GetColumn(3);
  747. Matrix4f p_inv = p;
  748. if (!p_inv.Invert())
  749. return false;
  750. auto& p_inv_trans = p.Transpose();
  751. perspective = p_inv_trans * rhs;
  752. }
  753. else
  754. {
  755. perspective[0] = perspective[1] = perspective[2] = 0;
  756. perspective[3] = 1;
  757. }
  758. for (int i = 0; i < 3; i++)
  759. translation[i] = m[3][i];
  760. Vector3f row[3];
  761. for (int i = 0; i < 3; i++)
  762. {
  763. row[i][0] = m[i][0];
  764. row[i][1] = m[i][1];
  765. row[i][2] = m[i][2];
  766. }
  767. scale[0] = row[0].Magnitude();
  768. row[0] = row[0].Normalise();
  769. skew[0] = row[0].DotProduct(row[1]);
  770. row[1] = Combine(row[1], row[0], 1, -skew[0]);
  771. scale[1] = row[1].Magnitude();
  772. row[1] = row[1].Normalise();
  773. skew[0] /= scale[1];
  774. skew[1] = row[0].DotProduct(row[2]);
  775. row[2] = Combine(row[2], row[0], 1, -skew[1]);
  776. skew[2] = row[1].DotProduct(row[2]);
  777. row[2] = Combine(row[2], row[1], 1, -skew[2]);
  778. scale[2] = row[2].Magnitude();
  779. row[2] = row[2].Normalise();
  780. skew[1] /= scale[2];
  781. skew[2] /= scale[2];
  782. // Check if we need to flip coordinate system
  783. auto pdum3 = row[1].CrossProduct(row[2]);
  784. if (row[0].DotProduct(pdum3) < 0.0f)
  785. {
  786. for (int i = 0; i < 3; i++)
  787. {
  788. scale[i] *= -1.f;
  789. row[i] *= -1.f;
  790. }
  791. }
  792. quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f));
  793. quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f));
  794. quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f));
  795. quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f));
  796. if (row[2][1] > row[1][2])
  797. quaternion[0] *= -1.f;
  798. if (row[0][2] > row[2][0])
  799. quaternion[1] *= -1.f;
  800. if (row[1][0] > row[0][1])
  801. quaternion[2] *= -1.f;
  802. return true;
  803. }
  804. }
  805. }
  806. }