FlexFormattingContext.cpp 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2008-2010 CodePoint Ltd, Shift Technology Ltd
  7. * Copyright (c) 2019-2023 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "FlexFormattingContext.h"
  29. #include "../../../Include/RmlUi/Core/ComputedValues.h"
  30. #include "../../../Include/RmlUi/Core/Element.h"
  31. #include "../../../Include/RmlUi/Core/ElementScroll.h"
  32. #include "../../../Include/RmlUi/Core/Profiling.h"
  33. #include "../../../Include/RmlUi/Core/Types.h"
  34. #include "ContainerBox.h"
  35. #include "LayoutDetails.h"
  36. #include <algorithm>
  37. #include <float.h>
  38. #include <numeric>
  39. namespace Rml {
  40. UniquePtr<LayoutBox> FlexFormattingContext::Format(ContainerBox* parent_container, Element* element, const Box* override_initial_box)
  41. {
  42. RMLUI_ZoneScopedC(0xAFAF4F);
  43. auto flex_container_box = MakeUnique<FlexContainer>(element, parent_container);
  44. ElementScroll* element_scroll = element->GetElementScroll();
  45. const ComputedValues& computed = element->GetComputedValues();
  46. const Vector2f containing_block = LayoutDetails::GetContainingBlock(parent_container, element->GetPosition()).size;
  47. RMLUI_ASSERT(containing_block.x >= 0.f);
  48. // Build the initial box as specified by the flex's style, as if it was a normal block element.
  49. Box& box = flex_container_box->GetBox();
  50. if (override_initial_box)
  51. box = *override_initial_box;
  52. else
  53. LayoutDetails::BuildBox(box, containing_block, element, BuildBoxMode::Block);
  54. // Start with any auto-scrollbars off.
  55. flex_container_box->ResetScrollbars(box);
  56. FlexFormattingContext context;
  57. context.flex_container_box = flex_container_box.get();
  58. context.element_flex = element;
  59. LayoutDetails::GetMinMaxWidth(context.flex_min_size.x, context.flex_max_size.x, computed, box, containing_block.x);
  60. LayoutDetails::GetMinMaxHeight(context.flex_min_size.y, context.flex_max_size.y, computed, box, containing_block.y);
  61. const Vector2f box_content_size = box.GetSize();
  62. const bool auto_height = (box_content_size.y < 0.0f);
  63. context.flex_content_offset = box.GetPosition();
  64. for (int layout_iteration = 0; layout_iteration < 3; layout_iteration++)
  65. {
  66. // One or both scrollbars can be enabled between iterations.
  67. const Vector2f scrollbar_size = {
  68. element_scroll->GetScrollbarSize(ElementScroll::VERTICAL),
  69. element_scroll->GetScrollbarSize(ElementScroll::HORIZONTAL),
  70. };
  71. context.flex_available_content_size = Math::Max(box_content_size - scrollbar_size, Vector2f(0.f));
  72. context.flex_content_containing_block = context.flex_available_content_size;
  73. if (auto_height)
  74. {
  75. context.flex_available_content_size.y = -1.f; // Negative means infinite space
  76. context.flex_content_containing_block.y = containing_block.y;
  77. }
  78. // Format the flexbox and all its children.
  79. Vector2f flex_resulting_content_size, content_overflow_size;
  80. float flex_baseline = 0.f;
  81. context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
  82. // Output the size of the formatted flexbox. The width is determined as a normal block box so we don't need to change that.
  83. Vector2f formatted_content_size = box_content_size;
  84. if (auto_height)
  85. formatted_content_size.y = flex_resulting_content_size.y + scrollbar_size.y;
  86. Box sized_box = box;
  87. sized_box.SetContent(formatted_content_size);
  88. // Change the flex baseline coordinates to the element baseline, which is defined as the distance from the element's bottom margin edge.
  89. const float element_baseline =
  90. sized_box.GetSizeAcross(BoxDirection::Vertical, BoxArea::Border) + sized_box.GetEdge(BoxArea::Margin, BoxEdge::Bottom) - flex_baseline;
  91. // Close the box, and break out of the loop if it did not produce any new scrollbars, otherwise continue to format the flexbox again.
  92. if (flex_container_box->Close(content_overflow_size, sized_box, element_baseline))
  93. break;
  94. }
  95. return flex_container_box;
  96. }
  97. Vector2f FlexFormattingContext::GetMaxContentSize(Element* element)
  98. {
  99. // A large but finite number is used here, since layouting doesn't always work well with infinities.
  100. const Vector2f infinity(10000.0f, 10000.0f);
  101. RootBox root(infinity);
  102. auto flex_container_box = MakeUnique<FlexContainer>(element, &root);
  103. FlexFormattingContext context;
  104. context.flex_container_box = flex_container_box.get();
  105. context.element_flex = element;
  106. context.flex_available_content_size = Vector2f(-1, -1);
  107. context.flex_content_containing_block = infinity;
  108. context.flex_max_size = Vector2f(FLT_MAX, FLT_MAX);
  109. // Format the flexbox and all its children.
  110. Vector2f flex_resulting_content_size, content_overflow_size;
  111. float flex_baseline = 0.f;
  112. context.Format(flex_resulting_content_size, content_overflow_size, flex_baseline);
  113. return flex_resulting_content_size;
  114. }
  115. struct FlexItem {
  116. // In the following, suffix '_a' means flex start edge while '_b' means flex end edge.
  117. struct Size {
  118. bool auto_margin_a, auto_margin_b;
  119. bool auto_size;
  120. float margin_a, margin_b;
  121. float sum_edges_a; // Start edge: margin (non-auto) + border + padding
  122. float sum_edges; // Inner->outer size
  123. float min_size, max_size; // Inner size
  124. };
  125. Element* element;
  126. Box box;
  127. // Filled during the build step.
  128. Size main;
  129. Size cross;
  130. float flex_shrink_factor;
  131. float flex_grow_factor;
  132. Style::AlignSelf align_self; // 'Auto' is replaced by container's 'align-items' value
  133. float inner_flex_base_size; // Inner size
  134. float flex_base_size; // Outer size
  135. float hypothetical_main_size; // Outer size
  136. // Used for resolving flexible length
  137. enum class Violation : uint8_t { None = 0, Min, Max };
  138. bool frozen;
  139. Violation violation;
  140. float target_main_size; // Outer size
  141. float used_main_size; // Outer size (without auto margins)
  142. float main_auto_margin_size_a, main_auto_margin_size_b;
  143. float main_offset;
  144. // Used for resolving cross size
  145. float hypothetical_cross_size; // Outer size
  146. float used_cross_size; // Outer size
  147. float cross_offset; // Offset within line
  148. float cross_baseline_top; // Only used for baseline cross alignment
  149. };
  150. struct FlexLine {
  151. FlexLine(Vector<FlexItem>&& items) : items(std::move(items)) {}
  152. Vector<FlexItem> items;
  153. float accumulated_hypothetical_main_size = 0;
  154. float cross_size = 0; // Excludes line spacing
  155. float cross_spacing_a = 0, cross_spacing_b = 0;
  156. float cross_offset = 0;
  157. };
  158. struct FlexLineContainer {
  159. Vector<FlexLine> lines;
  160. };
  161. static void GetItemSizing(FlexItem::Size& destination, const ComputedAxisSize& computed_size, const float base_value, const bool direction_reverse)
  162. {
  163. float margin_a, margin_b, padding_border_a, padding_border_b;
  164. LayoutDetails::GetEdgeSizes(margin_a, margin_b, padding_border_a, padding_border_b, computed_size, base_value);
  165. const float padding_border = padding_border_a + padding_border_b;
  166. const float margin = margin_a + margin_b;
  167. destination.auto_margin_a = (computed_size.margin_a.type == Style::Margin::Auto);
  168. destination.auto_margin_b = (computed_size.margin_b.type == Style::Margin::Auto);
  169. destination.auto_size = (computed_size.size.type == Style::LengthPercentageAuto::Auto);
  170. destination.margin_a = margin_a;
  171. destination.margin_b = margin_b;
  172. destination.sum_edges = padding_border + margin;
  173. destination.sum_edges_a = (direction_reverse ? padding_border_b + margin_b : padding_border_a + margin_a);
  174. destination.min_size = ResolveValue(computed_size.min_size, base_value);
  175. destination.max_size = ResolveValue(computed_size.max_size, base_value);
  176. if (computed_size.box_sizing == Style::BoxSizing::BorderBox)
  177. {
  178. destination.min_size = Math::Max(0.0f, destination.min_size - padding_border);
  179. if (destination.max_size < FLT_MAX)
  180. destination.max_size = Math::Max(0.0f, destination.max_size - padding_border);
  181. }
  182. if (direction_reverse)
  183. {
  184. std::swap(destination.auto_margin_a, destination.auto_margin_b);
  185. std::swap(destination.margin_a, destination.margin_b);
  186. }
  187. }
  188. static float GetInnerUsedMainSize(const FlexItem& item)
  189. {
  190. // Due to floating-point precision the outer size may be smaller than `sum_edges`, so clamp the result to zero.
  191. return Math::Max(item.used_main_size - item.main.sum_edges, 0.f);
  192. }
  193. static float GetInnerUsedCrossSize(const FlexItem& item)
  194. {
  195. return Math::Max(item.used_cross_size - item.cross.sum_edges, 0.f);
  196. }
  197. void FlexFormattingContext::Format(Vector2f& flex_resulting_content_size, Vector2f& flex_content_overflow_size, float& flex_baseline) const
  198. {
  199. // The following procedure is based on the CSS flexible box layout algorithm.
  200. // For details, see https://drafts.csswg.org/css-flexbox/#layout-algorithm
  201. const ComputedValues& computed_flex = element_flex->GetComputedValues();
  202. const Style::FlexDirection direction = computed_flex.flex_direction();
  203. const Style::LengthPercentage row_gap = computed_flex.row_gap();
  204. const Style::LengthPercentage column_gap = computed_flex.column_gap();
  205. const bool main_axis_horizontal = (direction == Style::FlexDirection::Row || direction == Style::FlexDirection::RowReverse);
  206. const bool direction_reverse = (direction == Style::FlexDirection::RowReverse || direction == Style::FlexDirection::ColumnReverse);
  207. const bool flex_single_line = (computed_flex.flex_wrap() == Style::FlexWrap::Nowrap);
  208. const bool wrap_reverse = (computed_flex.flex_wrap() == Style::FlexWrap::WrapReverse);
  209. const float main_available_size = (main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  210. const float cross_available_size = (!main_axis_horizontal ? flex_available_content_size.x : flex_available_content_size.y);
  211. const float main_min_size = (main_axis_horizontal ? flex_min_size.x : flex_min_size.y);
  212. const float main_max_size = (main_axis_horizontal ? flex_max_size.x : flex_max_size.y);
  213. const float cross_min_size = (main_axis_horizontal ? flex_min_size.y : flex_min_size.x);
  214. const float cross_max_size = (main_axis_horizontal ? flex_max_size.y : flex_max_size.x);
  215. // For the purpose of placing items we make infinite size a big value.
  216. const float main_wrap_size = Math::Clamp(main_available_size < 0.0f ? FLT_MAX : main_available_size, main_min_size, main_max_size);
  217. // For the purpose of resolving lengths, infinite main size becomes zero.
  218. const float main_size_base_value = (main_available_size < 0.0f ? 0.0f : main_available_size);
  219. const float cross_size_base_value = (cross_available_size < 0.0f ? 0.0f : cross_available_size);
  220. const float main_gap_size = ResolveValue(main_axis_horizontal ? column_gap : row_gap, main_size_base_value);
  221. const float cross_gap_size = ResolveValue(main_axis_horizontal ? row_gap : column_gap, cross_size_base_value);
  222. // -- Build a list of all flex items with base size information --
  223. const int num_flex_children = element_flex->GetNumChildren();
  224. Vector<FlexItem> items;
  225. items.reserve(num_flex_children);
  226. for (int i = 0; i < num_flex_children; i++)
  227. {
  228. Element* element = element_flex->GetChild(i);
  229. const ComputedValues& computed = element->GetComputedValues();
  230. if (computed.display() == Style::Display::None)
  231. {
  232. continue;
  233. }
  234. else if (computed.position() == Style::Position::Absolute || computed.position() == Style::Position::Fixed)
  235. {
  236. ContainerBox* absolute_containing_block = LayoutDetails::GetContainingBlock(flex_container_box, computed.position()).container;
  237. absolute_containing_block->AddAbsoluteElement(element, {}, element_flex);
  238. continue;
  239. }
  240. else if (computed.position() == Style::Position::Relative)
  241. {
  242. flex_container_box->AddRelativeElement(element);
  243. }
  244. FlexItem item = {};
  245. item.element = element;
  246. LayoutDetails::BuildBox(item.box, flex_content_containing_block, element, BuildBoxMode::UnalignedBlock);
  247. Style::LengthPercentageAuto item_main_size;
  248. {
  249. const ComputedAxisSize computed_main_size =
  250. main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  251. const ComputedAxisSize computed_cross_size =
  252. !main_axis_horizontal ? LayoutDetails::BuildComputedHorizontalSize(computed) : LayoutDetails::BuildComputedVerticalSize(computed);
  253. GetItemSizing(item.main, computed_main_size, main_size_base_value, direction_reverse);
  254. GetItemSizing(item.cross, computed_cross_size, cross_size_base_value, wrap_reverse);
  255. item_main_size = computed_main_size.size;
  256. }
  257. item.flex_shrink_factor = computed.flex_shrink();
  258. item.flex_grow_factor = computed.flex_grow();
  259. item.align_self = computed.align_self();
  260. static_assert(int(Style::AlignSelf::FlexStart) == int(Style::AlignItems::FlexStart) + 1 &&
  261. int(Style::AlignSelf::Stretch) == int(Style::AlignItems::Stretch) + 1,
  262. "It is assumed below that align items is a shifted version (no auto value) of align self.");
  263. // Use the container's align-items property if align-self is auto.
  264. if (item.align_self == Style::AlignSelf::Auto)
  265. item.align_self = static_cast<Style::AlignSelf>(static_cast<int>(computed_flex.align_items()) + 1);
  266. auto GetMainSize = [&](const Box& box) { return box.GetSize()[main_axis_horizontal ? 0 : 1]; };
  267. const float sum_padding_border = item.main.sum_edges - (item.main.margin_a + item.main.margin_b);
  268. // Find the flex base size (possibly negative when using border box sizing)
  269. if (computed.flex_basis().type != Style::FlexBasis::Auto)
  270. {
  271. item.inner_flex_base_size = ResolveValue(computed.flex_basis(), main_size_base_value);
  272. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  273. item.inner_flex_base_size -= sum_padding_border;
  274. }
  275. else if (!item.main.auto_size)
  276. {
  277. item.inner_flex_base_size = ResolveValue(item_main_size, main_size_base_value);
  278. if (computed.box_sizing() == Style::BoxSizing::BorderBox)
  279. item.inner_flex_base_size -= sum_padding_border;
  280. }
  281. else if (GetMainSize(item.box) >= 0.f)
  282. {
  283. // The element is auto-sized, and yet its box was given a definite size. This can happen e.g. due to intrinsic sizing or aspect ratios.
  284. item.inner_flex_base_size = GetMainSize(item.box);
  285. }
  286. else if (main_axis_horizontal)
  287. {
  288. item.inner_flex_base_size = LayoutDetails::GetShrinkToFitWidth(element, flex_content_containing_block);
  289. }
  290. else
  291. {
  292. const Vector2f initial_box_size = item.box.GetSize();
  293. RMLUI_ASSERT(initial_box_size.y < 0.f);
  294. Box format_box = item.box;
  295. if (initial_box_size.x < 0.f && flex_available_content_size.x >= 0.f)
  296. format_box.SetContent(Vector2f(flex_available_content_size.x - item.cross.sum_edges, initial_box_size.y));
  297. FormattingContext::FormatIndependent(flex_container_box, element, (format_box.GetSize().x >= 0 ? &format_box : nullptr),
  298. FormattingContextType::Block);
  299. item.inner_flex_base_size = element->GetBox().GetSize().y;
  300. // Apply the automatic block size as minimum size (§4.5). Strictly speaking, we should also apply this to
  301. // the other branches in column mode (and inline min-content size in row mode). However, the formatting step
  302. // can be expensive, here we have already done that step so the value is readily accessible to us.
  303. if (item.main.min_size == 0.f && !LayoutDetails::IsScrollContainer(computed.overflow_x(), computed.overflow_y()))
  304. item.main.min_size = Math::Min(item.inner_flex_base_size, item.main.max_size);
  305. }
  306. // Calculate the hypothetical main size (clamped flex base size).
  307. item.hypothetical_main_size = Math::Clamp(item.inner_flex_base_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  308. item.flex_base_size = item.inner_flex_base_size + item.main.sum_edges;
  309. items.push_back(std::move(item));
  310. }
  311. if (items.empty())
  312. {
  313. return;
  314. }
  315. // -- Collect the items into lines --
  316. FlexLineContainer container;
  317. if (flex_single_line)
  318. {
  319. container.lines.emplace_back(std::move(items));
  320. }
  321. else
  322. {
  323. float cursor = 0;
  324. Vector<FlexItem> line_items;
  325. for (FlexItem& item : items)
  326. {
  327. cursor += item.hypothetical_main_size;
  328. if (!line_items.empty() && cursor > main_wrap_size)
  329. {
  330. // Break into new line.
  331. container.lines.emplace_back(std::move(line_items));
  332. cursor = item.hypothetical_main_size;
  333. line_items = {std::move(item)};
  334. }
  335. else
  336. {
  337. // Add item to current line.
  338. line_items.push_back(std::move(item));
  339. }
  340. cursor += main_gap_size;
  341. }
  342. if (!line_items.empty())
  343. container.lines.emplace_back(std::move(line_items));
  344. items.clear();
  345. items.shrink_to_fit();
  346. }
  347. for (FlexLine& line : container.lines)
  348. {
  349. // now that items are in lines, we can add the main gap size to all but the last item
  350. if (main_gap_size > 0.f)
  351. {
  352. for (size_t i = 0; i < line.items.size() - 1; i++)
  353. {
  354. line.items[i].hypothetical_main_size += main_gap_size;
  355. line.items[i].flex_base_size += main_gap_size;
  356. line.items[i].main.margin_b += main_gap_size;
  357. line.items[i].main.sum_edges += main_gap_size;
  358. }
  359. }
  360. line.accumulated_hypothetical_main_size = std::accumulate(line.items.begin(), line.items.end(), 0.0f,
  361. [](float value, const FlexItem& item) { return value + item.hypothetical_main_size; });
  362. }
  363. // If the available main size is infinite, the used main size becomes the accumulated outer size of all items of the widest line.
  364. const float used_main_size_unconstrained = main_available_size >= 0.f
  365. ? main_available_size
  366. : std::max_element(container.lines.begin(), container.lines.end(), [](const FlexLine& a, const FlexLine& b) {
  367. return a.accumulated_hypothetical_main_size < b.accumulated_hypothetical_main_size;
  368. })->accumulated_hypothetical_main_size;
  369. const float used_main_size = Math::Clamp(used_main_size_unconstrained, main_min_size, main_max_size);
  370. // -- Determine main size --
  371. // Resolve flexible lengths to find the used main size of all items.
  372. for (FlexLine& line : container.lines)
  373. {
  374. const float available_flex_space = used_main_size - line.accumulated_hypothetical_main_size; // Possibly negative
  375. const bool flex_mode_grow = (available_flex_space > 0.f);
  376. auto FlexFactor = [flex_mode_grow](const FlexItem& item) { return (flex_mode_grow ? item.flex_grow_factor : item.flex_shrink_factor); };
  377. // Initialize items and freeze inflexible items.
  378. for (FlexItem& item : line.items)
  379. {
  380. item.target_main_size = item.flex_base_size;
  381. if (FlexFactor(item) == 0.f || (flex_mode_grow && item.flex_base_size > item.hypothetical_main_size) ||
  382. (!flex_mode_grow && item.flex_base_size < item.hypothetical_main_size))
  383. {
  384. item.frozen = true;
  385. item.target_main_size = item.hypothetical_main_size;
  386. }
  387. }
  388. auto RemainingFreeSpace = [used_main_size, &line]() {
  389. return used_main_size - std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  390. return value + (item.frozen ? item.target_main_size : item.flex_base_size);
  391. });
  392. };
  393. const float initial_free_space = RemainingFreeSpace();
  394. // Now iteratively distribute or shrink the size of all the items, until all the items are frozen.
  395. while (!std::all_of(line.items.begin(), line.items.end(), [](const FlexItem& item) { return item.frozen; }))
  396. {
  397. float remaining_free_space = RemainingFreeSpace();
  398. const float flex_factor_sum = std::accumulate(line.items.begin(), line.items.end(), 0.f,
  399. [&FlexFactor](float value, const FlexItem& item) { return value + (item.frozen ? 0.0f : FlexFactor(item)); });
  400. if (flex_factor_sum < 1.f)
  401. {
  402. const float scaled_initial_free_space = initial_free_space * flex_factor_sum;
  403. if (Math::Absolute(scaled_initial_free_space) < Math::Absolute(remaining_free_space))
  404. remaining_free_space = scaled_initial_free_space;
  405. }
  406. if (remaining_free_space != 0.f)
  407. {
  408. // Distribute free space proportionally to flex factors
  409. if (flex_mode_grow)
  410. {
  411. for (FlexItem& item : line.items)
  412. {
  413. if (!item.frozen)
  414. {
  415. const float distribute_ratio = item.flex_grow_factor / flex_factor_sum;
  416. item.target_main_size = item.flex_base_size + distribute_ratio * remaining_free_space;
  417. }
  418. }
  419. }
  420. else
  421. {
  422. const float scaled_flex_shrink_factor_sum =
  423. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) {
  424. return value + (item.frozen ? 0.0f : item.flex_shrink_factor * item.inner_flex_base_size);
  425. });
  426. const float scaled_flex_shrink_factor_sum_nonzero = (scaled_flex_shrink_factor_sum == 0 ? 1 : scaled_flex_shrink_factor_sum);
  427. for (FlexItem& item : line.items)
  428. {
  429. if (!item.frozen)
  430. {
  431. const float scaled_flex_shrink_factor = item.flex_shrink_factor * item.inner_flex_base_size;
  432. const float distribute_ratio = scaled_flex_shrink_factor / scaled_flex_shrink_factor_sum_nonzero;
  433. item.target_main_size = item.flex_base_size - distribute_ratio * Math::Absolute(remaining_free_space);
  434. }
  435. }
  436. }
  437. }
  438. // Clamp min/max violations
  439. float total_minmax_violation = 0.f;
  440. for (FlexItem& item : line.items)
  441. {
  442. if (!item.frozen)
  443. {
  444. const float inner_target_main_size = Math::Max(0.0f, item.target_main_size - item.main.sum_edges);
  445. const float clamped_target_main_size =
  446. Math::Clamp(inner_target_main_size, item.main.min_size, item.main.max_size) + item.main.sum_edges;
  447. const float violation_diff = clamped_target_main_size - item.target_main_size;
  448. item.violation = (violation_diff > 0.0f ? FlexItem::Violation::Min
  449. : (violation_diff < 0.f ? FlexItem::Violation::Max : FlexItem::Violation::None));
  450. item.target_main_size = clamped_target_main_size;
  451. total_minmax_violation += violation_diff;
  452. }
  453. }
  454. for (FlexItem& item : line.items)
  455. {
  456. if (total_minmax_violation > 0.0f)
  457. item.frozen |= (item.violation == FlexItem::Violation::Min);
  458. else if (total_minmax_violation < 0.0f)
  459. item.frozen |= (item.violation == FlexItem::Violation::Max);
  460. else
  461. item.frozen = true;
  462. }
  463. }
  464. // Now, each item's used main size is found!
  465. for (FlexItem& item : line.items)
  466. item.used_main_size = item.target_main_size;
  467. }
  468. // -- Align main axis (§9.5) --
  469. // Main alignment is done before cross sizing. Previously, doing it in this order was important due to pixel
  470. // rounding, since changing the main offset could change the main size after rounding, which in turn could influence
  471. // the cross size. However, now we no longer do pixel rounding, so we may be free to do cross sizing first if we
  472. // want to do it in that order for some particular reason.
  473. for (FlexLine& line : container.lines)
  474. {
  475. const float remaining_free_space = used_main_size -
  476. std::accumulate(line.items.begin(), line.items.end(), 0.f, [](float value, const FlexItem& item) { return value + item.used_main_size; });
  477. if (remaining_free_space > 0.0f)
  478. {
  479. const int num_auto_margins = std::accumulate(line.items.begin(), line.items.end(), 0,
  480. [](int value, const FlexItem& item) { return value + int(item.main.auto_margin_a) + int(item.main.auto_margin_b); });
  481. if (num_auto_margins > 0)
  482. {
  483. // Distribute the remaining space to the auto margins.
  484. const float space_per_auto_margin = remaining_free_space / float(num_auto_margins);
  485. for (FlexItem& item : line.items)
  486. {
  487. if (item.main.auto_margin_a)
  488. item.main_auto_margin_size_a = space_per_auto_margin;
  489. if (item.main.auto_margin_b)
  490. item.main_auto_margin_size_b = space_per_auto_margin;
  491. }
  492. }
  493. else
  494. {
  495. // Distribute the remaining space based on the 'justify-content' property.
  496. using Style::JustifyContent;
  497. const int num_items = int(line.items.size());
  498. switch (computed_flex.justify_content())
  499. {
  500. case JustifyContent::SpaceBetween:
  501. if (num_items > 1)
  502. {
  503. const float space_per_edge = remaining_free_space / float(2 * num_items - 2);
  504. for (int i = 0; i < num_items; i++)
  505. {
  506. FlexItem& item = line.items[i];
  507. if (i > 0)
  508. item.main_auto_margin_size_a = space_per_edge;
  509. if (i < num_items - 1)
  510. item.main_auto_margin_size_b = space_per_edge;
  511. }
  512. break;
  513. }
  514. //-fallthrough
  515. case JustifyContent::FlexStart: line.items.back().main_auto_margin_size_b = remaining_free_space; break;
  516. case JustifyContent::FlexEnd: line.items.front().main_auto_margin_size_a = remaining_free_space; break;
  517. case JustifyContent::Center:
  518. line.items.front().main_auto_margin_size_a = 0.5f * remaining_free_space;
  519. line.items.back().main_auto_margin_size_b = 0.5f * remaining_free_space;
  520. break;
  521. case JustifyContent::SpaceAround:
  522. {
  523. const float space_per_edge = remaining_free_space / float(2 * num_items);
  524. for (FlexItem& item : line.items)
  525. {
  526. item.main_auto_margin_size_a = space_per_edge;
  527. item.main_auto_margin_size_b = space_per_edge;
  528. }
  529. }
  530. break;
  531. case JustifyContent::SpaceEvenly:
  532. {
  533. const float space_per_edge = remaining_free_space / float(2 * (num_items + 1));
  534. for (int i = 0; i < num_items; i++)
  535. {
  536. FlexItem& item = line.items[i];
  537. item.main_auto_margin_size_a = space_per_edge;
  538. item.main_auto_margin_size_b = space_per_edge;
  539. if (i == 0)
  540. item.main_auto_margin_size_a *= 2.0f;
  541. else if (i == num_items - 1)
  542. item.main_auto_margin_size_b *= 2.0f;
  543. }
  544. }
  545. break;
  546. }
  547. }
  548. }
  549. // Now find the offset for each item.
  550. float cursor = 0.0f;
  551. for (FlexItem& item : line.items)
  552. {
  553. if (direction_reverse)
  554. item.main_offset = used_main_size - (cursor + item.used_main_size + item.main_auto_margin_size_a - item.main.margin_b);
  555. else
  556. item.main_offset = cursor + item.main.margin_a + item.main_auto_margin_size_a;
  557. cursor += item.used_main_size + item.main_auto_margin_size_a + item.main_auto_margin_size_b;
  558. }
  559. }
  560. // Apply cross axis gaps to every item in every line except the last line.
  561. if (cross_gap_size > 0.f)
  562. {
  563. for (size_t i = 0; i < container.lines.size() - 1; i++)
  564. {
  565. FlexLine& line = container.lines[i];
  566. for (FlexItem& item : line.items)
  567. {
  568. item.cross.margin_b += cross_gap_size;
  569. item.cross.sum_edges += cross_gap_size;
  570. }
  571. }
  572. }
  573. auto CanSkipHypotheticalCrossSize = [=](const FlexItem& item) {
  574. // If the following conditions are met, the hypothetical cross size will never be used. This allows us to skip a
  575. // potentially slow step with content-based sizing.
  576. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  577. const bool stretched = (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b);
  578. const bool single_line_definite_cross_size = (cross_available_size >= 0.f && flex_single_line);
  579. return stretched && single_line_definite_cross_size;
  580. };
  581. // -- Determine cross size (§9.4) --
  582. // First, determine the cross size of each item, format it if necessary.
  583. for (FlexLine& line : container.lines)
  584. {
  585. for (FlexItem& item : line.items)
  586. {
  587. if (CanSkipHypotheticalCrossSize(item))
  588. continue;
  589. const Vector2f content_size = item.box.GetSize();
  590. if (main_axis_horizontal)
  591. {
  592. if (content_size.y < 0.0f)
  593. {
  594. item.box.SetContent(Vector2f(GetInnerUsedMainSize(item), content_size.y));
  595. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  596. item.hypothetical_cross_size = item.element->GetBox().GetSize().y + item.cross.sum_edges;
  597. }
  598. else
  599. {
  600. item.hypothetical_cross_size = content_size.y + item.cross.sum_edges;
  601. }
  602. }
  603. else
  604. {
  605. if (content_size.x < 0.0f)
  606. {
  607. item.box.SetContent(Vector2f(content_size.x, GetInnerUsedMainSize(item)));
  608. item.hypothetical_cross_size =
  609. LayoutDetails::GetShrinkToFitWidth(item.element, flex_content_containing_block) + item.cross.sum_edges;
  610. }
  611. else
  612. {
  613. item.hypothetical_cross_size = content_size.x + item.cross.sum_edges;
  614. }
  615. }
  616. }
  617. }
  618. // Determine cross size of each line.
  619. if (cross_available_size >= 0.f && flex_single_line)
  620. {
  621. RMLUI_ASSERT(container.lines.size() == 1);
  622. container.lines[0].cross_size = cross_available_size;
  623. }
  624. else
  625. {
  626. for (FlexLine& line : container.lines)
  627. {
  628. RMLUI_ASSERT(std::none_of(line.items.begin(), line.items.end(), [&](const auto& item) { return CanSkipHypotheticalCrossSize(item); }));
  629. const float largest_hypothetical_cross_size =
  630. std::max_element(line.items.begin(), line.items.end(), [](const FlexItem& a, const FlexItem& b) {
  631. return a.hypothetical_cross_size < b.hypothetical_cross_size;
  632. })->hypothetical_cross_size;
  633. // Currently, we don't handle the case where baseline alignment could extend the line's cross size, see CSS specs 9.4.8.
  634. line.cross_size = Math::Max(0.0f, largest_hypothetical_cross_size);
  635. if (flex_single_line)
  636. line.cross_size = Math::Clamp(line.cross_size, cross_min_size, cross_max_size);
  637. }
  638. }
  639. // Stretch out the lines if we have extra space.
  640. if (cross_available_size >= 0.f && computed_flex.align_content() == Style::AlignContent::Stretch)
  641. {
  642. int remaining_space = static_cast<int>(cross_available_size -
  643. std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  644. [](float value, const FlexLine& line) { return value + line.cross_size; }));
  645. if (remaining_space > 0)
  646. {
  647. // Here we use integer math to ensure all space is distributed to pixel boundaries.
  648. const int num_lines = (int)container.lines.size();
  649. for (int i = 0; i < num_lines; i++)
  650. {
  651. const int add_space_to_line = remaining_space / (num_lines - i);
  652. remaining_space -= add_space_to_line;
  653. container.lines[i].cross_size += static_cast<float>(add_space_to_line);
  654. }
  655. }
  656. }
  657. // Determine the used cross size of items.
  658. for (FlexLine& line : container.lines)
  659. {
  660. for (FlexItem& item : line.items)
  661. {
  662. const bool stretch_item = (item.align_self == Style::AlignSelf::Stretch);
  663. if (stretch_item && item.cross.auto_size && !item.cross.auto_margin_a && !item.cross.auto_margin_b)
  664. {
  665. item.used_cross_size =
  666. Math::Clamp(line.cross_size - item.cross.sum_edges, item.cross.min_size, item.cross.max_size) + item.cross.sum_edges;
  667. // Here we are supposed to re-format the item with the new size, so that percentages can be resolved, see CSS specs Sec. 9.4.11. Seems
  668. // very slow, we skip this for now.
  669. }
  670. else
  671. {
  672. RMLUI_ASSERT(!CanSkipHypotheticalCrossSize(item));
  673. item.used_cross_size = item.hypothetical_cross_size;
  674. }
  675. }
  676. }
  677. // -- Align cross axis (§9.6) --
  678. for (FlexLine& line : container.lines)
  679. {
  680. constexpr float UndefinedBaseline = -FLT_MAX;
  681. float max_baseline_edge_distance = UndefinedBaseline;
  682. FlexItem* max_baseline_item = nullptr;
  683. for (FlexItem& item : line.items)
  684. {
  685. const float remaining_space = line.cross_size - item.used_cross_size;
  686. item.cross_offset = item.cross.margin_a;
  687. item.cross_baseline_top = UndefinedBaseline;
  688. const int num_auto_margins = int(item.cross.auto_margin_a) + int(item.cross.auto_margin_b);
  689. if (num_auto_margins > 0)
  690. {
  691. const float space_per_auto_margin = Math::Max(remaining_space, 0.0f) / float(num_auto_margins);
  692. item.cross_offset = item.cross.margin_a + (item.cross.auto_margin_a ? space_per_auto_margin : 0.f);
  693. }
  694. else
  695. {
  696. using Style::AlignSelf;
  697. const AlignSelf align_self = item.align_self;
  698. switch (align_self)
  699. {
  700. case AlignSelf::Auto:
  701. // Never encountered here: should already have been replaced by container's align-items property.
  702. RMLUI_ERROR;
  703. break;
  704. case AlignSelf::FlexStart:
  705. // Do nothing, cross offset set above with this behavior.
  706. break;
  707. case AlignSelf::FlexEnd: item.cross_offset = item.cross.margin_a + remaining_space; break;
  708. case AlignSelf::Center: item.cross_offset = item.cross.margin_a + 0.5f * remaining_space; break;
  709. case AlignSelf::Baseline:
  710. {
  711. // We don't currently have a good way to get the true baseline here, so we make a very rough zero-effort approximation.
  712. const float baseline_heuristic = 0.5f * item.element->GetLineHeight();
  713. const float sum_edges_top = (wrap_reverse ? item.cross.sum_edges - item.cross.sum_edges_a : item.cross.sum_edges_a);
  714. item.cross_baseline_top = sum_edges_top + baseline_heuristic;
  715. const float baseline_edge_distance = (wrap_reverse ? item.used_cross_size - item.cross_baseline_top : item.cross_baseline_top);
  716. if (baseline_edge_distance > max_baseline_edge_distance)
  717. {
  718. max_baseline_item = &item;
  719. max_baseline_edge_distance = baseline_edge_distance;
  720. }
  721. }
  722. break;
  723. case AlignSelf::Stretch:
  724. // Handled above
  725. break;
  726. }
  727. }
  728. if (wrap_reverse)
  729. {
  730. const float reverse_offset = line.cross_size - item.used_cross_size + item.cross.margin_a + item.cross.margin_b;
  731. item.cross_offset = reverse_offset - item.cross_offset;
  732. }
  733. }
  734. if (max_baseline_item)
  735. {
  736. // Align all baseline items such that their baselines are aligned with the one with the max. baseline distance.
  737. // Cross offset for all baseline items are currently set as in 'flex-start'.
  738. const float max_baseline_margin_top = (wrap_reverse ? max_baseline_item->cross.margin_b : max_baseline_item->cross.margin_a);
  739. const float line_top_to_baseline_distance =
  740. max_baseline_item->cross_offset - max_baseline_margin_top + max_baseline_item->cross_baseline_top;
  741. for (FlexItem& item : line.items)
  742. {
  743. if (item.cross_baseline_top != UndefinedBaseline)
  744. {
  745. const float margin_top = (wrap_reverse ? item.cross.margin_b : item.cross.margin_a);
  746. item.cross_offset = line_top_to_baseline_distance - item.cross_baseline_top + margin_top;
  747. }
  748. }
  749. }
  750. }
  751. const float accumulated_lines_cross_size = std::accumulate(container.lines.begin(), container.lines.end(), 0.f,
  752. [](float value, const FlexLine& line) { return value + line.cross_size; });
  753. // If the available cross size is infinite, the used cross size becomes the accumulated line cross size.
  754. const float used_cross_size_unconstrained = cross_available_size >= 0.f ? cross_available_size : accumulated_lines_cross_size;
  755. const float used_cross_size = Math::Clamp(used_cross_size_unconstrained, cross_min_size, cross_max_size);
  756. // Align the lines along the cross-axis.
  757. {
  758. const float remaining_free_space = used_cross_size - accumulated_lines_cross_size;
  759. const int num_lines = int(container.lines.size());
  760. if (remaining_free_space > 0.f)
  761. {
  762. using Style::AlignContent;
  763. switch (computed_flex.align_content())
  764. {
  765. case AlignContent::SpaceBetween:
  766. if (num_lines > 1)
  767. {
  768. const float space_per_edge = remaining_free_space / float(2 * num_lines - 2);
  769. for (int i = 0; i < num_lines; i++)
  770. {
  771. FlexLine& line = container.lines[i];
  772. if (i > 0)
  773. line.cross_spacing_a = space_per_edge;
  774. if (i < num_lines - 1)
  775. line.cross_spacing_b = space_per_edge;
  776. }
  777. }
  778. //-fallthrough
  779. case AlignContent::FlexStart: container.lines.back().cross_spacing_b = remaining_free_space; break;
  780. case AlignContent::FlexEnd: container.lines.front().cross_spacing_a = remaining_free_space; break;
  781. case AlignContent::Center:
  782. container.lines.front().cross_spacing_a = 0.5f * remaining_free_space;
  783. container.lines.back().cross_spacing_b = 0.5f * remaining_free_space;
  784. break;
  785. case AlignContent::SpaceAround:
  786. {
  787. const float space_per_edge = remaining_free_space / float(2 * num_lines);
  788. for (FlexLine& line : container.lines)
  789. {
  790. line.cross_spacing_a = space_per_edge;
  791. line.cross_spacing_b = space_per_edge;
  792. }
  793. }
  794. break;
  795. case AlignContent::SpaceEvenly:
  796. {
  797. const float space_per_edge = remaining_free_space / float(2 * (num_lines + 1));
  798. for (int i = 0; i < num_lines; i++)
  799. {
  800. FlexLine& line = container.lines[i];
  801. line.cross_spacing_a = space_per_edge;
  802. line.cross_spacing_b = space_per_edge;
  803. if (i == 0)
  804. line.cross_spacing_a *= 2.0f;
  805. else if (i == num_lines - 1)
  806. line.cross_spacing_b *= 2.0f;
  807. }
  808. }
  809. break;
  810. case AlignContent::Stretch:
  811. // Handled above.
  812. break;
  813. }
  814. }
  815. // Now find the offset and snap the line edges to the pixel grid.
  816. float cursor = 0.f;
  817. for (FlexLine& line : container.lines)
  818. {
  819. if (wrap_reverse)
  820. line.cross_offset = used_cross_size - (cursor + line.cross_spacing_a + line.cross_size);
  821. else
  822. line.cross_offset = cursor + line.cross_spacing_a;
  823. cursor += line.cross_spacing_a + line.cross_size + line.cross_spacing_b;
  824. }
  825. }
  826. auto MainCrossToVec2 = [main_axis_horizontal](const float v_main, const float v_cross) {
  827. return main_axis_horizontal ? Vector2f(v_main, v_cross) : Vector2f(v_cross, v_main);
  828. };
  829. bool baseline_set = false;
  830. // -- Format items --
  831. for (FlexLine& line : container.lines)
  832. {
  833. for (FlexItem& item : line.items)
  834. {
  835. const Vector2f item_size = MainCrossToVec2(GetInnerUsedMainSize(item), GetInnerUsedCrossSize(item));
  836. const Vector2f item_offset = MainCrossToVec2(item.main_offset, line.cross_offset + item.cross_offset);
  837. item.box.SetContent(item_size);
  838. UniquePtr<LayoutBox> item_layout_box =
  839. FormattingContext::FormatIndependent(flex_container_box, item.element, &item.box, FormattingContextType::Block);
  840. // Set the position of the element within the flex container
  841. item.element->SetOffset(flex_content_offset + item_offset, element_flex);
  842. // The flex container baseline is simply set to the first flex item that has a baseline.
  843. if (!baseline_set && item_layout_box->GetBaselineOfLastLine(flex_baseline))
  844. {
  845. flex_baseline += flex_content_offset.y + item_offset.y;
  846. baseline_set = true;
  847. }
  848. // The cell contents may overflow, propagate this to the flex container.
  849. const Vector2f overflow_size = item_offset + item_layout_box->GetVisibleOverflowSize();
  850. flex_content_overflow_size = Math::Max(flex_content_overflow_size, overflow_size);
  851. }
  852. }
  853. flex_resulting_content_size = MainCrossToVec2(used_main_size, used_cross_size);
  854. }
  855. } // namespace Rml