TransformUtilities.cpp 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801
  1. /*
  2. * This source file is part of RmlUi, the HTML/CSS Interface Middleware
  3. *
  4. * For the latest information, see http://github.com/mikke89/RmlUi
  5. *
  6. * Copyright (c) 2014 Markus Schöngart
  7. * Copyright (c) 2019-2023 The RmlUi Team, and contributors
  8. *
  9. * Permission is hereby granted, free of charge, to any person obtaining a copy
  10. * of this software and associated documentation files (the "Software"), to deal
  11. * in the Software without restriction, including without limitation the rights
  12. * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  13. * copies of the Software, and to permit persons to whom the Software is
  14. * furnished to do so, subject to the following conditions:
  15. *
  16. * The above copyright notice and this permission notice shall be included in
  17. * all copies or substantial portions of the Software.
  18. *
  19. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  22. * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  23. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  24. * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  25. * THE SOFTWARE.
  26. *
  27. */
  28. #include "TransformUtilities.h"
  29. #include "../../Include/RmlUi/Core/Element.h"
  30. #include "../../Include/RmlUi/Core/TransformPrimitive.h"
  31. namespace Rml {
  32. using namespace Transforms;
  33. static Vector3f Combine(const Vector3f a, const Vector3f b, float a_scale, float b_scale)
  34. {
  35. Vector3f result;
  36. result.x = a_scale * a.x + b_scale * b.x;
  37. result.y = a_scale * a.y + b_scale * b.y;
  38. result.z = a_scale * a.z + b_scale * b.z;
  39. return result;
  40. }
  41. // Interpolate two quaternions a, b with weight alpha [0, 1]
  42. static Vector4f QuaternionSlerp(const Vector4f a, const Vector4f b, float alpha)
  43. {
  44. using namespace Math;
  45. const float eps = 0.9995f;
  46. float dot = a.DotProduct(b);
  47. dot = Clamp(dot, -1.f, 1.f);
  48. if (dot > eps)
  49. return a;
  50. float theta = ACos(dot);
  51. float w = Sin(alpha * theta) / SquareRoot(1.f - dot * dot);
  52. float a_scale = Cos(alpha * theta) - dot * w;
  53. Vector4f result;
  54. for (int i = 0; i < 4; i++)
  55. {
  56. result[i] = a[i] * a_scale + b[i] * w;
  57. }
  58. return result;
  59. }
  60. // Resolve a numeric property value with the element's width as relative base value.
  61. static inline float ResolveWidth(NumericValue value, Element& e) noexcept
  62. {
  63. if (value.unit == Unit::PX || value.unit == Unit::NUMBER)
  64. return value.number;
  65. return e.ResolveNumericValue(value, e.GetBox().GetSize(BoxArea::Border).x);
  66. }
  67. // Resolve a numeric property value with the element's height as relative base value.
  68. static inline float ResolveHeight(NumericValue value, Element& e) noexcept
  69. {
  70. if (value.unit == Unit::PX || value.unit == Unit::NUMBER)
  71. return value.number;
  72. return e.ResolveNumericValue(value, e.GetBox().GetSize(BoxArea::Border).y);
  73. }
  74. // Resolve a length numeric property value for the given element.
  75. static inline float ResolveLength(NumericValue value, Element& e) noexcept
  76. {
  77. if (value.unit == Unit::PX || value.unit == Unit::NUMBER)
  78. return value.number;
  79. return e.ResolveLength(value);
  80. }
  81. struct SetIdentityVisitor {
  82. template <size_t N>
  83. void operator()(Transforms::ResolvedPrimitive<N>& p)
  84. {
  85. for (auto& value : p.values)
  86. value = 0.0f;
  87. }
  88. template <size_t N>
  89. void operator()(Transforms::UnresolvedPrimitive<N>& p)
  90. {
  91. for (auto& value : p.values)
  92. value.number = 0.0f;
  93. }
  94. void operator()(Transforms::Matrix2D& p)
  95. {
  96. for (int i = 0; i < 6; i++)
  97. p.values[i] = ((i == 0 || i == 3) ? 1.0f : 0.0f);
  98. }
  99. void operator()(Transforms::Matrix3D& p)
  100. {
  101. for (int i = 0; i < 16; i++)
  102. p.values[i] = ((i % 5) == 0 ? 1.0f : 0.0f);
  103. }
  104. void operator()(Transforms::ScaleX& p) { p.values[0] = 1; }
  105. void operator()(Transforms::ScaleY& p) { p.values[0] = 1; }
  106. void operator()(Transforms::ScaleZ& p) { p.values[0] = 1; }
  107. void operator()(Transforms::Scale2D& p) { p.values[0] = p.values[1] = 1; }
  108. void operator()(Transforms::Scale3D& p) { p.values[0] = p.values[1] = p.values[2] = 1; }
  109. void operator()(Transforms::DecomposedMatrix4& p)
  110. {
  111. p.perspective = Vector4f(0, 0, 0, 1);
  112. p.quaternion = Vector4f(0, 0, 0, 1);
  113. p.translation = Vector3f(0, 0, 0);
  114. p.scale = Vector3f(1, 1, 1);
  115. p.skew = Vector3f(0, 0, 0);
  116. }
  117. void run(TransformPrimitive& primitive)
  118. {
  119. switch (primitive.type)
  120. {
  121. case TransformPrimitive::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  122. case TransformPrimitive::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  123. case TransformPrimitive::TRANSLATEX: this->operator()(primitive.translate_x); break;
  124. case TransformPrimitive::TRANSLATEY: this->operator()(primitive.translate_y); break;
  125. case TransformPrimitive::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  126. case TransformPrimitive::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  127. case TransformPrimitive::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  128. case TransformPrimitive::SCALEX: this->operator()(primitive.scale_x); break;
  129. case TransformPrimitive::SCALEY: this->operator()(primitive.scale_y); break;
  130. case TransformPrimitive::SCALEZ: this->operator()(primitive.scale_z); break;
  131. case TransformPrimitive::SCALE2D: this->operator()(primitive.scale_2d); break;
  132. case TransformPrimitive::SCALE3D: this->operator()(primitive.scale_3d); break;
  133. case TransformPrimitive::ROTATEX: this->operator()(primitive.rotate_x); break;
  134. case TransformPrimitive::ROTATEY: this->operator()(primitive.rotate_y); break;
  135. case TransformPrimitive::ROTATEZ: this->operator()(primitive.rotate_z); break;
  136. case TransformPrimitive::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  137. case TransformPrimitive::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  138. case TransformPrimitive::SKEWX: this->operator()(primitive.skew_x); break;
  139. case TransformPrimitive::SKEWY: this->operator()(primitive.skew_y); break;
  140. case TransformPrimitive::SKEW2D: this->operator()(primitive.skew_2d); break;
  141. case TransformPrimitive::PERSPECTIVE: this->operator()(primitive.perspective); break;
  142. case TransformPrimitive::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  143. }
  144. }
  145. };
  146. void TransformUtilities::SetIdentity(TransformPrimitive& p) noexcept
  147. {
  148. SetIdentityVisitor{}.run(p);
  149. }
  150. struct ResolveTransformVisitor {
  151. Matrix4f& m;
  152. Element& e;
  153. void operator()(const Transforms::Matrix2D& p)
  154. {
  155. m = Matrix4f::FromRows(Vector4f(p.values[0], p.values[2], 0, p.values[4]), Vector4f(p.values[1], p.values[3], 0, p.values[5]),
  156. Vector4f(0, 0, 1, 0), Vector4f(0, 0, 0, 1));
  157. }
  158. void operator()(const Transforms::Matrix3D& p)
  159. {
  160. m = Matrix4f::FromColumns(Vector4f(p.values[0], p.values[1], p.values[2], p.values[3]),
  161. Vector4f(p.values[4], p.values[5], p.values[6], p.values[7]), Vector4f(p.values[8], p.values[9], p.values[10], p.values[11]),
  162. Vector4f(p.values[12], p.values[13], p.values[14], p.values[15]));
  163. }
  164. void operator()(const Transforms::TranslateX& p) { m = Matrix4f::TranslateX(ResolveWidth(p.values[0], e)); }
  165. void operator()(const Transforms::TranslateY& p) { m = Matrix4f::TranslateY(ResolveHeight(p.values[0], e)); }
  166. void operator()(const Transforms::TranslateZ& p) { m = Matrix4f::TranslateZ(ResolveLength(p.values[0], e)); }
  167. void operator()(const Transforms::Translate2D& p) { m = Matrix4f::Translate(ResolveWidth(p.values[0], e), ResolveHeight(p.values[1], e), 0); }
  168. void operator()(const Transforms::Translate3D& p)
  169. {
  170. m = Matrix4f::Translate(ResolveWidth(p.values[0], e), ResolveHeight(p.values[1], e), ResolveLength(p.values[2], e));
  171. }
  172. void operator()(const Transforms::ScaleX& p) { m = Matrix4f::ScaleX(p.values[0]); }
  173. void operator()(const Transforms::ScaleY& p) { m = Matrix4f::ScaleY(p.values[0]); }
  174. void operator()(const Transforms::ScaleZ& p) { m = Matrix4f::ScaleZ(p.values[0]); }
  175. void operator()(const Transforms::Scale2D& p) { m = Matrix4f::Scale(p.values[0], p.values[1], 1); }
  176. void operator()(const Transforms::Scale3D& p) { m = Matrix4f::Scale(p.values[0], p.values[1], p.values[2]); }
  177. void operator()(const Transforms::RotateX& p) { m = Matrix4f::RotateX(p.values[0]); }
  178. void operator()(const Transforms::RotateY& p) { m = Matrix4f::RotateY(p.values[0]); }
  179. void operator()(const Transforms::RotateZ& p) { m = Matrix4f::RotateZ(p.values[0]); }
  180. void operator()(const Transforms::Rotate2D& p) { m = Matrix4f::RotateZ(p.values[0]); }
  181. void operator()(const Transforms::Rotate3D& p) { m = Matrix4f::Rotate(Vector3f(p.values[0], p.values[1], p.values[2]), p.values[3]); }
  182. void operator()(const Transforms::SkewX& p) { m = Matrix4f::SkewX(p.values[0]); }
  183. void operator()(const Transforms::SkewY& p) { m = Matrix4f::SkewY(p.values[0]); }
  184. void operator()(const Transforms::Skew2D& p) { m = Matrix4f::Skew(p.values[0], p.values[1]); }
  185. void operator()(const Transforms::DecomposedMatrix4& p) { m = Matrix4f::Compose(p.translation, p.scale, p.skew, p.perspective, p.quaternion); }
  186. void operator()(const Transforms::Perspective& p) { m = Matrix4f::Perspective(ResolveLength(p.values[0], e)); }
  187. void run(const TransformPrimitive& primitive)
  188. {
  189. switch (primitive.type)
  190. {
  191. case TransformPrimitive::MATRIX2D: this->operator()(primitive.matrix_2d); break;
  192. case TransformPrimitive::MATRIX3D: this->operator()(primitive.matrix_3d); break;
  193. case TransformPrimitive::TRANSLATEX: this->operator()(primitive.translate_x); break;
  194. case TransformPrimitive::TRANSLATEY: this->operator()(primitive.translate_y); break;
  195. case TransformPrimitive::TRANSLATEZ: this->operator()(primitive.translate_z); break;
  196. case TransformPrimitive::TRANSLATE2D: this->operator()(primitive.translate_2d); break;
  197. case TransformPrimitive::TRANSLATE3D: this->operator()(primitive.translate_3d); break;
  198. case TransformPrimitive::SCALEX: this->operator()(primitive.scale_x); break;
  199. case TransformPrimitive::SCALEY: this->operator()(primitive.scale_y); break;
  200. case TransformPrimitive::SCALEZ: this->operator()(primitive.scale_z); break;
  201. case TransformPrimitive::SCALE2D: this->operator()(primitive.scale_2d); break;
  202. case TransformPrimitive::SCALE3D: this->operator()(primitive.scale_3d); break;
  203. case TransformPrimitive::ROTATEX: this->operator()(primitive.rotate_x); break;
  204. case TransformPrimitive::ROTATEY: this->operator()(primitive.rotate_y); break;
  205. case TransformPrimitive::ROTATEZ: this->operator()(primitive.rotate_z); break;
  206. case TransformPrimitive::ROTATE2D: this->operator()(primitive.rotate_2d); break;
  207. case TransformPrimitive::ROTATE3D: this->operator()(primitive.rotate_3d); break;
  208. case TransformPrimitive::SKEWX: this->operator()(primitive.skew_x); break;
  209. case TransformPrimitive::SKEWY: this->operator()(primitive.skew_y); break;
  210. case TransformPrimitive::SKEW2D: this->operator()(primitive.skew_2d); break;
  211. case TransformPrimitive::PERSPECTIVE: this->operator()(primitive.perspective); break;
  212. case TransformPrimitive::DECOMPOSEDMATRIX4: this->operator()(primitive.decomposed_matrix_4); break;
  213. }
  214. }
  215. };
  216. Matrix4f TransformUtilities::ResolveTransform(const TransformPrimitive& p, Element& e) noexcept
  217. {
  218. Matrix4f m;
  219. ResolveTransformVisitor visitor{m, e};
  220. visitor.run(p);
  221. return m;
  222. }
  223. struct PrepareVisitor {
  224. Element& e;
  225. bool operator()(TranslateX& p)
  226. {
  227. p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Unit::PX};
  228. return true;
  229. }
  230. bool operator()(TranslateY& p)
  231. {
  232. p.values[0] = NumericValue{ResolveHeight(p.values[0], e), Unit::PX};
  233. return true;
  234. }
  235. bool operator()(TranslateZ& p)
  236. {
  237. p.values[0] = NumericValue{ResolveLength(p.values[0], e), Unit::PX};
  238. return true;
  239. }
  240. bool operator()(Translate2D& p)
  241. {
  242. p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Unit::PX};
  243. p.values[1] = NumericValue{ResolveHeight(p.values[1], e), Unit::PX};
  244. return true;
  245. }
  246. bool operator()(Translate3D& p)
  247. {
  248. p.values[0] = NumericValue{ResolveWidth(p.values[0], e), Unit::PX};
  249. p.values[1] = NumericValue{ResolveHeight(p.values[1], e), Unit::PX};
  250. p.values[2] = NumericValue{ResolveLength(p.values[2], e), Unit::PX};
  251. return true;
  252. }
  253. template <size_t N>
  254. bool operator()(ResolvedPrimitive<N>& /*p*/)
  255. {
  256. // No conversion needed for resolved transforms (with some exceptions below)
  257. return true;
  258. }
  259. bool operator()(DecomposedMatrix4& /*p*/) { return true; }
  260. bool operator()(Rotate3D& p)
  261. {
  262. // Rotate3D can be interpolated if and only if their rotation axes point in the same direction.
  263. // We normalize the rotation vector here for easy comparison, and return true here. Later on we make the
  264. // pair-wise check in 'TryConvertToMatchingGenericType' to see if we need to decompose.
  265. Vector3f vec = Vector3f(p.values[0], p.values[1], p.values[2]).Normalise();
  266. p.values[0] = vec.x;
  267. p.values[1] = vec.y;
  268. p.values[2] = vec.z;
  269. return true;
  270. }
  271. bool operator()(Matrix3D& /*p*/)
  272. {
  273. // Matrices must be decomposed for interpolation
  274. return false;
  275. }
  276. bool operator()(Matrix2D& /*p*/)
  277. {
  278. // Matrix2D can also be optimized for interpolation, but for now we decompose it to a full DecomposedMatrix4
  279. return false;
  280. }
  281. bool operator()(Perspective& /*p*/)
  282. {
  283. // Perspective must be decomposed
  284. return false;
  285. }
  286. bool run(TransformPrimitive& primitive)
  287. {
  288. switch (primitive.type)
  289. {
  290. case TransformPrimitive::MATRIX2D: return this->operator()(primitive.matrix_2d);
  291. case TransformPrimitive::MATRIX3D: return this->operator()(primitive.matrix_3d);
  292. case TransformPrimitive::TRANSLATEX: return this->operator()(primitive.translate_x);
  293. case TransformPrimitive::TRANSLATEY: return this->operator()(primitive.translate_y);
  294. case TransformPrimitive::TRANSLATEZ: return this->operator()(primitive.translate_z);
  295. case TransformPrimitive::TRANSLATE2D: return this->operator()(primitive.translate_2d);
  296. case TransformPrimitive::TRANSLATE3D: return this->operator()(primitive.translate_3d);
  297. case TransformPrimitive::SCALEX: return this->operator()(primitive.scale_x);
  298. case TransformPrimitive::SCALEY: return this->operator()(primitive.scale_y);
  299. case TransformPrimitive::SCALEZ: return this->operator()(primitive.scale_z);
  300. case TransformPrimitive::SCALE2D: return this->operator()(primitive.scale_2d);
  301. case TransformPrimitive::SCALE3D: return this->operator()(primitive.scale_3d);
  302. case TransformPrimitive::ROTATEX: return this->operator()(primitive.rotate_x);
  303. case TransformPrimitive::ROTATEY: return this->operator()(primitive.rotate_y);
  304. case TransformPrimitive::ROTATEZ: return this->operator()(primitive.rotate_z);
  305. case TransformPrimitive::ROTATE2D: return this->operator()(primitive.rotate_2d);
  306. case TransformPrimitive::ROTATE3D: return this->operator()(primitive.rotate_3d);
  307. case TransformPrimitive::SKEWX: return this->operator()(primitive.skew_x);
  308. case TransformPrimitive::SKEWY: return this->operator()(primitive.skew_y);
  309. case TransformPrimitive::SKEW2D: return this->operator()(primitive.skew_2d);
  310. case TransformPrimitive::PERSPECTIVE: return this->operator()(primitive.perspective);
  311. case TransformPrimitive::DECOMPOSEDMATRIX4: return this->operator()(primitive.decomposed_matrix_4);
  312. }
  313. RMLUI_ASSERT(false);
  314. return false;
  315. }
  316. };
  317. bool TransformUtilities::PrepareForInterpolation(TransformPrimitive& p, Element& e) noexcept
  318. {
  319. return PrepareVisitor{e}.run(p);
  320. }
  321. enum class GenericType { None, Scale3D, Translate3D, Rotate3D };
  322. struct GetGenericTypeVisitor {
  323. GenericType run(const TransformPrimitive& primitive)
  324. {
  325. switch (primitive.type)
  326. {
  327. case TransformPrimitive::TRANSLATEX:
  328. case TransformPrimitive::TRANSLATEY:
  329. case TransformPrimitive::TRANSLATEZ:
  330. case TransformPrimitive::TRANSLATE2D:
  331. case TransformPrimitive::TRANSLATE3D: return GenericType::Translate3D;
  332. case TransformPrimitive::SCALEX:
  333. case TransformPrimitive::SCALEY:
  334. case TransformPrimitive::SCALEZ:
  335. case TransformPrimitive::SCALE2D:
  336. case TransformPrimitive::SCALE3D: return GenericType::Scale3D;
  337. case TransformPrimitive::ROTATEX:
  338. case TransformPrimitive::ROTATEY:
  339. case TransformPrimitive::ROTATEZ:
  340. case TransformPrimitive::ROTATE2D:
  341. case TransformPrimitive::ROTATE3D: return GenericType::Rotate3D;
  342. case TransformPrimitive::MATRIX2D:
  343. case TransformPrimitive::MATRIX3D:
  344. case TransformPrimitive::SKEWX:
  345. case TransformPrimitive::SKEWY:
  346. case TransformPrimitive::SKEW2D:
  347. case TransformPrimitive::PERSPECTIVE:
  348. case TransformPrimitive::DECOMPOSEDMATRIX4: return GenericType::None;
  349. }
  350. RMLUI_ASSERT(false);
  351. return GenericType::None;
  352. }
  353. };
  354. struct ConvertToGenericTypeVisitor {
  355. Translate3D operator()(const TranslateX& p) { return Translate3D{p.values[0], {0.0f, Unit::PX}, {0.0f, Unit::PX}}; }
  356. Translate3D operator()(const TranslateY& p) { return Translate3D{{0.0f, Unit::PX}, p.values[0], {0.0f, Unit::PX}}; }
  357. Translate3D operator()(const TranslateZ& p) { return Translate3D{{0.0f, Unit::PX}, {0.0f, Unit::PX}, p.values[0]}; }
  358. Translate3D operator()(const Translate2D& p) { return Translate3D{p.values[0], p.values[1], {0.0f, Unit::PX}}; }
  359. Scale3D operator()(const ScaleX& p) { return Scale3D{p.values[0], 1.0f, 1.0f}; }
  360. Scale3D operator()(const ScaleY& p) { return Scale3D{1.0f, p.values[0], 1.0f}; }
  361. Scale3D operator()(const ScaleZ& p) { return Scale3D{1.0f, 1.0f, p.values[0]}; }
  362. Scale3D operator()(const Scale2D& p) { return Scale3D{p.values[0], p.values[1], 1.0f}; }
  363. Rotate3D operator()(const RotateX& p) { return Rotate3D{1, 0, 0, p.values[0], Unit::RAD}; }
  364. Rotate3D operator()(const RotateY& p) { return Rotate3D{0, 1, 0, p.values[0], Unit::RAD}; }
  365. Rotate3D operator()(const RotateZ& p) { return Rotate3D{0, 0, 1, p.values[0], Unit::RAD}; }
  366. Rotate3D operator()(const Rotate2D& p) { return Rotate3D{0, 0, 1, p.values[0], Unit::RAD}; }
  367. template <typename T>
  368. TransformPrimitive operator()(const T& p)
  369. {
  370. RMLUI_ERROR;
  371. return p;
  372. }
  373. TransformPrimitive run(const TransformPrimitive& primitive)
  374. {
  375. TransformPrimitive result = primitive;
  376. // clang-format off
  377. switch (primitive.type)
  378. {
  379. case TransformPrimitive::TRANSLATEX: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_x); break;
  380. case TransformPrimitive::TRANSLATEY: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_y); break;
  381. case TransformPrimitive::TRANSLATEZ: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_z); break;
  382. case TransformPrimitive::TRANSLATE2D: result.type = TransformPrimitive::TRANSLATE3D; result.translate_3d = this->operator()(primitive.translate_2d); break;
  383. case TransformPrimitive::TRANSLATE3D: break;
  384. case TransformPrimitive::SCALEX: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_x); break;
  385. case TransformPrimitive::SCALEY: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_y); break;
  386. case TransformPrimitive::SCALEZ: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_z); break;
  387. case TransformPrimitive::SCALE2D: result.type = TransformPrimitive::SCALE3D; result.scale_3d = this->operator()(primitive.scale_2d); break;
  388. case TransformPrimitive::SCALE3D: break;
  389. case TransformPrimitive::ROTATEX: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_x); break;
  390. case TransformPrimitive::ROTATEY: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_y); break;
  391. case TransformPrimitive::ROTATEZ: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_z); break;
  392. case TransformPrimitive::ROTATE2D: result.type = TransformPrimitive::ROTATE3D; result.rotate_3d = this->operator()(primitive.rotate_2d); break;
  393. case TransformPrimitive::ROTATE3D: break;
  394. default: RMLUI_ASSERT(false); break;
  395. }
  396. // clang-format on
  397. return result;
  398. }
  399. };
  400. static bool CanInterpolateRotate3D(const Rotate3D& p0, const Rotate3D& p1)
  401. {
  402. // Rotate3D can only be interpolated if and only if their rotation axes point in the same direction.
  403. // Assumes each rotation axis has already been normalized.
  404. auto& v0 = p0.values;
  405. auto& v1 = p1.values;
  406. return v0[0] == v1[0] && v0[1] == v1[1] && v0[2] == v1[2];
  407. }
  408. bool TransformUtilities::TryConvertToMatchingGenericType(TransformPrimitive& p0, TransformPrimitive& p1) noexcept
  409. {
  410. if (p0.type == p1.type)
  411. {
  412. if (p0.type == TransformPrimitive::ROTATE3D && !CanInterpolateRotate3D(p0.rotate_3d, p1.rotate_3d))
  413. return false;
  414. return true;
  415. }
  416. GenericType c0 = GetGenericTypeVisitor{}.run(p0);
  417. GenericType c1 = GetGenericTypeVisitor{}.run(p1);
  418. if (c0 == c1 && c0 != GenericType::None)
  419. {
  420. TransformPrimitive new_p0 = ConvertToGenericTypeVisitor{}.run(p0);
  421. TransformPrimitive new_p1 = ConvertToGenericTypeVisitor{}.run(p1);
  422. RMLUI_ASSERT(new_p0.type == new_p1.type);
  423. if (new_p0.type == TransformPrimitive::ROTATE3D && !CanInterpolateRotate3D(new_p0.rotate_3d, new_p1.rotate_3d))
  424. return false;
  425. p0 = new_p0;
  426. p1 = new_p1;
  427. return true;
  428. }
  429. return false;
  430. }
  431. struct InterpolateVisitor {
  432. const TransformPrimitive& other_variant;
  433. float alpha;
  434. template <size_t N>
  435. bool Interpolate(ResolvedPrimitive<N>& p0, const ResolvedPrimitive<N>& p1)
  436. {
  437. for (size_t i = 0; i < N; i++)
  438. p0.values[i] = p0.values[i] * (1.0f - alpha) + p1.values[i] * alpha;
  439. return true;
  440. }
  441. template <size_t N>
  442. bool Interpolate(UnresolvedPrimitive<N>& p0, const UnresolvedPrimitive<N>& p1)
  443. {
  444. // Assumes that the underlying units have been resolved (e.g. to pixels)
  445. for (size_t i = 0; i < N; i++)
  446. p0.values[i].number = p0.values[i].number * (1.0f - alpha) + p1.values[i].number * alpha;
  447. return true;
  448. }
  449. bool Interpolate(Rotate3D& p0, const Rotate3D& p1)
  450. {
  451. RMLUI_ASSERT(CanInterpolateRotate3D(p0, p1));
  452. // We can only interpolate rotate3d if their rotation axes align. That should be the case if we get here,
  453. // otherwise the generic type matching should decompose them. Thus, we only need to interpolate
  454. // the angle value here.
  455. p0.values[3] = p0.values[3] * (1.0f - alpha) + p1.values[3] * alpha;
  456. return true;
  457. }
  458. bool Interpolate(Matrix2D& /*p0*/, const Matrix2D& /*p1*/)
  459. {
  460. RMLUI_ERROR;
  461. return false; /* Error if we get here, see PrepareForInterpolation() */
  462. }
  463. bool Interpolate(Matrix3D& /*p0*/, const Matrix3D& /*p1*/)
  464. {
  465. RMLUI_ERROR;
  466. return false; /* Error if we get here, see PrepareForInterpolation() */
  467. }
  468. bool Interpolate(Perspective& /*p0*/, const Perspective& /*p1*/)
  469. {
  470. RMLUI_ERROR;
  471. return false; /* Error if we get here, see PrepareForInterpolation() */
  472. }
  473. bool Interpolate(DecomposedMatrix4& p0, const DecomposedMatrix4& p1)
  474. {
  475. p0.perspective = p0.perspective * (1.0f - alpha) + p1.perspective * alpha;
  476. p0.quaternion = QuaternionSlerp(p0.quaternion, p1.quaternion, alpha);
  477. p0.translation = p0.translation * (1.0f - alpha) + p1.translation * alpha;
  478. p0.scale = p0.scale * (1.0f - alpha) + p1.scale * alpha;
  479. p0.skew = p0.skew * (1.0f - alpha) + p1.skew * alpha;
  480. return true;
  481. }
  482. bool run(TransformPrimitive& variant)
  483. {
  484. RMLUI_ASSERT(variant.type == other_variant.type);
  485. switch (variant.type)
  486. {
  487. case TransformPrimitive::MATRIX2D: return Interpolate(variant.matrix_2d, other_variant.matrix_2d);
  488. case TransformPrimitive::MATRIX3D: return Interpolate(variant.matrix_3d, other_variant.matrix_3d);
  489. case TransformPrimitive::TRANSLATEX: return Interpolate(variant.translate_x, other_variant.translate_x);
  490. case TransformPrimitive::TRANSLATEY: return Interpolate(variant.translate_y, other_variant.translate_y);
  491. case TransformPrimitive::TRANSLATEZ: return Interpolate(variant.translate_z, other_variant.translate_z);
  492. case TransformPrimitive::TRANSLATE2D: return Interpolate(variant.translate_2d, other_variant.translate_2d);
  493. case TransformPrimitive::TRANSLATE3D: return Interpolate(variant.translate_3d, other_variant.translate_3d);
  494. case TransformPrimitive::SCALEX: return Interpolate(variant.scale_x, other_variant.scale_x);
  495. case TransformPrimitive::SCALEY: return Interpolate(variant.scale_y, other_variant.scale_y);
  496. case TransformPrimitive::SCALEZ: return Interpolate(variant.scale_z, other_variant.scale_z);
  497. case TransformPrimitive::SCALE2D: return Interpolate(variant.scale_2d, other_variant.scale_2d);
  498. case TransformPrimitive::SCALE3D: return Interpolate(variant.scale_3d, other_variant.scale_3d);
  499. case TransformPrimitive::ROTATEX: return Interpolate(variant.rotate_x, other_variant.rotate_x);
  500. case TransformPrimitive::ROTATEY: return Interpolate(variant.rotate_y, other_variant.rotate_y);
  501. case TransformPrimitive::ROTATEZ: return Interpolate(variant.rotate_z, other_variant.rotate_z);
  502. case TransformPrimitive::ROTATE2D: return Interpolate(variant.rotate_2d, other_variant.rotate_2d);
  503. case TransformPrimitive::ROTATE3D: return Interpolate(variant.rotate_3d, other_variant.rotate_3d);
  504. case TransformPrimitive::SKEWX: return Interpolate(variant.skew_x, other_variant.skew_x);
  505. case TransformPrimitive::SKEWY: return Interpolate(variant.skew_y, other_variant.skew_y);
  506. case TransformPrimitive::SKEW2D: return Interpolate(variant.skew_2d, other_variant.skew_2d);
  507. case TransformPrimitive::PERSPECTIVE: return Interpolate(variant.perspective, other_variant.perspective);
  508. case TransformPrimitive::DECOMPOSEDMATRIX4: return Interpolate(variant.decomposed_matrix_4, other_variant.decomposed_matrix_4);
  509. }
  510. RMLUI_ASSERT(false);
  511. return false;
  512. }
  513. };
  514. bool TransformUtilities::InterpolateWith(TransformPrimitive& target, const TransformPrimitive& other, float alpha) noexcept
  515. {
  516. if (target.type != other.type)
  517. return false;
  518. bool result = InterpolateVisitor{other, alpha}.run(target);
  519. return result;
  520. }
  521. template <size_t N>
  522. static String ToString(const Transforms::ResolvedPrimitive<N>& p, const String& unit, bool rad_to_deg = false,
  523. bool only_unit_on_last_value = false) noexcept
  524. {
  525. float multiplier = 1.0f;
  526. String tmp;
  527. String result = "(";
  528. for (size_t i = 0; i < N; i++)
  529. {
  530. if (only_unit_on_last_value && i < N - 1)
  531. multiplier = 1.0f;
  532. else if (rad_to_deg)
  533. multiplier = 180.f / Math::RMLUI_PI;
  534. if (TypeConverter<float, String>::Convert(p.values[i] * multiplier, tmp))
  535. result += tmp;
  536. if (!unit.empty() && (!only_unit_on_last_value || (i == N - 1)))
  537. result += unit;
  538. if (i < N - 1)
  539. result += ", ";
  540. }
  541. result += ")";
  542. return result;
  543. }
  544. static inline String ToString(NumericValue value) noexcept
  545. {
  546. return ToString(value.number) + ToString(value.unit);
  547. }
  548. template <size_t N>
  549. static inline String ToString(const Transforms::UnresolvedPrimitive<N>& p) noexcept
  550. {
  551. String result = "(";
  552. for (size_t i = 0; i < N; i++)
  553. {
  554. result += ToString(p.values[i]);
  555. if (i != N - 1)
  556. result += ", ";
  557. }
  558. result += ")";
  559. return result;
  560. }
  561. static inline String ToString(const Transforms::DecomposedMatrix4& p) noexcept
  562. {
  563. static const Transforms::DecomposedMatrix4 d{Vector4f(0, 0, 0, 1), Vector4f(0, 0, 0, 1), Vector3f(0, 0, 0), Vector3f(1, 1, 1), Vector3f(0, 0, 0)};
  564. String tmp;
  565. String result;
  566. if (p.perspective != d.perspective && TypeConverter<Vector4f, String>::Convert(p.perspective, tmp))
  567. result += "perspective(" + tmp + "), ";
  568. if (p.quaternion != d.quaternion && TypeConverter<Vector4f, String>::Convert(p.quaternion, tmp))
  569. result += "quaternion(" + tmp + "), ";
  570. if (p.translation != d.translation && TypeConverter<Vector3f, String>::Convert(p.translation, tmp))
  571. result += "translation(" + tmp + "), ";
  572. if (p.scale != d.scale && TypeConverter<Vector3f, String>::Convert(p.scale, tmp))
  573. result += "scale(" + tmp + "), ";
  574. if (p.skew != d.skew && TypeConverter<Vector3f, String>::Convert(p.skew, tmp))
  575. result += "skew(" + tmp + "), ";
  576. if (result.size() > 2)
  577. result.resize(result.size() - 2);
  578. result = "decomposedMatrix3d{ " + result + " }";
  579. return result;
  580. }
  581. // clang-format off
  582. static inline String ToString(const Transforms::Matrix2D& p) noexcept { return "matrix" + ToString(static_cast<const Transforms::ResolvedPrimitive< 6 >&>(p), ""); }
  583. static inline String ToString(const Transforms::Matrix3D& p) noexcept { return "matrix3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 16 >&>(p), ""); }
  584. static inline String ToString(const Transforms::TranslateX& p) noexcept { return "translateX" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  585. static inline String ToString(const Transforms::TranslateY& p) noexcept { return "translateY" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  586. static inline String ToString(const Transforms::TranslateZ& p) noexcept { return "translateZ" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  587. static inline String ToString(const Transforms::Translate2D& p) noexcept { return "translate" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 2 >&>(p)); }
  588. static inline String ToString(const Transforms::Translate3D& p) noexcept { return "translate3d" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 3 >&>(p)); }
  589. static inline String ToString(const Transforms::ScaleX& p) noexcept { return "scaleX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  590. static inline String ToString(const Transforms::ScaleY& p) noexcept { return "scaleY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  591. static inline String ToString(const Transforms::ScaleZ& p) noexcept { return "scaleZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), ""); }
  592. static inline String ToString(const Transforms::Scale2D& p) noexcept { return "scale" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), ""); }
  593. static inline String ToString(const Transforms::Scale3D& p) noexcept { return "scale3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 3 >&>(p), ""); }
  594. static inline String ToString(const Transforms::RotateX& p) noexcept { return "rotateX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  595. static inline String ToString(const Transforms::RotateY& p) noexcept { return "rotateY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  596. static inline String ToString(const Transforms::RotateZ& p) noexcept { return "rotateZ" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  597. static inline String ToString(const Transforms::Rotate2D& p) noexcept { return "rotate" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  598. static inline String ToString(const Transforms::Rotate3D& p) noexcept { return "rotate3d" + ToString(static_cast<const Transforms::ResolvedPrimitive< 4 >&>(p), "deg", true, true); }
  599. static inline String ToString(const Transforms::SkewX& p) noexcept { return "skewX" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  600. static inline String ToString(const Transforms::SkewY& p) noexcept { return "skewY" + ToString(static_cast<const Transforms::ResolvedPrimitive< 1 >&>(p), "deg", true); }
  601. static inline String ToString(const Transforms::Skew2D& p) noexcept { return "skew" + ToString(static_cast<const Transforms::ResolvedPrimitive< 2 >&>(p), "deg", true); }
  602. static inline String ToString(const Transforms::Perspective& p) noexcept { return "perspective" + ToString(static_cast<const Transforms::UnresolvedPrimitive< 1 >&>(p)); }
  603. // clang-format on
  604. struct ToStringVisitor {
  605. String run(const TransformPrimitive& variant)
  606. {
  607. switch (variant.type)
  608. {
  609. case TransformPrimitive::MATRIX2D: return ToString(variant.matrix_2d);
  610. case TransformPrimitive::MATRIX3D: return ToString(variant.matrix_3d);
  611. case TransformPrimitive::TRANSLATEX: return ToString(variant.translate_x);
  612. case TransformPrimitive::TRANSLATEY: return ToString(variant.translate_y);
  613. case TransformPrimitive::TRANSLATEZ: return ToString(variant.translate_z);
  614. case TransformPrimitive::TRANSLATE2D: return ToString(variant.translate_2d);
  615. case TransformPrimitive::TRANSLATE3D: return ToString(variant.translate_3d);
  616. case TransformPrimitive::SCALEX: return ToString(variant.scale_x);
  617. case TransformPrimitive::SCALEY: return ToString(variant.scale_y);
  618. case TransformPrimitive::SCALEZ: return ToString(variant.scale_z);
  619. case TransformPrimitive::SCALE2D: return ToString(variant.scale_2d);
  620. case TransformPrimitive::SCALE3D: return ToString(variant.scale_3d);
  621. case TransformPrimitive::ROTATEX: return ToString(variant.rotate_x);
  622. case TransformPrimitive::ROTATEY: return ToString(variant.rotate_y);
  623. case TransformPrimitive::ROTATEZ: return ToString(variant.rotate_z);
  624. case TransformPrimitive::ROTATE2D: return ToString(variant.rotate_2d);
  625. case TransformPrimitive::ROTATE3D: return ToString(variant.rotate_3d);
  626. case TransformPrimitive::SKEWX: return ToString(variant.skew_x);
  627. case TransformPrimitive::SKEWY: return ToString(variant.skew_y);
  628. case TransformPrimitive::SKEW2D: return ToString(variant.skew_2d);
  629. case TransformPrimitive::PERSPECTIVE: return ToString(variant.perspective);
  630. case TransformPrimitive::DECOMPOSEDMATRIX4: return ToString(variant.decomposed_matrix_4);
  631. }
  632. RMLUI_ASSERT(false);
  633. return String();
  634. }
  635. };
  636. String TransformUtilities::ToString(const TransformPrimitive& p) noexcept
  637. {
  638. String result = ToStringVisitor{}.run(p);
  639. return result;
  640. }
  641. bool TransformUtilities::Decompose(Transforms::DecomposedMatrix4& d, const Matrix4f& m) noexcept
  642. {
  643. // Follows the procedure given in https://drafts.csswg.org/css-transforms-2/#interpolation-of-3d-matrices
  644. const float eps = 0.0005f;
  645. if (Math::Absolute(m[3][3]) < eps)
  646. return false;
  647. // Perspective matrix
  648. Matrix4f p = m;
  649. for (int i = 0; i < 3; i++)
  650. p[i][3] = 0;
  651. p[3][3] = 1;
  652. if (Math::Absolute(p.Determinant()) < eps)
  653. return false;
  654. if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0)
  655. {
  656. auto rhs = m.GetColumn(3);
  657. Matrix4f p_inv = p;
  658. if (!p_inv.Invert())
  659. return false;
  660. auto& p_inv_trans = p.Transpose();
  661. d.perspective = p_inv_trans * rhs;
  662. }
  663. else
  664. {
  665. d.perspective[0] = d.perspective[1] = d.perspective[2] = 0;
  666. d.perspective[3] = 1;
  667. }
  668. for (int i = 0; i < 3; i++)
  669. d.translation[i] = m[3][i];
  670. Vector3f row[3];
  671. for (int i = 0; i < 3; i++)
  672. {
  673. row[i][0] = m[i][0];
  674. row[i][1] = m[i][1];
  675. row[i][2] = m[i][2];
  676. }
  677. d.scale[0] = row[0].Magnitude();
  678. row[0] = row[0].Normalise();
  679. d.skew[0] = row[0].DotProduct(row[1]);
  680. row[1] = Combine(row[1], row[0], 1, -d.skew[0]);
  681. d.scale[1] = row[1].Magnitude();
  682. row[1] = row[1].Normalise();
  683. d.skew[0] /= d.scale[1];
  684. d.skew[1] = row[0].DotProduct(row[2]);
  685. row[2] = Combine(row[2], row[0], 1, -d.skew[1]);
  686. d.skew[2] = row[1].DotProduct(row[2]);
  687. row[2] = Combine(row[2], row[1], 1, -d.skew[2]);
  688. d.scale[2] = row[2].Magnitude();
  689. row[2] = row[2].Normalise();
  690. d.skew[2] /= d.scale[2];
  691. d.skew[1] /= d.scale[2];
  692. // Check if we need to flip coordinate system
  693. auto pdum3 = row[1].CrossProduct(row[2]);
  694. if (row[0].DotProduct(pdum3) < 0.0f)
  695. {
  696. for (int i = 0; i < 3; i++)
  697. {
  698. d.scale[i] *= -1.f;
  699. row[i] *= -1.f;
  700. }
  701. }
  702. d.quaternion[0] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] - row[1][1] - row[2][2], 0.0f));
  703. d.quaternion[1] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] + row[1][1] - row[2][2], 0.0f));
  704. d.quaternion[2] = 0.5f * Math::SquareRoot(Math::Max(1.f - row[0][0] - row[1][1] + row[2][2], 0.0f));
  705. d.quaternion[3] = 0.5f * Math::SquareRoot(Math::Max(1.f + row[0][0] + row[1][1] + row[2][2], 0.0f));
  706. if (row[2][1] > row[1][2])
  707. d.quaternion[0] *= -1.f;
  708. if (row[0][2] > row[2][0])
  709. d.quaternion[1] *= -1.f;
  710. if (row[1][0] > row[0][1])
  711. d.quaternion[2] *= -1.f;
  712. return true;
  713. }
  714. } // namespace Rml