| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612 |
- #include "primitives.h"
- #include "gl/mesh.h"
- #include <QVector3D>
- #include <algorithm>
- #include <cmath>
- #include <memory>
- #include <numbers>
- #include <qvectornd.h>
- #include <vector>
- namespace Render::GL {
- namespace {
- constexpr float k_pi = std::numbers::pi_v<float>;
- constexpr float k_two_pi = 6.28318530718F;
- constexpr float k_half_scalar = 0.5F;
- constexpr float k_unit_radius = 1.0F;
- constexpr float k_micro_noise_frequency = 12.9898F;
- constexpr float k_micro_noise_scale = 43758.5453F;
- constexpr float k_uv_center = 0.5F;
- constexpr float k_uv_scale = 0.5F;
- constexpr int k_indices_per_quad = 6;
- auto createUnitCylinderMesh(int radialSegments) -> Mesh * {
- const float radius = k_unit_radius;
- const float half_h = k_half_scalar;
- std::vector<Vertex> v;
- std::vector<unsigned int> idx;
- for (int y = 0; y <= 1; ++y) {
- float py = (y != 0) ? half_h : -half_h;
- auto v_coord = float(y);
- for (int i = 0; i <= radialSegments; ++i) {
- float u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = radius * std::cos(ang);
- float pz = radius * std::sin(ang);
- QVector3D n(px, 0.0F, pz);
- n.normalize();
- v.push_back({{px, py, pz}, {n.x(), n.y(), n.z()}, {u, v_coord}});
- }
- }
- int const row = radialSegments + 1;
- for (int i = 0; i < radialSegments; ++i) {
- int a = 0 * row + i;
- int b = 0 * row + i + 1;
- int c = 1 * row + i + 1;
- int d = 1 * row + i;
- idx.push_back(a);
- idx.push_back(b);
- idx.push_back(c);
- idx.push_back(c);
- idx.push_back(d);
- idx.push_back(a);
- }
- int base_top = (int)v.size();
- v.push_back(
- {{0.0F, half_h, 0.0F}, {0.0F, 1.0F, 0.0F}, {k_uv_center, k_uv_center}});
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = radius * std::cos(ang);
- float pz = radius * std::sin(ang);
- v.push_back({{px, half_h, pz},
- {0.0F, 1.0F, 0.0F},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(base_top);
- idx.push_back(base_top + i);
- idx.push_back(base_top + i + 1);
- }
- int base_bot = (int)v.size();
- v.push_back(
- {{0.0F, -half_h, 0.0F}, {0.0F, -1.0F, 0.0F}, {k_uv_center, k_uv_center}});
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = radius * std::cos(ang);
- float pz = radius * std::sin(ang);
- v.push_back({{px, -half_h, pz},
- {0.0F, -1.0F, 0.0F},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(base_bot);
- idx.push_back(base_bot + i + 1);
- idx.push_back(base_bot + i);
- }
- return new Mesh(v, idx);
- }
- auto createUnitSphereMesh(int latSegments, int lonSegments) -> Mesh * {
- const float r = k_unit_radius;
- std::vector<Vertex> v;
- std::vector<unsigned int> idx;
- for (int y = 0; y <= latSegments; ++y) {
- float vy = float(y) / float(latSegments);
- float const phi = vy * k_pi;
- float py = r * std::cos(phi);
- float const pr = r * std::sin(phi);
- for (int x = 0; x <= lonSegments; ++x) {
- float vx = float(x) / float(lonSegments);
- float const theta = vx * k_two_pi;
- float px = pr * std::cos(theta);
- float pz = pr * std::sin(theta);
- QVector3D n(px, py, pz);
- n.normalize();
- v.push_back({{px, py, pz}, {n.x(), n.y(), n.z()}, {vx, vy}});
- }
- }
- int const row = lonSegments + 1;
- for (int y = 0; y < latSegments; ++y) {
- for (int x = 0; x < lonSegments; ++x) {
- int a = y * row + x;
- int b = a + 1;
- int c = (y + 1) * row + x + 1;
- int d = (y + 1) * row + x;
- idx.push_back(a);
- idx.push_back(b);
- idx.push_back(c);
- idx.push_back(c);
- idx.push_back(d);
- idx.push_back(a);
- }
- }
- return new Mesh(v, idx);
- }
- auto createUnitConeMesh(int radialSegments) -> Mesh * {
- const float base_r = k_unit_radius;
- const float half_h = k_half_scalar;
- std::vector<Vertex> v;
- std::vector<unsigned int> idx;
- int apex_idx = 0;
- v.push_back({{0.0F, +half_h, 0.0F}, {0.0F, 1.0F, 0.0F}, {k_uv_center, 1.0F}});
- for (int i = 0; i <= radialSegments; ++i) {
- float u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = base_r * std::cos(ang);
- float pz = base_r * std::sin(ang);
- QVector3D n(px, base_r, pz);
- n.normalize();
- v.push_back({{px, -half_h, pz}, {n.x(), n.y(), n.z()}, {u, 0.0F}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(apex_idx);
- idx.push_back(i);
- idx.push_back(i + 1);
- }
- int base_center = (int)v.size();
- v.push_back(
- {{0.0F, -half_h, 0.0F}, {0.0F, -1.0F, 0.0F}, {k_uv_center, k_uv_center}});
- int const base_start = (int)v.size();
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = base_r * std::cos(ang);
- float pz = base_r * std::sin(ang);
- v.push_back({{px, -half_h, pz},
- {0.0F, -1.0F, 0.0F},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 0; i < radialSegments; ++i) {
- idx.push_back(base_center);
- idx.push_back(base_start + i + 1);
- idx.push_back(base_start + i);
- }
- return new Mesh(v, idx);
- }
- auto createCapsuleMesh(int radialSegments, int heightSegments) -> Mesh * {
- constexpr float k_capsule_radius = 0.25F;
- const float radius = k_capsule_radius;
- const float half_h = k_half_scalar;
- std::vector<Vertex> verts;
- std::vector<unsigned int> idx;
- for (int y = 0; y <= heightSegments; ++y) {
- float v = float(y) / float(heightSegments);
- float py = -half_h + v * (2.0F * half_h);
- for (int i = 0; i <= radialSegments; ++i) {
- float u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = radius * std::cos(ang);
- float pz = radius * std::sin(ang);
- QVector3D n(px, 0.0F, pz);
- n.normalize();
- verts.push_back({{px, py, pz}, {n.x(), n.y(), n.z()}, {u, v}});
- }
- }
- int const row = radialSegments + 1;
- for (int y = 0; y < heightSegments; ++y) {
- for (int i = 0; i < radialSegments; ++i) {
- int a = y * row + i;
- int b = y * row + i + 1;
- int c = (y + 1) * row + i + 1;
- int d = (y + 1) * row + i;
- idx.push_back(a);
- idx.push_back(b);
- idx.push_back(c);
- idx.push_back(c);
- idx.push_back(d);
- idx.push_back(a);
- }
- }
- int base_top = (int)verts.size();
- verts.push_back(
- {{0.0F, half_h, 0.0F}, {0.0F, 1.0F, 0.0F}, {k_uv_center, k_uv_center}});
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = radius * std::cos(ang);
- float pz = radius * std::sin(ang);
- verts.push_back({{px, half_h, pz},
- {0.0F, 1.0F, 0.0F},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(base_top);
- idx.push_back(base_top + i);
- idx.push_back(base_top + i + 1);
- }
- int base_bot = (int)verts.size();
- verts.push_back(
- {{0.0F, -half_h, 0.0F}, {0.0F, -1.0F, 0.0F}, {k_uv_center, k_uv_center}});
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float px = radius * std::cos(ang);
- float pz = radius * std::sin(ang);
- verts.push_back({{px, -half_h, pz},
- {0.0F, -1.0F, 0.0F},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(base_bot);
- idx.push_back(base_bot + i + 1);
- idx.push_back(base_bot + i);
- }
- return new Mesh(verts, idx);
- }
- auto simpleHash(float seed) -> float {
- float const x =
- std::sin(seed * k_micro_noise_frequency) * k_micro_noise_scale;
- return x - std::floor(x);
- }
- auto createUnitTorsoMesh(int radialSegments, int heightSegments) -> Mesh * {
- const float half_h = k_half_scalar;
- constexpr float k_lower_extension = 0.05F;
- const float torso_bottom_y = -half_h;
- const float torso_top_y = half_h + k_lower_extension;
- const float torso_height = torso_top_y - torso_bottom_y;
- const bool invert_profile = true;
- constexpr float k_band_epsilon = 1e-6F;
- constexpr float k_radius_epsilon = 1e-8F;
- constexpr float k_xforward_amp = 0.02F;
- constexpr float k_xforward_start = 0.6F;
- constexpr float k_xforward_end = 0.95F;
- constexpr float k_xbackward_amp = -0.01F;
- constexpr float k_xbackward_start = 0.0F;
- constexpr float k_xbackward_end = 0.2F;
- constexpr float k_lordosis_amp = -0.03F;
- constexpr float k_lordosis_start = 0.15F;
- constexpr float k_lordosis_end = 0.40F;
- constexpr float k_chest_forward_amp = 0.035F;
- constexpr float k_chest_forward_start = 0.65F;
- constexpr float k_chest_forward_end = 0.85F;
- constexpr float k_neck_back_amp = -0.015F;
- constexpr float k_neck_back_start = 0.90F;
- constexpr float k_neck_back_end = 1.0F;
- constexpr float k_twist_amplitude = 0.10F;
- constexpr float k_twist_start = 0.55F;
- constexpr float k_twist_end = 0.95F;
- constexpr float k_theta_sin_pos_amp = 0.07F;
- constexpr float k_theta_sin_pos_start = 0.68F;
- constexpr float k_theta_sin_pos_end = 0.88F;
- constexpr float k_theta_sin_neg_amp = -0.03F;
- constexpr float k_theta_sin_neg_start = 0.65F;
- constexpr float k_theta_sin_neg_end = 0.90F;
- constexpr float k_theta_cos_sq_amp = 0.06F;
- constexpr float k_theta_cos_sq_start = 0.55F;
- constexpr float k_theta_cos_sq_end = 0.75F;
- constexpr float k_theta_cos_sq_neg_amp = -0.02F;
- constexpr float k_theta_cos_sq_neg_start = 0.40F;
- constexpr float k_theta_cos_sq_neg_end = 0.55F;
- constexpr float k_theta_cos_amp = 0.015F;
- constexpr float k_theta_cos_start = 0.70F;
- constexpr float k_theta_cos_end = 0.95F;
- constexpr float k_micro_temporal_frequency = 37.0F;
- constexpr float k_micro_angular_frequency = 3.0F;
- constexpr float k_micro_phase_offset = 1.23F;
- constexpr float k_micro_center = 0.5F;
- constexpr float k_micro_jitter = 0.004F;
- auto clampf = [](float x, float a, float b) {
- return x < a ? a : (x > b ? b : x);
- };
- auto smoothstep01 = [&](float x) {
- x = clampf(x, 0.0F, 1.0F);
- return x * x * (3.0F - 2.0F * x);
- };
- auto smooth_band = [&](float t, float a, float b) {
- float const enter = smoothstep01((t - a) / (b - a + k_band_epsilon));
- float const exit = smoothstep01((t - b) / (a - b - k_band_epsilon));
- float const v = enter < exit ? enter : exit;
- return clampf(v, 0.0F, 1.0F);
- };
- struct Axes {
- float ax;
- float az;
- };
- struct Key {
- float t;
- Axes A;
- };
- const Key keys[] = {
- {0.10F, {0.94F, 0.88F}}, {0.20F, {0.98F, 0.92F}}, {0.45F, {0.76F, 0.70F}},
- {0.65F, {1.12F, 1.06F}}, {0.85F, {1.30F, 1.25F}}, {1.02F, {1.48F, 1.20F}},
- {1.10F, {1.12F, 0.92F}},
- };
- constexpr int key_count = sizeof(keys) / sizeof(keys[0]);
- auto cat_rom = [](float p0, float p1, float p2, float p3, float u) {
- return 0.5F * ((2.0F * p1) + (-p0 + p2) * u +
- (2.0F * p0 - 5.0F * p1 + 4.0F * p2 - p3) * u * u +
- (-p0 + 3.0F * p1 - 3.0F * p2 + p3) * u * u * u);
- };
- auto sample_axes = [&](float t) -> Axes {
- t = clampf(t, 0.0F, 1.0F);
- int i = 0;
- while (i + 1 < key_count && t > keys[i + 1].t) {
- ++i;
- }
- int const i0 = i > 0 ? i - 1 : 0;
- int const i1 = i;
- int const i2 = (i + 1 < key_count) ? i + 1 : key_count - 1;
- int const i3 = (i + 2 < key_count) ? i + 2 : key_count - 1;
- float const denom = (keys[i2].t - keys[i1].t);
- float u = denom > k_band_epsilon ? (t - keys[i1].t) / denom : 0.0F;
- u = clampf(u, 0.0F, 1.0F);
- float const ax =
- cat_rom(keys[i0].A.ax, keys[i1].A.ax, keys[i2].A.ax, keys[i3].A.ax, u);
- float const az =
- cat_rom(keys[i0].A.az, keys[i1].A.az, keys[i2].A.az, keys[i3].A.az, u);
- return {ax, az};
- };
- auto ellipse_radius = [&](float a, float b, float ang) {
- float const c = std::cos(ang);
- float const s = std::sin(ang);
- float const denom = std::sqrt((b * b * c * c) + (a * a * s * s));
- return (a * b) / (denom + k_radius_epsilon);
- };
- auto x_offset_at = [&](float t) {
- float const forward =
- k_xforward_amp * smooth_band(t, k_xforward_start, k_xforward_end);
- float const backward =
- k_xbackward_amp * smooth_band(t, k_xbackward_start, k_xbackward_end);
- return forward + backward;
- };
- auto z_offset_at = [&](float t) {
- float const lordosis =
- k_lordosis_amp * smooth_band(t, k_lordosis_start, k_lordosis_end);
- float const chest_fwd =
- k_chest_forward_amp *
- smooth_band(t, k_chest_forward_start, k_chest_forward_end);
- float const neck_back =
- k_neck_back_amp * smooth_band(t, k_neck_back_start, k_neck_back_end);
- return lordosis + chest_fwd + neck_back;
- };
- auto twist_at = [&](float t) {
- return k_twist_amplitude * smooth_band(t, k_twist_start, k_twist_end);
- };
- auto theta_scale = [&](float t, float ang) {
- float s = 0.0F;
- float const sin_a = std::sin(ang);
- float const cos_a = std::cos(ang);
- float const cos2 = cos_a * cos_a;
- s += k_theta_sin_pos_amp *
- smooth_band(t, k_theta_sin_pos_start, k_theta_sin_pos_end) *
- std::max(0.0F, sin_a);
- s += k_theta_sin_neg_amp *
- smooth_band(t, k_theta_sin_neg_start, k_theta_sin_neg_end) *
- std::max(0.0F, -sin_a);
- s += k_theta_cos_sq_amp *
- smooth_band(t, k_theta_cos_sq_start, k_theta_cos_sq_end) * cos2;
- s += k_theta_cos_sq_neg_amp *
- smooth_band(t, k_theta_cos_sq_neg_start, k_theta_cos_sq_neg_end) *
- cos2;
- s += k_theta_cos_amp * smooth_band(t, k_theta_cos_start, k_theta_cos_end) *
- cos_a;
- return 1.0F + s;
- };
- auto micro = [&](float s) {
- float const f = std::sin(s * k_micro_noise_frequency) * k_micro_noise_scale;
- return f - std::floor(f);
- };
- auto sample_pos = [&](float t, float ang) -> QVector3D {
- float const ts = invert_profile ? (1.0F - t) : t;
- Axes const a = sample_axes(ts);
- float const twist = twist_at(ts);
- float const th = ang + twist;
- float const radius = ellipse_radius(a.ax, a.az, th);
- float const s = theta_scale(ts, th);
- float const r = radius * s;
- float px = r * std::cos(th);
- float pz = r * std::sin(th);
- px += x_offset_at(ts);
- pz += z_offset_at(ts);
- float const py = torso_bottom_y + t * torso_height;
- float const s_value =
- (t * k_micro_temporal_frequency) + (ang * k_micro_angular_frequency);
- px += (micro(s_value) - k_micro_center) * k_micro_jitter;
- pz += (micro(s_value + k_micro_phase_offset) - k_micro_center) *
- k_micro_jitter;
- return {px, py, pz};
- };
- std::vector<Vertex> v;
- std::vector<unsigned int> idx;
- v.reserve((radialSegments + 1) * (heightSegments + 1) +
- (radialSegments + 1) * 2 + 2);
- idx.reserve(radialSegments * heightSegments * k_indices_per_quad +
- radialSegments * k_indices_per_quad);
- for (int y = 0; y <= heightSegments; ++y) {
- float const t = float(y) / float(heightSegments);
- float const dt = 1.0F / float(heightSegments);
- float v_coord = t;
- for (int i = 0; i <= radialSegments; ++i) {
- float u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- float const da = k_two_pi / float(radialSegments);
- QVector3D const p = sample_pos(t, ang);
- QVector3D const pu = sample_pos(t, ang + da);
- QVector3D const pv = sample_pos(clampf(t + dt, 0.0F, 1.0F), ang);
- QVector3D const du = pu - p;
- QVector3D const dv = pv - p;
- QVector3D n = QVector3D::crossProduct(du, dv);
- if (n.lengthSquared() > 0.0F) {
- n.normalize();
- }
- v.push_back({{p.x(), p.y(), p.z()}, {n.x(), n.y(), n.z()}, {u, v_coord}});
- }
- }
- int const row = radialSegments + 1;
- for (int y = 0; y < heightSegments; ++y) {
- for (int i = 0; i < radialSegments; ++i) {
- int a = y * row + i;
- int b = y * row + i + 1;
- int c = (y + 1) * row + i + 1;
- int d = (y + 1) * row + i;
- idx.push_back(a);
- idx.push_back(b);
- idx.push_back(c);
- idx.push_back(c);
- idx.push_back(d);
- idx.push_back(a);
- }
- }
- {
- int base_top = (int)v.size();
- float const t_top = 1.0F;
- float const t_top_s = invert_profile ? (1.0F - t_top) : t_top;
- QVector3D const c_top(x_offset_at(t_top_s), torso_top_y,
- z_offset_at(t_top_s));
- v.push_back({{c_top.x(), c_top.y(), c_top.z()},
- {0, 1, 0},
- {k_uv_center, k_uv_center}});
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- QVector3D const p = sample_pos(t_top, ang);
- v.push_back({{p.x(), p.y(), p.z()},
- {0, 1, 0},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(base_top);
- idx.push_back(base_top + i);
- idx.push_back(base_top + i + 1);
- }
- }
- {
- int base_bot = (int)v.size();
- float const t_bot = 0.0F;
- float const t_bot_s = invert_profile ? (1.0F - t_bot) : t_bot;
- QVector3D const c_bot(x_offset_at(t_bot_s), torso_bottom_y,
- z_offset_at(t_bot_s));
- v.push_back({{c_bot.x(), c_bot.y(), c_bot.z()},
- {0, -1, 0},
- {k_uv_center, k_uv_center}});
- for (int i = 0; i <= radialSegments; ++i) {
- float const u = float(i) / float(radialSegments);
- float const ang = u * k_two_pi;
- QVector3D const p = sample_pos(t_bot, ang);
- v.push_back({{p.x(), p.y(), p.z()},
- {0, -1, 0},
- {k_uv_center + k_uv_scale * std::cos(ang),
- k_uv_center + k_uv_scale * std::sin(ang)}});
- }
- for (int i = 1; i <= radialSegments; ++i) {
- idx.push_back(base_bot);
- idx.push_back(base_bot + i + 1);
- idx.push_back(base_bot + i);
- }
- }
- return new Mesh(v, idx);
- }
- } // namespace
- auto getUnitCylinder(int radialSegments) -> Mesh * {
- static std::unique_ptr<Mesh> const s_mesh(
- createUnitCylinderMesh(radialSegments));
- return s_mesh.get();
- }
- auto getUnitCube() -> Mesh * {
- static std::unique_ptr<Mesh> const s_mesh(createCubeMesh());
- return s_mesh.get();
- }
- auto getUnitSphere(int latSegments, int lonSegments) -> Mesh * {
- static std::unique_ptr<Mesh> const s_mesh(
- createUnitSphereMesh(latSegments, lonSegments));
- return s_mesh.get();
- }
- auto getUnitCone(int radialSegments) -> Mesh * {
- static std::unique_ptr<Mesh> const s_mesh(createUnitConeMesh(radialSegments));
- return s_mesh.get();
- }
- auto getUnitCapsule(int radialSegments, int heightSegments) -> Mesh * {
- static std::unique_ptr<Mesh> const s_mesh(
- createCapsuleMesh(radialSegments, heightSegments));
- return s_mesh.get();
- }
- auto getUnitTorso(int radialSegments, int heightSegments) -> Mesh * {
- static std::unique_ptr<Mesh> const s_mesh(
- createUnitTorsoMesh(radialSegments, heightSegments));
- return s_mesh.get();
- }
- } // namespace Render::GL
|