plant_renderer.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358
  1. #include "plant_renderer.h"
  2. #include "../../game/map/visibility_service.h"
  3. #include "../../game/systems/building_collision_registry.h"
  4. #include "../gl/buffer.h"
  5. #include "../scene_renderer.h"
  6. #include "gl/render_constants.h"
  7. #include "gl/resources.h"
  8. #include "ground/plant_gpu.h"
  9. #include "ground_utils.h"
  10. #include "map/terrain.h"
  11. #include <QVector2D>
  12. #include <algorithm>
  13. #include <cmath>
  14. #include <cstddef>
  15. #include <cstdint>
  16. #include <memory>
  17. #include <vector>
  18. namespace {
  19. using std::uint32_t;
  20. using namespace Render::Ground;
  21. inline auto valueNoise(float x, float z, uint32_t salt = 0U) -> float {
  22. int const x0 = int(std::floor(x));
  23. int const z0 = int(std::floor(z));
  24. int const x1 = x0 + 1;
  25. int const z1 = z0 + 1;
  26. float const tx = x - float(x0);
  27. float const tz = z - float(z0);
  28. float const n00 = hash_to_01(hash_coords(x0, z0, salt));
  29. float const n10 = hash_to_01(hash_coords(x1, z0, salt));
  30. float const n01 = hash_to_01(hash_coords(x0, z1, salt));
  31. float const n11 = hash_to_01(hash_coords(x1, z1, salt));
  32. float const nx0 = n00 * (1 - tx) + n10 * tx;
  33. float const nx1 = n01 * (1 - tx) + n11 * tx;
  34. return nx0 * (1 - tz) + nx1 * tz;
  35. }
  36. } // namespace
  37. namespace Render::GL {
  38. PlantRenderer::PlantRenderer() = default;
  39. PlantRenderer::~PlantRenderer() = default;
  40. void PlantRenderer::configure(const Game::Map::TerrainHeightMap &height_map,
  41. const Game::Map::BiomeSettings &biomeSettings) {
  42. m_width = height_map.getWidth();
  43. m_height = height_map.getHeight();
  44. m_tile_size = height_map.getTileSize();
  45. m_heightData = height_map.getHeightData();
  46. m_terrain_types = height_map.getTerrainTypes();
  47. m_biomeSettings = biomeSettings;
  48. m_noiseSeed = biomeSettings.seed;
  49. m_plantInstances.clear();
  50. m_plantInstanceBuffer.reset();
  51. m_plantInstanceCount = 0;
  52. m_plantInstancesDirty = false;
  53. m_plantParams.light_direction = QVector3D(0.35F, 0.8F, 0.45F);
  54. m_plantParams.time = 0.0F;
  55. m_plantParams.windStrength = m_biomeSettings.sway_strength;
  56. m_plantParams.windSpeed = m_biomeSettings.sway_speed;
  57. generatePlantInstances();
  58. }
  59. void PlantRenderer::submit(Renderer &renderer, ResourceManager *resources) {
  60. (void)resources;
  61. m_plantInstanceCount = static_cast<uint32_t>(m_plantInstances.size());
  62. if (m_plantInstanceCount > 0) {
  63. if (!m_plantInstanceBuffer) {
  64. m_plantInstanceBuffer = std::make_unique<Buffer>(Buffer::Type::Vertex);
  65. }
  66. if (m_plantInstancesDirty && m_plantInstanceBuffer) {
  67. m_plantInstanceBuffer->setData(m_plantInstances, Buffer::Usage::Static);
  68. m_plantInstancesDirty = false;
  69. }
  70. } else {
  71. m_plantInstanceBuffer.reset();
  72. return;
  73. }
  74. auto &visibility = Game::Map::VisibilityService::instance();
  75. const bool use_visibility = visibility.isInitialized();
  76. if (use_visibility) {
  77. std::vector<PlantInstanceGpu> visible_instances;
  78. visible_instances.reserve(m_plantInstances.size());
  79. for (const auto &instance : m_plantInstances) {
  80. float const world_x = instance.posScale.x();
  81. float const world_z = instance.posScale.z();
  82. if (visibility.isVisibleWorld(world_x, world_z)) {
  83. visible_instances.push_back(instance);
  84. }
  85. }
  86. if (visible_instances.empty()) {
  87. return;
  88. }
  89. if (!m_visibleInstanceBuffer) {
  90. m_visibleInstanceBuffer = std::make_unique<Buffer>(Buffer::Type::Vertex);
  91. }
  92. m_visibleInstanceBuffer->setData(visible_instances, Buffer::Usage::Stream);
  93. PlantBatchParams params = m_plantParams;
  94. params.time = renderer.getAnimationTime();
  95. renderer.plantBatch(m_visibleInstanceBuffer.get(),
  96. static_cast<uint32_t>(visible_instances.size()),
  97. params);
  98. } else {
  99. if (m_plantInstanceBuffer && m_plantInstanceCount > 0) {
  100. PlantBatchParams params = m_plantParams;
  101. params.time = renderer.getAnimationTime();
  102. renderer.plantBatch(m_plantInstanceBuffer.get(), m_plantInstanceCount,
  103. params);
  104. }
  105. }
  106. }
  107. void PlantRenderer::clear() {
  108. m_plantInstances.clear();
  109. m_plantInstanceBuffer.reset();
  110. m_visibleInstanceBuffer.reset();
  111. m_plantInstanceCount = 0;
  112. m_plantInstancesDirty = false;
  113. }
  114. void PlantRenderer::generatePlantInstances() {
  115. m_plantInstances.clear();
  116. if (m_width < 2 || m_height < 2 || m_heightData.empty()) {
  117. m_plantInstanceCount = 0;
  118. m_plantInstancesDirty = false;
  119. return;
  120. }
  121. const float plant_density =
  122. std::clamp(m_biomeSettings.plant_density, 0.0F, 2.0F);
  123. if (plant_density < 0.01F) {
  124. m_plantInstanceCount = 0;
  125. m_plantInstancesDirty = false;
  126. return;
  127. }
  128. const float half_width = m_width * 0.5F - 0.5F;
  129. const float half_height = m_height * 0.5F - 0.5F;
  130. const float tile_safe = std::max(0.001F, m_tile_size);
  131. const float edge_padding =
  132. std::clamp(m_biomeSettings.spawnEdgePadding, 0.0F, 0.5F);
  133. const float edge_margin_x = static_cast<float>(m_width) * edge_padding;
  134. const float edge_margin_z = static_cast<float>(m_height) * edge_padding;
  135. std::vector<QVector3D> normals(static_cast<qsizetype>(m_width * m_height),
  136. QVector3D(0.0F, 1.0F, 0.0F));
  137. auto sample_height_at = [&](float gx, float gz) -> float {
  138. gx = std::clamp(gx, 0.0F, float(m_width - 1));
  139. gz = std::clamp(gz, 0.0F, float(m_height - 1));
  140. int const x0 = int(std::floor(gx));
  141. int const z0 = int(std::floor(gz));
  142. int const x1 = std::min(x0 + 1, m_width - 1);
  143. int const z1 = std::min(z0 + 1, m_height - 1);
  144. float const tx = gx - float(x0);
  145. float const tz = gz - float(z0);
  146. float const h00 = m_heightData[z0 * m_width + x0];
  147. float const h10 = m_heightData[z0 * m_width + x1];
  148. float const h01 = m_heightData[z1 * m_width + x0];
  149. float const h11 = m_heightData[z1 * m_width + x1];
  150. float const h0 = h00 * (1.0F - tx) + h10 * tx;
  151. float const h1 = h01 * (1.0F - tx) + h11 * tx;
  152. return h0 * (1.0F - tz) + h1 * tz;
  153. };
  154. for (int z = 0; z < m_height; ++z) {
  155. for (int x = 0; x < m_width; ++x) {
  156. int const idx = z * m_width + x;
  157. float const gx0 = std::clamp(float(x) - 1.0F, 0.0F, float(m_width - 1));
  158. float const gx1 = std::clamp(float(x) + 1.0F, 0.0F, float(m_width - 1));
  159. float const gz0 = std::clamp(float(z) - 1.0F, 0.0F, float(m_height - 1));
  160. float const gz1 = std::clamp(float(z) + 1.0F, 0.0F, float(m_height - 1));
  161. float const h_l = sample_height_at(gx0, float(z));
  162. float const h_r = sample_height_at(gx1, float(z));
  163. float const h_d = sample_height_at(float(x), gz0);
  164. float const h_u = sample_height_at(float(x), gz1);
  165. QVector3D const dx(2.0F * m_tile_size, h_r - h_l, 0.0F);
  166. QVector3D const dz(0.0F, h_u - h_d, 2.0F * m_tile_size);
  167. QVector3D n = QVector3D::crossProduct(dz, dx);
  168. if (n.lengthSquared() > 0.0F) {
  169. n.normalize();
  170. } else {
  171. n = QVector3D(0, 1, 0);
  172. }
  173. normals[idx] = n;
  174. }
  175. }
  176. auto add_plant = [&](float gx, float gz, uint32_t &state) -> bool {
  177. if (gx < edge_margin_x || gx > m_width - 1 - edge_margin_x ||
  178. gz < edge_margin_z || gz > m_height - 1 - edge_margin_z) {
  179. return false;
  180. }
  181. float const sgx = std::clamp(gx, 0.0F, float(m_width - 1));
  182. float const sgz = std::clamp(gz, 0.0F, float(m_height - 1));
  183. int const ix = std::clamp(int(std::floor(sgx + 0.5F)), 0, m_width - 1);
  184. int const iz = std::clamp(int(std::floor(sgz + 0.5F)), 0, m_height - 1);
  185. int const normal_idx = iz * m_width + ix;
  186. if (m_terrain_types[normal_idx] == Game::Map::TerrainType::Mountain) {
  187. return false;
  188. }
  189. if (m_terrain_types[normal_idx] == Game::Map::TerrainType::River) {
  190. return false;
  191. }
  192. constexpr int k_river_margin = 1;
  193. for (int dz = -k_river_margin; dz <= k_river_margin; ++dz) {
  194. for (int dx = -k_river_margin; dx <= k_river_margin; ++dx) {
  195. if (dx == 0 && dz == 0) {
  196. continue;
  197. }
  198. int const nx = ix + dx;
  199. int const nz = iz + dz;
  200. if (nx >= 0 && nx < m_width && nz >= 0 && nz < m_height) {
  201. int const n_idx = nz * m_width + nx;
  202. if (m_terrain_types[n_idx] == Game::Map::TerrainType::River) {
  203. return false;
  204. }
  205. }
  206. }
  207. }
  208. QVector3D const normal = normals[normal_idx];
  209. float const slope = 1.0F - std::clamp(normal.y(), 0.0F, 1.0F);
  210. if (slope > 0.65F) {
  211. return false;
  212. }
  213. float const world_x = (gx - half_width) * m_tile_size;
  214. float const world_z = (gz - half_height) * m_tile_size;
  215. float const world_y = sample_height_at(sgx, sgz);
  216. auto &building_registry =
  217. Game::Systems::BuildingCollisionRegistry::instance();
  218. if (building_registry.isPointInBuilding(world_x, world_z)) {
  219. return false;
  220. }
  221. float const scale = remap(rand_01(state), 0.30F, 0.80F) * tile_safe;
  222. float const plant_type = std::floor(rand_01(state) * 4.0F);
  223. float const color_var = remap(rand_01(state), 0.0F, 1.0F);
  224. QVector3D const base_color = m_biomeSettings.grassPrimary * 0.7F;
  225. QVector3D const var_color = m_biomeSettings.grassSecondary * 0.8F;
  226. QVector3D tint_color =
  227. base_color * (1.0F - color_var) + var_color * color_var;
  228. float const brown_mix = remap(rand_01(state), 0.15F, 0.35F);
  229. QVector3D const brown_tint(0.55F, 0.50F, 0.35F);
  230. tint_color = tint_color * (1.0F - brown_mix) + brown_tint * brown_mix;
  231. float const sway_phase = rand_01(state) * MathConstants::k_two_pi;
  232. float const sway_strength = remap(rand_01(state), 0.6F, 1.2F);
  233. float const sway_speed = remap(rand_01(state), 0.8F, 1.3F);
  234. float const rotation = rand_01(state) * MathConstants::k_two_pi;
  235. PlantInstanceGpu instance;
  236. instance.posScale = QVector4D(world_x, world_y + 0.05F, world_z, scale);
  237. instance.colorSway =
  238. QVector4D(tint_color.x(), tint_color.y(), tint_color.z(), sway_phase);
  239. instance.typeParams =
  240. QVector4D(plant_type, rotation, sway_strength, sway_speed);
  241. m_plantInstances.push_back(instance);
  242. return true;
  243. };
  244. int cells_checked = 0;
  245. int cells_passed = 0;
  246. int plants_added = 0;
  247. for (int z = 0; z < m_height; z += 3) {
  248. for (int x = 0; x < m_width; x += 3) {
  249. cells_checked++;
  250. int const idx = z * m_width + x;
  251. if (m_terrain_types[idx] == Game::Map::TerrainType::Mountain ||
  252. m_terrain_types[idx] == Game::Map::TerrainType::River) {
  253. continue;
  254. }
  255. QVector3D const normal = normals[idx];
  256. float const slope = 1.0F - std::clamp(normal.y(), 0.0F, 1.0F);
  257. if (slope > 0.65F) {
  258. continue;
  259. }
  260. uint32_t state = hash_coords(
  261. x, z, m_noiseSeed ^ 0x8F3C5A7EU ^ static_cast<uint32_t>(idx));
  262. float const world_x = (x - half_width) * m_tile_size;
  263. float const world_z = (z - half_height) * m_tile_size;
  264. float const cluster_noise = valueNoise(world_x * 0.05F, world_z * 0.05F,
  265. m_noiseSeed ^ 0x4B9D2F1AU);
  266. if (cluster_noise < 0.45F) {
  267. continue;
  268. }
  269. cells_passed++;
  270. float density_mult = 1.0F;
  271. if (m_terrain_types[idx] == Game::Map::TerrainType::Hill) {
  272. density_mult = 0.6F;
  273. }
  274. float const effective_density = plant_density * density_mult * 2.0F;
  275. int plant_count = static_cast<int>(std::floor(effective_density));
  276. float const frac = effective_density - float(plant_count);
  277. if (rand_01(state) < frac) {
  278. plant_count += 1;
  279. }
  280. for (int i = 0; i < plant_count; ++i) {
  281. float const gx = float(x) + rand_01(state) * 3.0F;
  282. float const gz = float(z) + rand_01(state) * 3.0F;
  283. if (add_plant(gx, gz, state)) {
  284. plants_added++;
  285. }
  286. }
  287. }
  288. }
  289. m_plantInstanceCount = m_plantInstances.size();
  290. m_plantInstancesDirty = m_plantInstanceCount > 0;
  291. }
  292. } // namespace Render::GL