Adam Ierymenko 5 years ago
parent
commit
19899de5a6
13 changed files with 443 additions and 596 deletions
  1. 120 35
      node/Address.hpp
  2. 6 6
      node/AtomicCounter.hpp
  3. 1 0
      node/CMakeLists.txt
  4. 16 19
      node/Identity.hpp
  5. 30 30
      node/MAC.hpp
  6. 23 55
      node/Packet.hpp
  7. 6 6
      node/SHA512.hpp
  8. 13 11
      node/ScopedPtr.hpp
  9. 20 20
      node/SharedPtr.hpp
  10. 38 46
      node/Str.hpp
  11. 124 270
      node/Topology.hpp
  12. 8 80
      node/Utils.cpp
  13. 38 18
      node/Utils.hpp

+ 120 - 35
node/Address.hpp

@@ -18,8 +18,11 @@
 #include <stdlib.h>
 #include <stdint.h>
 #include <string.h>
+#include <math.h>
 
 #include <string>
+#include <vector>
+#include <algorithm>
 
 #include "Constants.hpp"
 #include "Utils.hpp"
@@ -33,24 +36,24 @@ namespace ZeroTier {
 class Address
 {
 public:
-	inline Address() : _a(0) {}
-	inline Address(const Address &a) : _a(a._a) {}
-	inline Address(uint64_t a) : _a(a & 0xffffffffffULL) {}
+	ZT_ALWAYS_INLINE Address() : _a(0) {}
+	ZT_ALWAYS_INLINE Address(const Address &a) : _a(a._a) {}
+	ZT_ALWAYS_INLINE Address(uint64_t a) : _a(a & 0xffffffffffULL) {}
 
 	/**
 	 * @param bits Raw address -- 5 bytes, big-endian byte order
 	 * @param len Length of array
 	 */
-	inline Address(const void *bits,unsigned int len) { setTo(bits,len); }
+	ZT_ALWAYS_INLINE Address(const void *bits,unsigned int len) { setTo(bits,len); }
 
-	inline Address &operator=(const Address &a) { _a = a._a; return *this; }
-	inline Address &operator=(const uint64_t a) { _a = (a & 0xffffffffffULL); return *this; }
+	ZT_ALWAYS_INLINE Address &operator=(const Address &a) { _a = a._a; return *this; }
+	ZT_ALWAYS_INLINE Address &operator=(const uint64_t a) { _a = (a & 0xffffffffffULL); return *this; }
 
 	/**
 	 * @param bits Raw address -- 5 bytes, big-endian byte order
 	 * @param len Length of array
 	 */
-	inline void setTo(const void *bits,const unsigned int len)
+	ZT_ALWAYS_INLINE void setTo(const void *bits,const unsigned int len)
 	{
 		if (len < ZT_ADDRESS_LENGTH) {
 			_a = 0;
@@ -69,7 +72,7 @@ public:
 	 * @param bits Buffer to hold 5-byte address in big-endian byte order
 	 * @param len Length of array
 	 */
-	inline void copyTo(void *const bits,const unsigned int len) const
+	ZT_ALWAYS_INLINE void copyTo(void *const bits,const unsigned int len) const
 	{
 		if (len < ZT_ADDRESS_LENGTH)
 			return;
@@ -87,7 +90,7 @@ public:
 	 * @param b Buffer to append to
 	 */
 	template<unsigned int C>
-	inline void appendTo(Buffer<C> &b) const
+	ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
 	{
 		unsigned char *p = (unsigned char *)b.appendField(ZT_ADDRESS_LENGTH);
 		*(p++) = (unsigned char)((_a >> 32) & 0xff);
@@ -100,22 +103,22 @@ public:
 	/**
 	 * @return Integer containing address (0 to 2^40)
 	 */
-	inline uint64_t toInt() const { return _a; }
+	ZT_ALWAYS_INLINE uint64_t toInt() const { return _a; }
 
 	/**
 	 * @return Hash code for use with Hashtable
 	 */
-	inline unsigned long hashCode() const { return (unsigned long)_a; }
+	ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)_a; }
 
 	/**
 	 * @return Hexadecimal string
 	 */
-	inline char *toString(char buf[11]) const { return Utils::hex10(_a,buf); }
+	ZT_ALWAYS_INLINE char *toString(char buf[11]) const { return Utils::hex10(_a,buf); }
 
 	/**
 	 * @return True if this address is not zero
 	 */
-	inline operator bool() const { return (_a != 0); }
+	ZT_ALWAYS_INLINE operator bool() const { return (_a != 0); }
 
 	/**
 	 * Check if this address is reserved
@@ -126,33 +129,115 @@ public:
 	 *
 	 * @return True if address is reserved and may not be used
 	 */
-	inline bool isReserved() const { return ((!_a)||((_a >> 32) == ZT_ADDRESS_RESERVED_PREFIX)); }
+	ZT_ALWAYS_INLINE bool isReserved() const { return ((!_a)||((_a >> 32) == ZT_ADDRESS_RESERVED_PREFIX)); }
 
 	/**
 	 * @param i Value from 0 to 4 (inclusive)
 	 * @return Byte at said position (address interpreted in big-endian order)
 	 */
-	inline uint8_t operator[](unsigned int i) const { return (uint8_t)(_a >> (32 - (i * 8))); }
-
-	inline operator unsigned int() const { return (unsigned int)_a; }
-	inline operator unsigned long() const { return (unsigned long)_a; }
-	inline operator unsigned long long() const { return (unsigned long long)_a; }
-
-	inline void zero() { _a = 0; }
-
-	inline bool operator==(const uint64_t &a) const { return (_a == (a & 0xffffffffffULL)); }
-	inline bool operator!=(const uint64_t &a) const { return (_a != (a & 0xffffffffffULL)); }
-	inline bool operator>(const uint64_t &a) const { return (_a > (a & 0xffffffffffULL)); }
-	inline bool operator<(const uint64_t &a) const { return (_a < (a & 0xffffffffffULL)); }
-	inline bool operator>=(const uint64_t &a) const { return (_a >= (a & 0xffffffffffULL)); }
-	inline bool operator<=(const uint64_t &a) const { return (_a <= (a & 0xffffffffffULL)); }
-
-	inline bool operator==(const Address &a) const { return (_a == a._a); }
-	inline bool operator!=(const Address &a) const { return (_a != a._a); }
-	inline bool operator>(const Address &a) const { return (_a > a._a); }
-	inline bool operator<(const Address &a) const { return (_a < a._a); }
-	inline bool operator>=(const Address &a) const { return (_a >= a._a); }
-	inline bool operator<=(const Address &a) const { return (_a <= a._a); }
+	ZT_ALWAYS_INLINE uint8_t operator[](unsigned int i) const { return (uint8_t)(_a >> (32 - (i * 8))); }
+
+	ZT_ALWAYS_INLINE operator unsigned int() const { return (unsigned int)_a; }
+	ZT_ALWAYS_INLINE operator unsigned long() const { return (unsigned long)_a; }
+	ZT_ALWAYS_INLINE operator unsigned long long() const { return (unsigned long long)_a; }
+
+	ZT_ALWAYS_INLINE void zero() { _a = 0; }
+
+	ZT_ALWAYS_INLINE bool operator==(const uint64_t &a) const { return (_a == (a & 0xffffffffffULL)); }
+	ZT_ALWAYS_INLINE bool operator!=(const uint64_t &a) const { return (_a != (a & 0xffffffffffULL)); }
+	ZT_ALWAYS_INLINE bool operator>(const uint64_t &a) const { return (_a > (a & 0xffffffffffULL)); }
+	ZT_ALWAYS_INLINE bool operator<(const uint64_t &a) const { return (_a < (a & 0xffffffffffULL)); }
+	ZT_ALWAYS_INLINE bool operator>=(const uint64_t &a) const { return (_a >= (a & 0xffffffffffULL)); }
+	ZT_ALWAYS_INLINE bool operator<=(const uint64_t &a) const { return (_a <= (a & 0xffffffffffULL)); }
+
+	ZT_ALWAYS_INLINE bool operator==(const Address &a) const { return (_a == a._a); }
+	ZT_ALWAYS_INLINE bool operator!=(const Address &a) const { return (_a != a._a); }
+	ZT_ALWAYS_INLINE bool operator>(const Address &a) const { return (_a > a._a); }
+	ZT_ALWAYS_INLINE bool operator<(const Address &a) const { return (_a < a._a); }
+	ZT_ALWAYS_INLINE bool operator>=(const Address &a) const { return (_a >= a._a); }
+	ZT_ALWAYS_INLINE bool operator<=(const Address &a) const { return (_a <= a._a); }
+
+	/**
+	 * Create a list of the first N bits of a list of unique addresses with N as the minimum unique size
+	 *
+	 * The list is stored in a space-efficient packed bit format.
+	 *
+	 * @param start Starting Address iterator/pointer
+	 * @param end Ending Address iterator/pointer
+	 * @param list Pointer to location to write list
+	 * @param listCapacityBytes Number of bytes available for list
+	 * @return Number of bytes written or -1 on overflow or other error
+	 * @tparam I Input iterator type
+	 */
+	template<typename I>
+	static inline int createMinPrefixList(I start,I end,uint8_t *list,const int listCapacityBytes)
+	{
+		std::vector<Address> sortedAddrs(start,end);
+		if (sortedAddrs.empty())
+			return 0;
+		if (listCapacityBytes == 0)
+			return -1;
+		std::sort(sortedAddrs.begin(),sortedAddrs.end());
+
+		unsigned int bits = (unsigned int)fmaxf(log2f((float)(sortedAddrs.size() * 2)),3.0F);
+		uint64_t mask;
+try_additional_bits: {
+			mask = 0xffffffffffffffffULL >> (64 - bits);
+			std::vector<Address>::iterator a(sortedAddrs.begin());
+			uint64_t aa = *(a++) & mask;
+			aa |= (uint64_t)(aa == 0);
+			uint64_t lastMaskedAddress = aa;
+			while (a != sortedAddrs.end()) {
+				aa = *(a++) & mask;
+				aa |= (uint64_t)(aa == 0);
+				if (aa == lastMaskedAddress) {
+					++bits;
+					goto try_additional_bits;
+				}
+				lastMaskedAddress = aa;
+			}
+		}
+
+		int l = 0;
+		unsigned int bitPtr = 0;
+		for(I a(start);a!=end;) {
+			uint64_t aa = *(a++) & mask;
+			aa |= (uint64_t)(aa == 0);
+			unsigned int br = bits;
+			if (bitPtr > 0) {
+				unsigned int w = 8 - bitPtr;
+				if (w > br) w = br;
+				list[l] = (list[l] << w) | (((uint8_t)aa) & (0xff >> (8 - w)));
+				bitPtr += w;
+				if (bitPtr == 8) {
+					bitPtr = 0;
+					if (l >= listCapacityBytes)
+						return -1;
+					++l;
+				}
+				aa >>= w;
+				br -= w;
+			}
+			while (br >= 8) {
+				if (l >= listCapacityBytes)
+					return -1;
+				list[l++] = (uint8_t)aa;
+				br -= 8;
+				aa >>= 8;
+			}
+			if (br > 0) {
+				list[l] = (uint8_t)aa;
+				bitPtr = br;
+			}
+		}
+		if (bitPtr > 0) {
+			if (l >= listCapacityBytes)
+				return -1;
+			++l;
+		}
+
+		return l;
+	}
 
 private:
 	uint64_t _a;

+ 6 - 6
node/AtomicCounter.hpp

@@ -28,9 +28,9 @@ namespace ZeroTier {
 class AtomicCounter
 {
 public:
-	inline AtomicCounter() { _v = 0; }
+	ZT_ALWAYS_INLINE AtomicCounter() { _v = 0; }
 
-	inline int load() const
+	ZT_ALWAYS_INLINE int load() const
 	{
 #ifdef __GNUC__
 		return __sync_or_and_fetch(const_cast<int *>(&_v),0);
@@ -39,7 +39,7 @@ public:
 #endif
 	}
 
-	inline int operator++()
+	ZT_ALWAYS_INLINE int operator++()
 	{
 #ifdef __GNUC__
 		return __sync_add_and_fetch(&_v,1);
@@ -48,7 +48,7 @@ public:
 #endif
 	}
 
-	inline int operator--()
+	ZT_ALWAYS_INLINE int operator--()
 	{
 #ifdef __GNUC__
 		return __sync_sub_and_fetch(&_v,1);
@@ -58,8 +58,8 @@ public:
 	}
 
 private:
-	inline AtomicCounter(const AtomicCounter &) {}
-	inline const AtomicCounter &operator=(const AtomicCounter &) { return *this; }
+	ZT_ALWAYS_INLINE AtomicCounter(const AtomicCounter &) {}
+	ZT_ALWAYS_INLINE const AtomicCounter &operator=(const AtomicCounter &) { return *this; }
 
 #ifdef __GNUC__
 	int _v;

+ 1 - 0
node/CMakeLists.txt

@@ -29,6 +29,7 @@ set(core_headers
 	Network.hpp
 	NetworkConfig.hpp
 	Node.hpp
+	OS.hpp
 	Packet.hpp
 	Path.hpp
 	Peer.hpp

+ 16 - 19
node/Identity.hpp

@@ -56,8 +56,8 @@ public:
 		P384 = ZT_CRYPTO_ALG_P384      // Type 1 -- NIST P-384 with linked Curve25519/Ed25519 secondaries (2.x+)
 	};
 
-	inline Identity() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
-	inline ~Identity() { Utils::burn(reinterpret_cast<void *>(&this->_priv),sizeof(this->_priv)); }
+	ZT_ALWAYS_INLINE Identity() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
+	ZT_ALWAYS_INLINE ~Identity() { Utils::burn(reinterpret_cast<void *>(&this->_priv),sizeof(this->_priv)); }
 
 	/**
 	 * Construct identity from string
@@ -67,20 +67,17 @@ public:
 	 *
 	 * @param str Identity in canonical string format
 	 */
-	inline Identity(const char *str) { fromString(str); }
-
-	template<unsigned int C>
-	inline Identity(const Buffer<C> &b,unsigned int startAt = 0) { deserialize(b,startAt); }
+	ZT_ALWAYS_INLINE Identity(const char *str) { fromString(str); }
 
 	/**
 	 * Set identity to NIL value (all zero)
 	 */
-	inline void zero() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
+	ZT_ALWAYS_INLINE void zero() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
 
 	/**
 	 * @return Identity type (undefined if identity is null or invalid)
 	 */
-	inline Type type() const { return _type; }
+	ZT_ALWAYS_INLINE Type type() const { return _type; }
 
 	/**
 	 * Generate a new identity (address, key pair)
@@ -101,7 +98,7 @@ public:
 	/**
 	 * @return True if this identity contains a private key
 	 */
-	inline bool hasPrivate() const { return _hasPrivate; }
+	ZT_ALWAYS_INLINE bool hasPrivate() const { return _hasPrivate; }
 
 	/**
 	 * This generates a SHA384 hash of this identity's keys.
@@ -244,7 +241,7 @@ public:
 	/**
 	 * @return This identity's address
 	 */
-	inline const Address &address() const { return _address; }
+	ZT_ALWAYS_INLINE const Address &address() const { return _address; }
 
 	/**
 	 * Serialize this identity (binary)
@@ -371,9 +368,9 @@ public:
 	/**
 	 * @return True if this identity contains something
 	 */
-	inline operator bool() const { return (_address); }
+	ZT_ALWAYS_INLINE operator bool() const { return (_address); }
 
-	inline bool operator==(const Identity &id) const
+	ZT_ALWAYS_INLINE bool operator==(const Identity &id) const
 	{
 		if ((_address == id._address)&&(_type == id._type)) {
 			switch(_type) {
@@ -384,7 +381,7 @@ public:
 		}
 		return false;
 	}
-	inline bool operator<(const Identity &id) const
+	ZT_ALWAYS_INLINE bool operator<(const Identity &id) const
 	{
 		if (_address < id._address)
 			return true;
@@ -401,15 +398,15 @@ public:
 		}
 		return false;
 	}
-	inline bool operator!=(const Identity &id) const { return !(*this == id); }
-	inline bool operator>(const Identity &id) const { return (id < *this); }
-	inline bool operator<=(const Identity &id) const { return !(id < *this); }
-	inline bool operator>=(const Identity &id) const { return !(*this < id); }
+	ZT_ALWAYS_INLINE bool operator!=(const Identity &id) const { return !(*this == id); }
+	ZT_ALWAYS_INLINE bool operator>(const Identity &id) const { return (id < *this); }
+	ZT_ALWAYS_INLINE bool operator<=(const Identity &id) const { return !(id < *this); }
+	ZT_ALWAYS_INLINE bool operator>=(const Identity &id) const { return !(*this < id); }
 
-	inline unsigned long hashCode() const { return ((unsigned long)_address.toInt() + (unsigned long)_pub.c25519[0] + (unsigned long)_pub.c25519[1] + (unsigned long)_pub.c25519[2]); }
+	ZT_ALWAYS_INLINE unsigned long hashCode() const { return ((unsigned long)_address.toInt() + (unsigned long)_pub.c25519[0] + (unsigned long)_pub.c25519[1] + (unsigned long)_pub.c25519[2]); }
 
 	// Marshal interface ///////////////////////////////////////////////////////
-	static inline int marshalSizeMax() { return ZT_IDENTITY_MARSHAL_SIZE_MAX; }
+	static ZT_ALWAYS_INLINE int marshalSizeMax() { return ZT_IDENTITY_MARSHAL_SIZE_MAX; }
 	inline int marshal(uint8_t restrict data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate = false) const
 	{
 		_address.copyTo(data,ZT_ADDRESS_LENGTH);

+ 30 - 30
node/MAC.hpp

@@ -31,40 +31,40 @@ namespace ZeroTier {
 class MAC
 {
 public:
-	inline MAC() : _m(0ULL) {}
-	inline MAC(const MAC &m) : _m(m._m) {}
+	ZT_ALWAYS_INLINE MAC() : _m(0ULL) {}
+	ZT_ALWAYS_INLINE MAC(const MAC &m) : _m(m._m) {}
 
-	inline MAC(const unsigned char a,const unsigned char b,const unsigned char c,const unsigned char d,const unsigned char e,const unsigned char f) :
+	ZT_ALWAYS_INLINE MAC(const unsigned char a,const unsigned char b,const unsigned char c,const unsigned char d,const unsigned char e,const unsigned char f) :
 		_m( ((((uint64_t)a) & 0xffULL) << 40) |
 		    ((((uint64_t)b) & 0xffULL) << 32) |
 		    ((((uint64_t)c) & 0xffULL) << 24) |
 		    ((((uint64_t)d) & 0xffULL) << 16) |
 		    ((((uint64_t)e) & 0xffULL) << 8) |
 		    (((uint64_t)f) & 0xffULL) ) {}
-	inline MAC(const void *bits,unsigned int len) { setTo(bits,len); }
-	inline MAC(const Address &ztaddr,uint64_t nwid) { fromAddress(ztaddr,nwid); }
-	inline MAC(const uint64_t m) : _m(m & 0xffffffffffffULL) {}
+	ZT_ALWAYS_INLINE MAC(const void *bits,unsigned int len) { setTo(bits,len); }
+	ZT_ALWAYS_INLINE MAC(const Address &ztaddr,uint64_t nwid) { fromAddress(ztaddr,nwid); }
+	ZT_ALWAYS_INLINE MAC(const uint64_t m) : _m(m & 0xffffffffffffULL) {}
 
 	/**
 	 * @return MAC in 64-bit integer
 	 */
-	inline uint64_t toInt() const { return _m; }
+	ZT_ALWAYS_INLINE uint64_t toInt() const { return _m; }
 
 	/**
 	 * Set MAC to zero
 	 */
-	inline void zero() { _m = 0ULL; }
+	ZT_ALWAYS_INLINE void zero() { _m = 0ULL; }
 
 	/**
 	 * @return True if MAC is non-zero
 	 */
-	inline operator bool() const { return (_m != 0ULL); }
+	ZT_ALWAYS_INLINE operator bool() const { return (_m != 0ULL); }
 
 	/**
 	 * @param bits Raw MAC in big-endian byte order
 	 * @param len Length, must be >= 6 or result is zero
 	 */
-	inline void setTo(const void *bits,unsigned int len)
+	ZT_ALWAYS_INLINE void setTo(const void *bits,unsigned int len)
 	{
 		if (len < 6) {
 			_m = 0ULL;
@@ -83,7 +83,7 @@ public:
 	 * @param buf Destination buffer for MAC in big-endian byte order
 	 * @param len Length of buffer, must be >= 6 or nothing is copied
 	 */
-	inline void copyTo(void *buf,unsigned int len) const
+	ZT_ALWAYS_INLINE void copyTo(void *buf,unsigned int len) const
 	{
 		if (len < 6)
 			return;
@@ -102,7 +102,7 @@ public:
 	 * @param b Buffer to append to
 	 */
 	template<unsigned int C>
-	inline void appendTo(Buffer<C> &b) const
+	ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
 	{
 		unsigned char *p = (unsigned char *)b.appendField(6);
 		*(p++) = (unsigned char)((_m >> 40) & 0xff);
@@ -116,17 +116,17 @@ public:
 	/**
 	 * @return True if this is broadcast (all 0xff)
 	 */
-	inline bool isBroadcast() const { return (_m == 0xffffffffffffULL); }
+	ZT_ALWAYS_INLINE bool isBroadcast() const { return (_m == 0xffffffffffffULL); }
 
 	/**
 	 * @return True if this is a multicast MAC
 	 */
-	inline bool isMulticast() const { return ((_m & 0x010000000000ULL) != 0ULL); }
+	ZT_ALWAYS_INLINE bool isMulticast() const { return ((_m & 0x010000000000ULL) != 0ULL); }
 
 	/**
 	 * @param True if this is a locally-administered MAC
 	 */
-	inline bool isLocallyAdministered() const { return ((_m & 0x020000000000ULL) != 0ULL); }
+	ZT_ALWAYS_INLINE bool isLocallyAdministered() const { return ((_m & 0x020000000000ULL) != 0ULL); }
 
 	/**
 	 * Set this MAC to a MAC derived from an address and a network ID
@@ -134,7 +134,7 @@ public:
 	 * @param ztaddr ZeroTier address
 	 * @param nwid 64-bit network ID
 	 */
-	inline void fromAddress(const Address &ztaddr,uint64_t nwid)
+	ZT_ALWAYS_INLINE void fromAddress(const Address &ztaddr,uint64_t nwid)
 	{
 		uint64_t m = ((uint64_t)firstOctetForNetwork(nwid)) << 40;
 		m |= ztaddr.toInt(); // a is 40 bits
@@ -153,7 +153,7 @@ public:
 	 *
 	 * @param nwid Network ID
 	 */
-	inline Address toAddress(uint64_t nwid) const
+	ZT_ALWAYS_INLINE Address toAddress(uint64_t nwid) const
 	{
 		uint64_t a = _m & 0xffffffffffULL; // least significant 40 bits of MAC are formed from address
 		a ^= ((nwid >> 8) & 0xff) << 32; // ... XORed with bits 8-48 of the nwid in little-endian byte order, so unmask it
@@ -168,7 +168,7 @@ public:
 	 * @param nwid Network ID
 	 * @return First octet of MAC for this network
 	 */
-	static inline unsigned char firstOctetForNetwork(uint64_t nwid)
+	static ZT_ALWAYS_INLINE unsigned char firstOctetForNetwork(uint64_t nwid)
 	{
 		unsigned char a = ((unsigned char)(nwid & 0xfe) | 0x02); // locally administered, not multicast, from LSB of network ID
 		return ((a == 0x52) ? 0x32 : a); // blacklist 0x52 since it's used by KVM, libvirt, and other popular virtualization engines... seems de-facto standard on Linux
@@ -178,16 +178,16 @@ public:
 	 * @param i Value from 0 to 5 (inclusive)
 	 * @return Byte at said position (address interpreted in big-endian order)
 	 */
-	inline uint8_t operator[](unsigned int i) const { return (uint8_t)(_m >> (40 - (i * 8))); }
+	ZT_ALWAYS_INLINE uint8_t operator[](unsigned int i) const { return (uint8_t)(_m >> (40 - (i * 8))); }
 
 	/**
 	 * @return 6, which is the number of bytes in a MAC, for container compliance
 	 */
-	inline unsigned int size() const { return 6; }
+	ZT_ALWAYS_INLINE unsigned int size() const { return 6; }
 
-	inline unsigned long hashCode() const { return (unsigned long)_m; }
+	ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)_m; }
 
-	inline char *toString(char buf[18]) const
+	ZT_ALWAYS_INLINE char *toString(char buf[18]) const
 	{
 		buf[0] = Utils::HEXCHARS[(_m >> 44) & 0xf];
 		buf[1] = Utils::HEXCHARS[(_m >> 40) & 0xf];
@@ -210,23 +210,23 @@ public:
 		return buf;
 	}
 
-	inline MAC &operator=(const MAC &m)
+	ZT_ALWAYS_INLINE MAC &operator=(const MAC &m)
 	{
 		_m = m._m;
 		return *this;
 	}
-	inline MAC &operator=(const uint64_t m)
+	ZT_ALWAYS_INLINE MAC &operator=(const uint64_t m)
 	{
 		_m = m & 0xffffffffffffULL;
 		return *this;
 	}
 
-	inline bool operator==(const MAC &m) const { return (_m == m._m); }
-	inline bool operator!=(const MAC &m) const { return (_m != m._m); }
-	inline bool operator<(const MAC &m) const { return (_m < m._m); }
-	inline bool operator<=(const MAC &m) const { return (_m <= m._m); }
-	inline bool operator>(const MAC &m) const { return (_m > m._m); }
-	inline bool operator>=(const MAC &m) const { return (_m >= m._m); }
+	ZT_ALWAYS_INLINE bool operator==(const MAC &m) const { return (_m == m._m); }
+	ZT_ALWAYS_INLINE bool operator!=(const MAC &m) const { return (_m != m._m); }
+	ZT_ALWAYS_INLINE bool operator<(const MAC &m) const { return (_m < m._m); }
+	ZT_ALWAYS_INLINE bool operator<=(const MAC &m) const { return (_m <= m._m); }
+	ZT_ALWAYS_INLINE bool operator>(const MAC &m) const { return (_m > m._m); }
+	ZT_ALWAYS_INLINE bool operator>=(const MAC &m) const { return (_m >= m._m); }
 
 private:
 	uint64_t _m;

+ 23 - 55
node/Packet.hpp

@@ -426,25 +426,27 @@ public:
 		 *   <[...] physical destination address of packet>
 		 *   [... begin encrypted region ...]
 		 *   <[2] 16-bit reserved (legacy) field, always 0>
-		 *   <[2] 16-bit length of locator>
-		 *   <[...] locator for this node>
 		 *   <[2] 16-bit length of meta-data dictionary>
 		 *   <[...] meta-data dictionary>
+		 *   [... end encrypted region ...]
+		 *   <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
 		 *
-		 * HELLO is sent in the clear as it is how peers share their identity
-		 * public keys.
+		 * HELLO is sent with authentication but without the usual encryption so
+		 * that peers can exchange identities.
 		 *
 		 * Destination address is the actual wire address to which the packet
 		 * was sent. See InetAddress::serialize() for format.
 		 *
 		 * Starting at "begin encrypted section" the reset of the packet is
-		 * encrypted with Salsa20/12. This encryption is technically not
-		 * absolutely required for security as nothing in this packet is
-		 * very sensitive, but hiding the locator and other meta-data slightly
-		 * improves privacy.
+		 * encrypted with Salsa20/12. This is not the normal packet encryption
+		 * and is technically not necessary as nothing in HELLO is secret. It
+		 * exists merely to shield meta-data info from passive listeners to
+		 * slightly improve privacy, and for backward compatibility with older
+		 * nodes that required it.
 		 *
-		 * The 16-bit zero after encryption starts is for backward compatibility
-		 * with pre-2.0 nodes.
+		 * HELLO (and its OK response) ends with a large 384-bit HMAC to allow
+		 * identity exchanges to be authenticated with additional strength beyond
+		 * ordinary packet authentication.
 		 *
 		 * OK payload:
 		 *   <[8] HELLO timestamp field echo>
@@ -453,7 +455,10 @@ public:
 		 *   <[1] software minor version>
 		 *   <[2] software revision>
 		 *   <[...] physical destination address of packet>
-		 *   <[2] 16-bit reserved field, always 0>
+		 *   <[2] 16-bit reserved (legacy) field, always 0>
+		 *   <[2] 16-bit length of meta-data dictionary>
+		 *   <[...] meta-data dictionary>
+		 *   <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
 		 *
 		 * With the exception of the timestamp, the other fields pertain to the
 		 * respondent who is sending OK and are not echoes.
@@ -858,57 +863,20 @@ public:
 		VERB_USER_MESSAGE = 0x14,
 
 		/**
-		 * Peer-to-peer propagated multicast packet:
-		 *   <[128] 1024-bit bloom filter>
-		 *   <[2] 16-bit perturbation coefficient to minimize bloom collisions>
-		 *   <[5] 40-bit start of range of recipient addresses>
-		 *   <[5] 40-bit end of range of recipient addresses>
+		 * Encapsulate a ZeroTier packet for multicast distribution:
 		 *   [... begin signed portion ...]
 		 *   <[1] 8-bit flags>
 		 *   <[5] 40-bit ZeroTier address of sender>
-		 *   <[8] 64-bit network ID>
-		 *   <[6] MAC address of multicast group>
-		 *   <[4] 32-bit ADI for multicast group>
-		 *   <[6] MAC address of sender>
-		 *   <[2] 16-bit ethertype>
-		 *   <[2] 16-bit length of ethernet payload>
-		 *   <[...] ethernet payload>
+		 *   <[2] 16-bit length of inner payload>
+		 *   <[1] inner payload verb>
+		 *   <[...] inner payload data>
 		 *   [... end signed portion ...]
-		 *   <[2] 16-bit length of signature or 0 if unsigned>
+		 *   <[2] 16-bit length of signature or 0 if un-signed>
 		 *  [<[...] optional signature of multicast>]
-		 *
-		 * This packet contains a multicast that is to be peer-to-peer replicated.
-		 * The range of recipient addresses is a subset of the global list of
-		 * subscribers to this multicast group. As the packet is propagated bits
-		 * in the bloom filter will be set. The sender may attempt to select a
-		 * perturbation coefficient to prevent collisions within the selected
-		 * recipient range.
+		 *   <[...] address (min prefix) list>
 		 */
 		VERB_MULTICAST = 0x16,
 
-		/**
-		 * Negotiate a new ephemeral key:
-		 *   <[48] SHA384 of ephemeral key we currently have for recipient>
-		 *  [<[...] sender's ephemeral key>]
-		 *
-		 * REKEY is used to negotiate ephemeral keys. The first byte is a step
-		 * number from 0 to 2. Here's a new session initiated by Alice:
-		 *
-		 * Alice: REKEY[0x000...,AliceKey]        -> Bob
-		 * Bob:   REKEY[SHA384(AliceKey),BobKey]  -> Alice
-		 * Alice: REKEY[SHA384(BobKey),(omitted)] -> Bob
-		 *
-		 * REKEY messages will continue until both sides have acknowledged each
-		 * others' keys. Either Alice or Bob can send REKEY to negotiate a new
-		 * ephemeral key pair at any time.
-		 *
-		 * OK isn't used because this is an ongoing handshake until both sides
-		 * agree on a key. REKEY triggers a REKEY in reply if the hash for the
-		 * recipient's ephemeral public key doesn't match the ephemeral key it
-		 * wants to use.
-		 */
-		VERB_REKEY = 0x17,
-
 		/**
 		 * Encapsulate a full ZeroTier packet in another:
 		 *   <[...] raw encapsulated packet>
@@ -918,7 +886,7 @@ public:
 		 * where endpoint privacy is desired. Multiply nested ENCAP packets
 		 * could allow ZeroTier to act as an onion router.
 		 */
-		VERB_ENCAP = 0x18
+		VERB_ENCAP = 0x17
 
 		// protocol max: 0x1f
 	};

+ 6 - 6
node/SHA512.hpp

@@ -42,21 +42,21 @@ namespace ZeroTier {
 
 #ifdef __APPLE__
 #define ZT_HAVE_NATIVE_SHA512 1
-static inline void SHA512(void *digest,const void *data,unsigned int len)
+static ZT_ALWAYS_INLINE void SHA512(void *digest,const void *data,unsigned int len)
 {
 	CC_SHA512_CTX ctx;
 	CC_SHA512_Init(&ctx);
 	CC_SHA512_Update(&ctx,data,len);
 	CC_SHA512_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
 }
-static inline void SHA384(void *digest,const void *data,unsigned int len)
+static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data,unsigned int len)
 {
 	CC_SHA512_CTX ctx;
 	CC_SHA384_Init(&ctx);
 	CC_SHA384_Update(&ctx,data,len);
 	CC_SHA384_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
 }
-static inline void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
+static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
 {
 	CC_SHA512_CTX ctx;
 	CC_SHA384_Init(&ctx);
@@ -69,21 +69,21 @@ static inline void SHA384(void *digest,const void *data0,unsigned int len0,const
 #ifndef ZT_HAVE_NATIVE_SHA512
 #ifdef ZT_USE_LIBCRYPTO
 #define ZT_HAVE_NATIVE_SHA512 1
-static inline void SHA512(void *digest,const void *data,unsigned int len)
+static ZT_ALWAYS_INLINE void SHA512(void *digest,const void *data,unsigned int len)
 {
 	SHA512_CTX ctx;
 	SHA512_Init(&ctx);
 	SHA512_Update(&ctx,data,len);
 	SHA512_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
 }
-static inline void SHA384(void *digest,const void *data,unsigned int len)
+static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data,unsigned int len)
 {
 	SHA512_CTX ctx;
 	SHA384_Init(&ctx);
 	SHA384_Update(&ctx,data,len);
 	SHA384_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
 }
-static inline void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
+static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
 {
 	SHA512_CTX ctx;
 	SHA384_Init(&ctx);

+ 13 - 11
node/ScopedPtr.hpp

@@ -27,21 +27,23 @@ template<typename T>
 class ScopedPtr
 {
 public:
-	inline ScopedPtr(T *const p) : _p(p) {}
-	inline ~ScopedPtr() { delete _p; }
+	ZT_ALWAYS_INLINE ScopedPtr(T *const p) : _p(p) {}
+	ZT_ALWAYS_INLINE ~ScopedPtr() { delete _p; }
 
-	inline T *operator->() const { return _p; }
-	inline T &operator*() const { return *_p; }
-	inline operator bool() const { return (_p != (T *)0); }
-	inline T *ptr() const { return _p; }
+	ZT_ALWAYS_INLINE T *operator->() const { return _p; }
+	ZT_ALWAYS_INLINE T &operator*() const { return *_p; }
+	ZT_ALWAYS_INLINE operator bool() const { return (_p != (T *)0); }
+	ZT_ALWAYS_INLINE T *ptr() const { return _p; }
 
-	inline bool operator==(const ScopedPtr &p) const { return (_p == p._p); }
-	inline bool operator!=(const ScopedPtr &p) const { return (_p != p._p); }
-	inline bool operator==(T *const p) const { return (_p == p); }
-	inline bool operator!=(T *const p) const { return (_p != p); }
+	ZT_ALWAYS_INLINE bool operator==(const ScopedPtr &p) const { return (_p == p._p); }
+	ZT_ALWAYS_INLINE bool operator!=(const ScopedPtr &p) const { return (_p != p._p); }
+	ZT_ALWAYS_INLINE bool operator==(T *const p) const { return (_p == p); }
+	ZT_ALWAYS_INLINE bool operator!=(T *const p) const { return (_p != p); }
 
 private:
-	inline ScopedPtr() {}
+	ZT_ALWAYS_INLINE ScopedPtr() {}
+	ZT_ALWAYS_INLINE ScopedPtr(const ScopedPtr &p) : _p(nullptr) {}
+	ZT_ALWAYS_INLINE ScopedPtr &operator=(const ScopedPtr &p) { return *this; }
 	T *const _p;
 };
 

+ 20 - 20
node/SharedPtr.hpp

@@ -30,11 +30,11 @@ template<typename T>
 class SharedPtr
 {
 public:
-	inline SharedPtr() : _ptr((T *)0) {}
-	inline SharedPtr(T *obj) : _ptr(obj) { ++obj->__refCount; }
-	inline SharedPtr(const SharedPtr &sp) : _ptr(sp._getAndInc()) {}
+	ZT_ALWAYS_INLINE SharedPtr() : _ptr((T *)0) {}
+	ZT_ALWAYS_INLINE SharedPtr(T *obj) : _ptr(obj) { ++obj->__refCount; }
+	ZT_ALWAYS_INLINE SharedPtr(const SharedPtr &sp) : _ptr(sp._getAndInc()) {}
 
-	inline ~SharedPtr()
+	ZT_ALWAYS_INLINE ~SharedPtr()
 	{
 		if (_ptr) {
 			if (--_ptr->__refCount <= 0)
@@ -42,7 +42,7 @@ public:
 		}
 	}
 
-	inline SharedPtr &operator=(const SharedPtr &sp)
+	ZT_ALWAYS_INLINE SharedPtr &operator=(const SharedPtr &sp)
 	{
 		if (_ptr != sp._ptr) {
 			T *p = sp._getAndInc();
@@ -63,7 +63,7 @@ public:
 	 *
 	 * @param ptr Naked pointer to assign
 	 */
-	inline void set(T *ptr)
+	ZT_ALWAYS_INLINE void set(T *ptr)
 	{
 		zero();
 		++ptr->__refCount;
@@ -75,26 +75,26 @@ public:
 	 *
 	 * @param with Pointer to swap with
 	 */
-	inline void swap(SharedPtr &with)
+	ZT_ALWAYS_INLINE void swap(SharedPtr &with)
 	{
 		T *tmp = _ptr;
 		_ptr = with._ptr;
 		with._ptr = tmp;
 	}
 
-	inline operator bool() const { return (_ptr != (T *)0); }
-	inline T &operator*() const { return *_ptr; }
-	inline T *operator->() const { return _ptr; }
+	ZT_ALWAYS_INLINE operator bool() const { return (_ptr != (T *)0); }
+	ZT_ALWAYS_INLINE T &operator*() const { return *_ptr; }
+	ZT_ALWAYS_INLINE T *operator->() const { return _ptr; }
 
 	/**
 	 * @return Raw pointer to held object
 	 */
-	inline T *ptr() const { return _ptr; }
+	ZT_ALWAYS_INLINE T *ptr() const { return _ptr; }
 
 	/**
 	 * Set this pointer to NULL
 	 */
-	inline void zero()
+	ZT_ALWAYS_INLINE void zero()
 	{
 		if (_ptr) {
 			if (--_ptr->__refCount <= 0)
@@ -106,22 +106,22 @@ public:
 	/**
 	 * @return Number of references according to this object's ref count or 0 if NULL
 	 */
-	inline int references()
+	ZT_ALWAYS_INLINE int references()
 	{
 		if (_ptr)
 			return _ptr->__refCount.load();
 		return 0;
 	}
 
-	inline bool operator==(const SharedPtr &sp) const { return (_ptr == sp._ptr); }
-	inline bool operator!=(const SharedPtr &sp) const { return (_ptr != sp._ptr); }
-	inline bool operator>(const SharedPtr &sp) const { return (_ptr > sp._ptr); }
-	inline bool operator<(const SharedPtr &sp) const { return (_ptr < sp._ptr); }
-	inline bool operator>=(const SharedPtr &sp) const { return (_ptr >= sp._ptr); }
-	inline bool operator<=(const SharedPtr &sp) const { return (_ptr <= sp._ptr); }
+	ZT_ALWAYS_INLINE bool operator==(const SharedPtr &sp) const { return (_ptr == sp._ptr); }
+	ZT_ALWAYS_INLINE bool operator!=(const SharedPtr &sp) const { return (_ptr != sp._ptr); }
+	ZT_ALWAYS_INLINE bool operator>(const SharedPtr &sp) const { return (_ptr > sp._ptr); }
+	ZT_ALWAYS_INLINE bool operator<(const SharedPtr &sp) const { return (_ptr < sp._ptr); }
+	ZT_ALWAYS_INLINE bool operator>=(const SharedPtr &sp) const { return (_ptr >= sp._ptr); }
+	ZT_ALWAYS_INLINE bool operator<=(const SharedPtr &sp) const { return (_ptr <= sp._ptr); }
 
 private:
-	inline T *_getAndInc() const
+	ZT_ALWAYS_INLINE T *_getAndInc() const
 	{
 		if (_ptr)
 			++_ptr->__refCount;

+ 38 - 46
node/Str.hpp

@@ -35,36 +35,36 @@ public:
 	typedef char * iterator;
 	typedef const char * const_iterator;
 
-	inline Str() { _l = 0; _s[0] = 0; }
-	inline Str(const Str &s)
+	ZT_ALWAYS_INLINE Str() { _l = 0; _s[0] = 0; }
+	ZT_ALWAYS_INLINE Str(const Str &s)
 	{
 		_l = s._l;
 		memcpy(_s,s._s,_l+1);
 	}
-	inline Str(const char *s)
+	ZT_ALWAYS_INLINE Str(const char *s)
 	{
 		_l = 0;
 		_s[0] = 0;
 		(*this) << s;
 	}
-	inline Str(const std::string &s)
+	ZT_ALWAYS_INLINE Str(const std::string &s)
 	{
 		*this = s;
 	}
 
-	inline Str &operator=(const Str &s)
+	ZT_ALWAYS_INLINE Str &operator=(const Str &s)
 	{
 		_l = s._l;
 		memcpy(_s,s._s,_l+1);
 		return *this;
 	}
-	inline Str &operator=(const char *s)
+	ZT_ALWAYS_INLINE Str &operator=(const char *s)
 	{
 		_l = 0;
 		_s[0] = 0;
 		return ((*this) << s);
 	}
-	inline Str &operator=(const std::string &s)
+	ZT_ALWAYS_INLINE Str &operator=(const std::string &s)
 	{
 		if (s.length() > ZT_STR_CAPACITY) {
 			_l = 0;
@@ -78,23 +78,23 @@ public:
 		return *this;
 	}
 
-	inline char operator[](const unsigned int i) const
+	ZT_ALWAYS_INLINE char operator[](const unsigned int i) const
 	{
 		if (unlikely(i >= (unsigned int)_l))
 			throw ZT_EXCEPTION_OUT_OF_BOUNDS;
 		return _s[i];
 	}
 
-	inline void clear() { _l = 0; _s[0] = 0; }
-	inline const char *c_str() const { return _s; }
-	inline unsigned int length() const { return (unsigned int)_l; }
-	inline bool empty() const { return (_l == 0); }
-	inline iterator begin() { return (iterator)_s; }
-	inline iterator end() { return (iterator)(_s + (unsigned long)_l); }
-	inline const_iterator begin() const { return (const_iterator)_s; }
-	inline const_iterator end() const { return (const_iterator)(_s + (unsigned long)_l); }
+	ZT_ALWAYS_INLINE void clear() { _l = 0; _s[0] = 0; }
+	ZT_ALWAYS_INLINE const char *c_str() const { return _s; }
+	ZT_ALWAYS_INLINE unsigned int length() const { return (unsigned int)_l; }
+	ZT_ALWAYS_INLINE bool empty() const { return (_l == 0); }
+	ZT_ALWAYS_INLINE iterator begin() { return (iterator)_s; }
+	ZT_ALWAYS_INLINE iterator end() { return (iterator)(_s + (unsigned long)_l); }
+	ZT_ALWAYS_INLINE const_iterator begin() const { return (const_iterator)_s; }
+	ZT_ALWAYS_INLINE const_iterator end() const { return (const_iterator)(_s + (unsigned long)_l); }
 
-	inline Str &operator<<(const char *s)
+	ZT_ALWAYS_INLINE Str &operator<<(const char *s)
 	{
 		if (likely(s != (const char *)0)) {
 			unsigned long l = _l;
@@ -111,8 +111,8 @@ public:
 		}
 		return *this;
 	}
-	inline Str &operator<<(const Str &s) { return ((*this) << s._s); }
-	inline Str &operator<<(const char c)
+	ZT_ALWAYS_INLINE Str &operator<<(const Str &s) { return ((*this) << s._s); }
+	ZT_ALWAYS_INLINE Str &operator<<(const char c)
 	{
 		if (unlikely(_l >= ZT_STR_CAPACITY)) {
 			_s[ZT_STR_CAPACITY] = 0;
@@ -122,29 +122,29 @@ public:
 		_s[(unsigned long)_l] = 0;
 		return *this;
 	}
-	inline Str &operator<<(const unsigned long n)
+	ZT_ALWAYS_INLINE Str &operator<<(const unsigned long n)
 	{
 		char tmp[32];
 		Utils::decimal(n,tmp);
 		return ((*this) << tmp);
 	}
-	inline Str &operator<<(const unsigned int n)
+	ZT_ALWAYS_INLINE Str &operator<<(const unsigned int n)
 	{
 		char tmp[32];
 		Utils::decimal((unsigned long)n,tmp);
 		return ((*this) << tmp);
 	}
-	inline Str &operator<<(const Address &a)
+	ZT_ALWAYS_INLINE Str &operator<<(const Address &a)
 	{
 		char tmp[32];
 		return ((*this) << a.toString(tmp));
 	}
-	inline Str &operator<<(const InetAddress &a)
+	ZT_ALWAYS_INLINE Str &operator<<(const InetAddress &a)
 	{
 		char tmp[128];
 		return ((*this) << a.toString(tmp));
 	}
-	inline Str &operator<<(const MAC &a)
+	ZT_ALWAYS_INLINE Str &operator<<(const MAC &a)
 	{
 		char tmp[64];
 		return ((*this) << a.toString(tmp));
@@ -171,31 +171,23 @@ public:
 		return *this;
 	}
 
-	inline operator bool() const { return (_l != 0); }
+	ZT_ALWAYS_INLINE operator bool() const { return (_l != 0); }
 
-	inline bool operator==(const Str &s) const { return ((_l == s._l)&&(memcmp(_s,s._s,_l) == 0)); }
-	inline bool operator!=(const Str &s) const { return ((_l != s._l)||(memcmp(_s,s._s,_l) != 0)); }
-	inline bool operator<(const Str &s) const { return ( (_l < s._l) ? true : ((_l == s._l) ? (memcmp(_s,s._s,_l) < 0) : false) ); }
-	inline bool operator>(const Str &s) const { return (s < *this); }
-	inline bool operator<=(const Str &s) const { return !(s < *this); }
-	inline bool operator>=(const Str &s) const { return !(*this < s); }
+	ZT_ALWAYS_INLINE bool operator==(const Str &s) const { return ((_l == s._l)&&(memcmp(_s,s._s,_l) == 0)); }
+	ZT_ALWAYS_INLINE bool operator!=(const Str &s) const { return ((_l != s._l)||(memcmp(_s,s._s,_l) != 0)); }
+	ZT_ALWAYS_INLINE bool operator<(const Str &s) const { return ( (_l < s._l) ? true : ((_l == s._l) ? (memcmp(_s,s._s,_l) < 0) : false) ); }
+	ZT_ALWAYS_INLINE bool operator>(const Str &s) const { return (s < *this); }
+	ZT_ALWAYS_INLINE bool operator<=(const Str &s) const { return !(s < *this); }
+	ZT_ALWAYS_INLINE bool operator>=(const Str &s) const { return !(*this < s); }
 
-	inline bool operator==(const char *s) const { return (strcmp(_s,s) == 0); }
-	inline bool operator!=(const char *s) const { return (strcmp(_s,s) != 0); }
-	inline bool operator<(const char *s) const { return (strcmp(_s,s) < 0); }
-	inline bool operator>(const char *s) const { return (strcmp(_s,s) > 0); }
-	inline bool operator<=(const char *s) const { return (strcmp(_s,s) <= 0); }
-	inline bool operator>=(const char *s) const { return (strcmp(_s,s) >= 0); }
+	ZT_ALWAYS_INLINE bool operator==(const char *s) const { return (strcmp(_s,s) == 0); }
+	ZT_ALWAYS_INLINE bool operator!=(const char *s) const { return (strcmp(_s,s) != 0); }
+	ZT_ALWAYS_INLINE bool operator<(const char *s) const { return (strcmp(_s,s) < 0); }
+	ZT_ALWAYS_INLINE bool operator>(const char *s) const { return (strcmp(_s,s) > 0); }
+	ZT_ALWAYS_INLINE bool operator<=(const char *s) const { return (strcmp(_s,s) <= 0); }
+	ZT_ALWAYS_INLINE bool operator>=(const char *s) const { return (strcmp(_s,s) >= 0); }
 
-	inline unsigned long hashCode() const
-	{
-		const char *p = _s;
-		unsigned long h = 0;
-		char c;
-		while ((c = *(p++)))
-			h = (31 * h) + (unsigned long)c;
-		return h;
-	}
+	ZT_ALWAYS_INLINE unsigned long hashCode() const { return Utils::hashString(_s,_l); }
 
 private:
 	uint16_t _l;

+ 124 - 270
node/Topology.hpp

@@ -18,7 +18,6 @@
 #include <string.h>
 
 #include <vector>
-#include <stdexcept>
 #include <algorithm>
 #include <utility>
 #include <set>
@@ -33,9 +32,9 @@
 #include "Mutex.hpp"
 #include "InetAddress.hpp"
 #include "Hashtable.hpp"
-#include "Locator.hpp"
 #include "SharedPtr.hpp"
 #include "ScopedPtr.hpp"
+#include "Str.hpp"
 
 namespace ZeroTier {
 
@@ -46,48 +45,17 @@ class RuntimeEnvironment;
  */
 class Topology
 {
-private:
-	struct _RootRankingFunction
-	{
-		inline _RootRankingFunction() : bestRoot(),bestRootLatency(0xffff) {}
-		inline bool operator()(const SharedPtr<Peer> &peer,const std::vector<InetAddress> &phy)
-		{
-			const unsigned int lat = peer->latency(now);
-			if ((!bestRoot)||((lat <= bestRootLatency)&&(peer->getAppropriatePath(now,false)))) {
-				bestRoot = peer;
-				bestRootLatency = lat;
-			}
-			return true;
-		}
-		int64_t now;
-		SharedPtr<Peer> bestRoot;
-		unsigned int bestRootLatency;
-	};
-
-	inline void _updateRoots()
-	{
-		// assumes _roots_l is locked
-		_rootIdentities.clear();
-		Hashtable< Str,SharedPtr<const Locator> >::Iterator i(_roots);
-		Str *k = (Str *)0;
-		SharedPtr< const Locator > *v = (SharedPtr< const Locator > *)0;
-		while (i.next(k,v)) {
-			if (*v)
-				_rootIdentities.set((*v)->id(),true);
-		}
-	}
-
 public:
-	inline Topology(const RuntimeEnvironment *renv,const Identity &myId) :
+	ZT_ALWAYS_INLINE Topology(const RuntimeEnvironment *renv,const Identity &myId) :
 		RR(renv),
 		_myIdentity(myId),
 		_numConfiguredPhysicalPaths(0),
-		_peers(64),
-		_paths(128),
-		_roots(8),
-		_rootIdentities(8),
-		_lastUpdatedBestRoot(0) {}
-	inline ~Topology() {}
+		_peers(128),
+		_paths(256)
+	{
+	}
+
+	ZT_ALWAYS_INLINE ~Topology() {}
 
 	/**
 	 * Add a peer to database
@@ -95,21 +63,16 @@ public:
 	 * This will not replace existing peers. In that case the existing peer
 	 * record is returned.
 	 *
-	 * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
 	 * @param peer Peer to add
 	 * @return New or existing peer (should replace 'peer')
 	 */
-	inline SharedPtr<Peer> add(const SharedPtr<Peer> &peer)
+	ZT_ALWAYS_INLINE SharedPtr<Peer> add(const SharedPtr<Peer> &peer)
 	{
-		SharedPtr<Peer> np;
-		{
-			Mutex::Lock _l(_peers_l);
-			SharedPtr<Peer> &hp = _peers[peer->address()];
-			if (!hp)
-				hp = peer;
-			np = hp;
-		}
-		return np;
+		Mutex::Lock _l(_peers_l);
+		SharedPtr<Peer> &hp = _peers[peer->address()];
+		if (!hp)
+			hp = peer;
+		return hp;
 	}
 
 	/**
@@ -119,15 +82,11 @@ public:
 	 * @param zta ZeroTier address of peer
 	 * @return Peer or NULL if not found
 	 */
-	inline SharedPtr<Peer> get(const Address &zta)
+	ZT_ALWAYS_INLINE SharedPtr<Peer> get(const Address &zta)
 	{
-		if (zta == _myIdentity.address())
-			return SharedPtr<Peer>();
 		Mutex::Lock l1(_peers_l);
 		const SharedPtr<Peer> *const ap = _peers.get(zta);
-		if (ap)
-			return *ap;
-		return SharedPtr<Peer>();
+		return (ap) ? *ap : SharedPtr<Peer>();
 	}
 
 	/**
@@ -135,7 +94,7 @@ public:
 	 * @param zta ZeroTier address of peer
 	 * @return Identity or NULL identity if not found
 	 */
-	inline Identity getIdentity(void *tPtr,const Address &zta)
+	ZT_ALWAYS_INLINE Identity getIdentity(void *tPtr,const Address &zta)
 	{
 		if (zta == _myIdentity.address()) {
 			return _myIdentity;
@@ -155,7 +114,7 @@ public:
 	 * @param r Remote address
 	 * @return Pointer to canonicalized Path object
 	 */
-	inline SharedPtr<Path> getPath(const int64_t l,const InetAddress &r)
+	ZT_ALWAYS_INLINE SharedPtr<Path> getPath(const int64_t l,const InetAddress &r)
 	{
 		Mutex::Lock _l(_paths_l);
 		SharedPtr<Path> &p = _paths[Path::HashKey(l,r)];
@@ -168,45 +127,17 @@ public:
 	 * @param id Identity to check
 	 * @return True if this identity corresponds to a root
 	 */
-	inline bool isRoot(const Identity &id) const
+	ZT_ALWAYS_INLINE bool isRoot(const Identity &id) const
 	{
-		Mutex::Lock l(_roots_l);
-		return _rootIdentities.contains(id);
-	}
-
-	/**
-	 * Do periodic tasks such as database cleanup
-	 */
-	inline void doPeriodicTasks(int64_t now)
-	{
-		{
-			Mutex::Lock _l1(_peers_l);
-			Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
-			Address *a = (Address *)0;
-			SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
-			while (i.next(a,p)) {
-				if (!(*p)->alive(now)) {
-					_peers.erase(*a);
-				}
-			}
-		}
-		{
-			Mutex::Lock _l(_paths_l);
-			Hashtable< Path::HashKey,SharedPtr<Path> >::Iterator i(_paths);
-			Path::HashKey *k = (Path::HashKey *)0;
-			SharedPtr<Path> *p = (SharedPtr<Path> *)0;
-			while (i.next(k,p)) {
-				if (p->references() <= 1)
-					_paths.erase(*k);
-			}
-		}
+		Mutex::Lock l(_peers_l);
+		return (_roots.count(id) > 0);
 	}
 
 	/**
 	 * @param now Current time
 	 * @return Number of peers with active direct paths
 	 */
-	inline unsigned long countActive(int64_t now) const
+	ZT_ALWAYS_INLINE unsigned long countActive(const int64_t now) const
 	{
 		unsigned long cnt = 0;
 		Mutex::Lock _l(_peers_l);
@@ -214,8 +145,7 @@ public:
 		Address *a = (Address *)0;
 		SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
 		while (i.next(a,p)) {
-			const SharedPtr<Path> pp((*p)->getAppropriatePath(now,false));
-			if (pp)
+			if ((*p)->getAppropriatePath(now,false))
 				++cnt;
 		}
 		return cnt;
@@ -243,161 +173,6 @@ public:
 		}
 	}
 
-	/**
-	 * Apply a function or function object to all roots
-	 *
-	 * This locks the root list during execution but other operations
-	 * are fine.
-	 *
-	 * @param f Function to apply f(peer,IPs)
-	 * @tparam F function or function object type
-	 */
-	template<typename F>
-	inline void eachRoot(F f)
-	{
-		Mutex::Lock l(_roots_l);
-		Hashtable< Str,Locator >::Iterator i(_roots);
-		Str *k = (Str *)0;
-		Locator *v = (Locator *)0;
-		while (i.next(k,v)) {
-			if (*v) {
-				for(std::vector<Identity>::const_iterator id(v->virt().begin());id!=v->virt().end();++id) {
-					const SharedPtr<Peer> *ap;
-					{
-						Mutex::Lock l2(_peers_l);
-						ap = _peers.get(id->address());
-					}
-					if (ap) {
-						if (!f(*ap,v->phy()))
-							return;
-					} else {
-						SharedPtr<Peer> p(new Peer(RR,_myIdentity,*id));
-						{
-							Mutex::Lock l2(_peers_l);
-							_peers.set(id->address(),p);
-						}
-						if (!f(p,v->phy()))
-							return;
-					}
-				}
-			}
-		}
-	}
-
-	/**
-	 * @return Current best root (updated automatically each second)
-	 */
-	inline SharedPtr<Peer> root(const int64_t now)
-	{
-		Mutex::Lock l(_bestRoot_l);
-		if ((!_bestRoot)||((now - _lastUpdatedBestRoot) > 1000)) {
-			_lastUpdatedBestRoot = now;
-			_RootRankingFunction rrf;
-			rrf.now = now;
-			eachRoot(rrf);
-			_bestRoot = rrf.bestRoot;
-		}
-		return _bestRoot;
-	}
-
-	/**
-	 * Iterate through all root names
-	 *
-	 * @param f Function of (Str,Locator)
-	 */
-	template<typename F>
-	inline void eachRootName(F f) const
-	{
-		Mutex::Lock l(_roots_l);
-		Str *k = (Str *)0;
-		Locator *v = (Locator *)0;
-		Hashtable< Str,Locator >::Iterator i(const_cast<Topology *>(this)->_roots);
-		while (i.next(k,v)) {
-			if (!f(*k,*v))
-				break;
-		}
-	}
-
-	/**
-	 * Set or update dynamic root if new locator is newer
-	 *
-	 * This does not check signatures or internal validity of the locator.
-	 *
-	 * @param name DNS name used to retrive root or simply the address for static roots
-	 * @param latestLocator Latest locator
-	 * @return True if locator is newer or if a new entry was created
-	 */
-	inline bool setRoot(const Str &name,const SharedPtr<const Locator> &latestLocator)
-	{
-		Mutex::Lock l(_roots_l);
-		if (latestLocator) {
-			SharedPtr<const Locator> &ll = _roots[name];
-			if ((ll)&&(ll->timestamp() < latestLocator->timestamp())) {
-				ll = latestLocator;
-				_updateRoots();
-				_rootsModified = true;
-				return true;
-			}
-		} else if (!_roots.contains(name)) {
-			_roots.set(name,SharedPtr<const Locator>()); // no locator known yet, but add name to name list to trigger DNS refreshing
-			_rootsModified = true;
-			return true;
-		}
-		return false;
-	}
-
-	/**
-	 * Remove a dynamic root entry
-	 */
-	inline void removeRoot(const Str &name)
-	{
-		Mutex::Lock l(_roots_l);
-		if (_roots.erase(name)) {
-			_updateRoots();
-			_rootsModified = true;
-		}
-	}
-
-	/**
-	 * @param Current time
-	 * @return ZT_RootList as returned by the external CAPI
-	 */
-	inline ZT_RootList *apiRoots(const int64_t now) const
-	{
-		ScopedPtr< Buffer<65536> > lbuf(new Buffer<65536>());
-		Mutex::Lock l2(_roots_l);
-		ZT_RootList *rl = (ZT_RootList *)malloc(sizeof(ZT_RootList) + (sizeof(ZT_Root) * _roots.size()) + (256 * _roots.size()) + (65536 * _roots.size()));
-		if (!rl)
-			return nullptr;
-		char *nptr = ((char *)rl) + sizeof(ZT_RootList) + (sizeof(ZT_Root) * _roots.size());
-		uint8_t *lptr = ((uint8_t *)nptr) + (256 * _roots.size());
-
-		unsigned int c = 0;
-		Str *k = (Str *)0;
-		SharedPtr<const Locator> *v = (SharedPtr<const Locator> *)0;
-		Hashtable< Str,SharedPtr<const Locator> >::Iterator i(const_cast<Topology *>(this)->_roots);
-		while (i.next(k,v)) {
-			Utils::scopy(nptr,256,k->c_str());
-			rl->roots[c].name = nptr;
-			nptr += 256;
-			if (*v) {
-				lbuf->clear();
-				(*v)->serialize(*lbuf);
-				memcpy(lptr,lbuf->unsafeData(),lbuf->size());
-				rl->roots[c].locator = lptr;
-				rl->roots[c].locatorSize = lbuf->size();
-			} else {
-				rl->roots[c].locator = nullptr;
-				rl->roots[c].locatorSize = 0;
-			}
-			lptr += 65536;
-			++c;
-		}
-
-		rl->count = c;
-		return rl;
-	}
-
 	/**
 	 * Get the best relay to a given address, which may or may not be a root
 	 *
@@ -405,10 +180,12 @@ public:
 	 * @param toAddr Destination address
 	 * @return Best current relay or NULL if none
 	 */
-	inline SharedPtr<Peer> findRelayTo(const int64_t now,const Address &toAddr)
+	ZT_ALWAYS_INLINE SharedPtr<Peer> findRelayTo(const int64_t now,const Address &toAddr)
 	{
-		// TODO: in the future this will check 'mesh-like' relays and if enabled consult LF for other roots (for if this is a root)
-		return root(now);
+		Mutex::Lock l(_peers_l);
+		if (_rootPeers.empty())
+			return SharedPtr<Peer>();
+		return _rootPeers[0];
 	}
 
 	/**
@@ -422,9 +199,8 @@ public:
 		Hashtable< Address,SharedPtr<Peer> >::Iterator i(*(const_cast<Hashtable< Address,SharedPtr<Peer> > *>(&_peers)));
 		Address *a = (Address *)0;
 		SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
-		while (i.next(a,p)) {
+		while (i.next(a,p))
 			allPeers.push_back(*p);
-		}
 	}
 
 	/**
@@ -436,7 +212,7 @@ public:
 	 * @param mtu Variable set to MTU
 	 * @param trustedPathId Variable set to trusted path ID
 	 */
-	inline void getOutboundPathInfo(const InetAddress &physicalAddress,unsigned int &mtu,uint64_t &trustedPathId)
+	ZT_ALWAYS_INLINE void getOutboundPathInfo(const InetAddress &physicalAddress,unsigned int &mtu,uint64_t &trustedPathId)
 	{
 		for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
 			if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {
@@ -453,7 +229,7 @@ public:
 	 * @param physicalAddress Physical endpoint address
 	 * @return MTU
 	 */
-	inline unsigned int getOutboundPathMtu(const InetAddress &physicalAddress)
+	ZT_ALWAYS_INLINE unsigned int getOutboundPathMtu(const InetAddress &physicalAddress)
 	{
 		for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
 			if (_physicalPathConfig[i].first.containsAddress(physicalAddress))
@@ -468,7 +244,7 @@ public:
 	 * @param physicalAddress Physical address to which we are sending the packet
 	 * @return Trusted path ID or 0 if none (0 is not a valid trusted path ID)
 	 */
-	inline uint64_t getOutboundPathTrust(const InetAddress &physicalAddress)
+	ZT_ALWAYS_INLINE uint64_t getOutboundPathTrust(const InetAddress &physicalAddress)
 	{
 		for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
 			if (_physicalPathConfig[i].first.containsAddress(physicalAddress))
@@ -483,7 +259,7 @@ public:
 	 * @param physicalAddress Originating physical address
 	 * @param trustedPathId Trusted path ID from packet (from MAC field)
 	 */
-	inline bool shouldInboundPathBeTrusted(const InetAddress &physicalAddress,const uint64_t trustedPathId)
+	ZT_ALWAYS_INLINE bool shouldInboundPathBeTrusted(const InetAddress &physicalAddress,const uint64_t trustedPathId)
 	{
 		for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
 			if ((_physicalPathConfig[i].second.trustedPathId == trustedPathId)&&(_physicalPathConfig[i].first.containsAddress(physicalAddress)))
@@ -529,27 +305,105 @@ public:
 		}
 	}
 
+	/**
+	 * Add a root server's identity to the root server set
+	 *
+	 * @param id Root server identity
+	 */
+	inline void addRoot(const Identity &id)
+	{
+		if (id == _myIdentity) return; // sanity check
+		Mutex::Lock l1(_peers_l);
+		std::pair< std::set<Identity>::iterator,bool > ir(_roots.insert(id));
+		if (ir.second) {
+			SharedPtr<Peer> &p = _peers[id.address()];
+			if (!p)
+				p.set(new Peer(RR,_myIdentity,id));
+			_rootPeers.push_back(p);
+		}
+	}
+
+	/**
+	 * Remove a root server's identity from the root server set
+	 *
+	 * @param id Root server identity
+	 * @return True if root found and removed, false if not found
+	 */
+	inline bool removeRoot(const Identity &id)
+	{
+		Mutex::Lock l1(_peers_l);
+		std::set<Identity>::iterator r(_roots.find(id));
+		if (r != _roots.end()) {
+			for(std::vector< SharedPtr<Peer> >::iterator p(_rootPeers.begin());p!=_rootPeers.end();++p) {
+				if ((*p)->identity() == id) {
+					_rootPeers.erase(p);
+					break;
+				}
+			}
+			_roots.erase(r);
+			return true;
+		}
+		return false;
+	}
+
+	/**
+	 * Do periodic tasks such as database cleanup
+	 */
+	inline void doPeriodicTasks(const int64_t now)
+	{
+		{
+			Mutex::Lock l1(_peers_l);
+			std::sort(_rootPeers.begin(),_rootPeers.end(),_RootSortComparisonOperator(now));
+			Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
+			Address *a = (Address *)0;
+			SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
+			while (i.next(a,p)) {
+				if ( (!(*p)->alive(now)) && (_roots.count((*p)->identity()) == 0) )
+					_peers.erase(*a);
+			}
+		}
+		{
+			Mutex::Lock l1(_paths_l);
+			Hashtable< Path::HashKey,SharedPtr<Path> >::Iterator i(_paths);
+			Path::HashKey *k = (Path::HashKey *)0;
+			SharedPtr<Path> *p = (SharedPtr<Path> *)0;
+			while (i.next(k,p)) {
+				if (p->references() <= 1)
+					_paths.erase(*k);
+			}
+		}
+	}
+
 private:
+	struct _RootSortComparisonOperator
+	{
+		ZT_ALWAYS_INLINE _RootSortComparisonOperator(const int64_t now) : _now(now) {}
+		ZT_ALWAYS_INLINE bool operator()(const SharedPtr<Peer> &a,const SharedPtr<Peer> &b)
+		{
+			const int64_t now = _now;
+			if (a->alive(now)) {
+				if (b->alive(now))
+					return (a->latency(now) < b->latency(now));
+				return true;
+			}
+			return false;
+		}
+		const int64_t _now;
+	};
+
 	const RuntimeEnvironment *const RR;
 	const Identity _myIdentity;
 
-	std::pair<InetAddress,ZT_PhysicalPathConfiguration> _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS];
+	Mutex _peers_l;
+	Mutex _paths_l;
+
+	std::pair< InetAddress,ZT_PhysicalPathConfiguration > _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS];
 	unsigned int _numConfiguredPhysicalPaths;
 
 	Hashtable< Address,SharedPtr<Peer> > _peers;
 	Hashtable< Path::HashKey,SharedPtr<Path> > _paths;
-
-	Hashtable< Str,SharedPtr<const Locator> > _roots;
-	Hashtable< Identity,bool > _rootIdentities;
-	bool _rootsModified;
-
-	int64_t _lastUpdatedBestRoot;
-	SharedPtr<Peer> _bestRoot;
-
-	Mutex _peers_l;
-	Mutex _paths_l;
-	Mutex _roots_l;
-	Mutex _bestRoot_l;
+	std::set< Identity > _roots; // locked by _peers_l
+	std::vector< SharedPtr<Peer> > _rootPeers; // locked by _peers_l
 };
 
 } // namespace ZeroTier

+ 8 - 80
node/Utils.cpp

@@ -367,83 +367,11 @@ int b32d(const char *encoded,uint8_t *result,int bufSize)
   return count;
 }
 
-unsigned int b64e(const uint8_t *in,unsigned int inlen,char *out,unsigned int outlen)
+static uint64_t _secureRandom64()
 {
-	static const char base64en[64] = { 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','+','/' };
-	unsigned int i = 0,j = 0;
-	uint8_t l = 0;
-	int s = 0;
-	for (;i<inlen;++i) {
-		uint8_t c = in[i];
-		switch (s) {
-		case 0:
-			s = 1;
-			if (j >= outlen) return 0;
-			out[j++] = base64en[(c >> 2) & 0x3f];
-			break;
-		case 1:
-			s = 2;
-			if (j >= outlen) return 0;
-			out[j++] = base64en[((l & 0x3) << 4) | ((c >> 4) & 0xf)];
-			break;
-		case 2:
-			s = 0;
-			if (j >= outlen) return 0;
-			out[j++] = base64en[((l & 0xf) << 2) | ((c >> 6) & 0x3)];
-			if (j >= outlen) return 0;
-			out[j++] = base64en[c & 0x3f];
-			break;
-		}
-		l = c;
-	}
-	switch (s) {
-	case 1:
-		if (j >= outlen) return 0;
-		out[j++] = base64en[(l & 0x3) << 4];
-		//out[j++] = '=';
-		//out[j++] = '=';
-		break;
-	case 2:
-		if (j >= outlen) return 0;
-		out[j++] = base64en[(l & 0xf) << 2];
-		//out[j++] = '=';
-		break;
-	}
-	if (j >= outlen) return 0;
-	out[j] = 0;
-	return j;
-}
-
-unsigned int b64d(const char *in,unsigned char *out,unsigned int outlen)
-{
-	static const uint8_t base64de[256] = { 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,62,255,255,255,63,52,53,54,55,56,57,58,59,60,61,255,255,255,255,255,255,255,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,255,255,255,255,255,255,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,255,255,255,255,255 };
-	unsigned int i = 0;
-	unsigned int j = 0;
-	while ((in[i] != '=')&&(in[i] != 0)) {
-		if (j >= outlen)
-			break;
-		uint8_t c = base64de[(unsigned char)in[i]];
-		if (c != 255) {
-			switch (i & 0x3) {
-				case 0:
-					out[j] = (c << 2) & 0xff;
-					break;
-				case 1:
-					out[j++] |= (c >> 4) & 0x3;
-					out[j] = (c & 0xf) << 4;
-					break;
-				case 2:
-					out[j++] |= (c >> 2) & 0xf;
-					out[j] = (c & 0x3) << 6;
-					break;
-				case 3:
-					out[j++] |= c;
-					break;
-			}
-		}
-		++i;
-	}
-	return j;
+	uint64_t tmp = 0;
+	getSecureRandom(&tmp,sizeof(tmp));
+	return tmp;
 }
 
 #define ROL64(x,k) (((x) << (k)) | ((x) >> (64 - (k))))
@@ -451,10 +379,10 @@ uint64_t random()
 {
 	// https://en.wikipedia.org/wiki/Xorshift#xoshiro256**
 	static Mutex l;
-	static uint64_t s0 = Utils::getSecureRandom64();
-	static uint64_t s1 = Utils::getSecureRandom64();
-	static uint64_t s2 = Utils::getSecureRandom64();
-	static uint64_t s3 = Utils::getSecureRandom64();
+	static uint64_t s0 = _secureRandom64();
+	static uint64_t s1 = _secureRandom64();
+	static uint64_t s2 = _secureRandom64();
+	static uint64_t s3 = _secureRandom64();
 
 	l.lock();
 	const uint64_t result = ROL64(s1 * 5,7) * 9;

+ 38 - 18
node/Utils.hpp

@@ -140,21 +140,25 @@ unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen
 void getSecureRandom(void *buf,unsigned int bytes);
 
 /**
- * Get a 64-bit unsigned secure random number
+ * Encode string to base32
+ *
+ * @param data Binary data to encode
+ * @param length Length of data in bytes
+ * @param result Result buffer
+ * @param bufSize Size of result buffer
+ * @return Number of bytes written
  */
-static ZT_ALWAYS_INLINE uint64_t getSecureRandom64()
-{
-	uint64_t x;
-	getSecureRandom(&x,sizeof(x));
-	return x;
-}
-
 int b32e(const uint8_t *data,int length,char *result,int bufSize);
-int b32d(const char *encoded, uint8_t *result, int bufSize);
 
-static ZT_ALWAYS_INLINE unsigned int b64MaxEncodedSize(const unsigned int s) { return ((((s + 2) / 3) * 4) + 1); }
-unsigned int b64e(const uint8_t *in,unsigned int inlen,char *out,unsigned int outlen);
-unsigned int b64d(const char *in,uint8_t *out,unsigned int outlen);
+/**
+ * Decode base32 string
+ *
+ * @param encoded C-string in base32 format (non-base32 characters are ignored)
+ * @param result Result buffer
+ * @param bufSize Size of result buffer
+ * @return Number of bytes written or -1 on error
+ */
+int b32d(const char *encoded, uint8_t *result, int bufSize);
 
 /**
  * Get a non-cryptographic random integer
@@ -239,18 +243,34 @@ static ZT_ALWAYS_INLINE long long hexStrTo64(const char *s)
  */
 bool scopy(char *dest,unsigned int len,const char *src);
 
+/**
+ * Calculate a non-cryptographic hash of a byte string
+ *
+ * @param key Key to hash
+ * @param len Length in bytes
+ * @return Non-cryptographic hash suitable for use in a hash table
+ */
+static unsigned long ZT_ALWAYS_INLINE hashString(const void *restrict key,const unsigned int len)
+{
+	const uint8_t *p = reinterpret_cast<const uint8_t *>(key);
+	unsigned long h = 0;
+	for (unsigned int i=0;i<len;++i) {
+		h += p[i];
+		h += (h << 10);
+		h ^= (h >> 6);
+	}
+	h += (h << 3);
+	h ^= (h >> 11);
+	h += (h << 15);
+	return h;
+}
+
 #ifdef __GNUC__
 static ZT_ALWAYS_INLINE unsigned int countBits(const uint8_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
 static ZT_ALWAYS_INLINE unsigned int countBits(const uint16_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
 static ZT_ALWAYS_INLINE unsigned int countBits(const uint32_t v) { return (unsigned int)__builtin_popcountl((unsigned long)v); }
 static ZT_ALWAYS_INLINE unsigned int countBits(const uint64_t v) { return (unsigned int)__builtin_popcountll((unsigned long long)v); }
 #else
-/**
- * Count the number of bits set in an integer
- *
- * @param v Unsigned integer
- * @return Number of bits set in this integer (0-bits in integer)
- */
 template<typename T>
 static ZT_ALWAYS_INLINE unsigned int countBits(T v)
 {