|
@@ -263,35 +263,51 @@ bool Switch::unite(const Address &p1,const Address &p2,bool force)
|
|
|
|
|
|
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
|
|
TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str());
|
|
|
|
|
|
- { // tell p1 where to find p2
|
|
|
|
- Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
|
- outp.append((unsigned char)0);
|
|
|
|
- p2.appendTo(outp);
|
|
|
|
- outp.append((uint16_t)cg.first.port());
|
|
|
|
- if (cg.first.isV6()) {
|
|
|
|
- outp.append((unsigned char)16);
|
|
|
|
- outp.append(cg.first.rawIpData(),16);
|
|
|
|
- } else {
|
|
|
|
- outp.append((unsigned char)4);
|
|
|
|
- outp.append(cg.first.rawIpData(),4);
|
|
|
|
- }
|
|
|
|
- outp.armor(p1p->key(),true);
|
|
|
|
- p1p->send(_r,outp.data(),outp.size(),now);
|
|
|
|
- }
|
|
|
|
- { // tell p2 where to find p1
|
|
|
|
- Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
|
- outp.append((unsigned char)0);
|
|
|
|
- p1.appendTo(outp);
|
|
|
|
- outp.append((uint16_t)cg.second.port());
|
|
|
|
- if (cg.second.isV6()) {
|
|
|
|
- outp.append((unsigned char)16);
|
|
|
|
- outp.append(cg.second.rawIpData(),16);
|
|
|
|
|
|
+ /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and
|
|
|
|
+ * P2 in randomized order in terms of which gets sent first. This is done
|
|
|
|
+ * since in a few cases NAT-t can be sensitive to slight timing differences
|
|
|
|
+ * in terms of when the two peers initiate. Normally this is accounted for
|
|
|
|
+ * by the nearly-simultaneous RENDEZVOUS kickoff from the supernode, but
|
|
|
|
+ * given that supernodes are hosted on cloud providers this can in some
|
|
|
|
+ * cases have a few ms of latency between packet departures. By randomizing
|
|
|
|
+ * the order we make each attempted NAT-t favor one or the other going
|
|
|
|
+ * first, meaning if it doesn't succeed the first time it might the second
|
|
|
|
+ * and so forth. */
|
|
|
|
+ unsigned int alt = _r->prng->next32() & 1;
|
|
|
|
+ unsigned int completed = alt + 2;
|
|
|
|
+ while (alt != completed) {
|
|
|
|
+ if ((alt & 1) == 0) {
|
|
|
|
+ // Tell p1 where to find p2.
|
|
|
|
+ Packet outp(p1,_r->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
|
+ outp.append((unsigned char)0);
|
|
|
|
+ p2.appendTo(outp);
|
|
|
|
+ outp.append((uint16_t)cg.first.port());
|
|
|
|
+ if (cg.first.isV6()) {
|
|
|
|
+ outp.append((unsigned char)16);
|
|
|
|
+ outp.append(cg.first.rawIpData(),16);
|
|
|
|
+ } else {
|
|
|
|
+ outp.append((unsigned char)4);
|
|
|
|
+ outp.append(cg.first.rawIpData(),4);
|
|
|
|
+ }
|
|
|
|
+ outp.armor(p1p->key(),true);
|
|
|
|
+ p1p->send(_r,outp.data(),outp.size(),now);
|
|
} else {
|
|
} else {
|
|
- outp.append((unsigned char)4);
|
|
|
|
- outp.append(cg.second.rawIpData(),4);
|
|
|
|
|
|
+ // Tell p2 where to find p1.
|
|
|
|
+ Packet outp(p2,_r->identity.address(),Packet::VERB_RENDEZVOUS);
|
|
|
|
+ outp.append((unsigned char)0);
|
|
|
|
+ p1.appendTo(outp);
|
|
|
|
+ outp.append((uint16_t)cg.second.port());
|
|
|
|
+ if (cg.second.isV6()) {
|
|
|
|
+ outp.append((unsigned char)16);
|
|
|
|
+ outp.append(cg.second.rawIpData(),16);
|
|
|
|
+ } else {
|
|
|
|
+ outp.append((unsigned char)4);
|
|
|
|
+ outp.append(cg.second.rawIpData(),4);
|
|
|
|
+ }
|
|
|
|
+ outp.armor(p2p->key(),true);
|
|
|
|
+ p2p->send(_r,outp.data(),outp.size(),now);
|
|
}
|
|
}
|
|
- outp.armor(p2p->key(),true);
|
|
|
|
- p2p->send(_r,outp.data(),outp.size(),now);
|
|
|
|
|
|
+ ++alt; // counts up and also flips LSB
|
|
}
|
|
}
|
|
|
|
|
|
return true;
|
|
return true;
|