Răsfoiți Sursa

Refactoring protocol marshal/unmarshal code...

Adam Ierymenko 5 ani în urmă
părinte
comite
91ce4c4ea6
16 a modificat fișierele cu 1538 adăugiri și 678 ștergeri
  1. 0 0
      attic/Buffer.hpp
  2. 2 2
      attic/Packet.cpp
  3. 3 35
      attic/Packet.hpp
  4. 0 174
      node/AES.cpp
  5. 3 42
      node/AES.hpp
  6. 9 47
      node/Address.hpp
  7. 31 14
      node/Buf.hpp
  8. 2 3
      node/CMakeLists.txt
  9. 331 3
      node/Capability.cpp
  10. 12 293
      node/Capability.hpp
  11. 2 2
      node/Constants.hpp
  12. 2 2
      node/Identity.cpp
  13. 16 53
      node/MAC.hpp
  14. 185 0
      node/Protocol.cpp
  15. 928 0
      node/Protocol.hpp
  16. 12 8
      node/Utils.cpp

+ 0 - 0
node/Buffer.hpp → attic/Buffer.hpp


+ 2 - 2
node/Packet.cpp → attic/Packet.cpp

@@ -18,7 +18,7 @@
 #include "Mutex.hpp"
 #include "LZ4.hpp"
 
-#if (defined(_MSC_VER) || defined(__GNUC__) || defined(__clang)) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
+#if defined(__GCC__) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
 #define ZT_PACKET_USE_ATOMIC_INTRINSICS
 #endif
 #ifndef ZT_PACKET_USE_ATOMIC_INTRINSICS
@@ -137,7 +137,7 @@ static unsigned long long s_packetIdCtr = s_initPacketID();
 static std::atomic<unsigned long long> s_packetIdCtr(s_initPacketID());
 #endif
 
-uint64_t Packet::nextPacketId()
+uint64_t getPacketId()
 {
 #ifdef ZT_PACKET_USE_ATOMIC_INTRINSICS
 	return __sync_add_and_fetch(&s_packetIdCtr,1ULL);

+ 3 - 35
node/Packet.hpp → attic/Packet.hpp

@@ -234,41 +234,6 @@
 #define ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS (ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI + 4)
 #define ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS (ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS + 1)
 
-/**
- * Signed locator for this node
- */
-#define ZT_PROTO_NODE_META_LOCATOR "l"
-
-/**
- * Ephemeral C25519 public key
- */
-#define ZT_PROTO_NODE_META_EPHEMERAL_KEY_C25519 "e0"
-
-/**
- * Ephemeral NIST P-384 public key
- */
-#define ZT_PROTO_NODE_META_EPHEMERAL_KEY_P384 "e1"
-
-/**
- * Addresses of ZeroTier nodes to whom this node will relay or one entry for 0000000000 if promiscuous.
- */
-#define ZT_PROTO_NODE_META_WILL_RELAY_TO "r"
-
-/**
- * X coordinate of your node (sent in OK(HELLO))
- */
-#define ZT_PROTO_NODE_META_LOCATION_X "gX"
-
-/**
- * Y coordinate of your node (sent in OK(HELLO))
- */
-#define ZT_PROTO_NODE_META_LOCATION_Y "gY"
-
-/**
- * Z coordinate of your node (sent in OK(HELLO))
- */
-#define ZT_PROTO_NODE_META_LOCATION_Z "gZ"
-
 // ---------------------------------------------------------------------------
 
 namespace ZeroTier {
@@ -878,6 +843,9 @@ public:
 		 * "dumb" relaying. The latter is faster but secure relaying has roles
 		 * where endpoint privacy is desired. Multiply nested ENCAP packets
 		 * could allow ZeroTier to act as an onion router.
+		 *
+		 * When encapsulated packets are forwarded they do have their hop count
+		 * field incremented.
 		 */
 		VERB_ENCAP = 0x17
 

+ 0 - 174
node/AES.cpp

@@ -149,39 +149,6 @@ void AES::_encryptSW(const uint8_t in[16],uint8_t out[16]) const
 	writeuint32_t(out + 12,(Te2[(t3 >> 24)] & 0xff000000) ^ (Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t2) & 0xff] & 0x000000ff) ^ rk[59]);
 }
 
-void AES::_ctrSW(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
-{
-	uint64_t ctr[2],cenc[2];
-	memcpy(ctr,iv,16);
-	uint64_t bctr = Utils::ntoh(ctr[1]);
-
-	const uint8_t *i = (const uint8_t *)in;
-	uint8_t *o = (uint8_t *)out;
-
-	while (len >= 16) {
-		_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
-		ctr[1] = Utils::hton(++bctr);
-#ifdef ZT_NO_UNALIGNED_ACCESS
-		for(unsigned int k=0;k<16;++k)
-				*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
-#else
-		*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
-		o += 8;
-		i += 8;
-		*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
-		o += 8;
-		i += 8;
-#endif
-		len -= 16;
-	}
-
-	if (len) {
-		_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
-		for(unsigned int k=0;k<len;++k)
-			*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
-	}
-}
-
 #if (defined(__GNUC__) || defined(__clang)) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64) || defined(__aarch64__))
 
 #if defined(__SIZEOF_INT128__)
@@ -616,147 +583,6 @@ void AES::_gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int
 	_mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
 }
 
-#define ZT_AES_CTR_AESNI_ROUND(kk) c0 = _mm_aesenc_si128(c0,kk); c1 = _mm_aesenc_si128(c1,kk); c2 = _mm_aesenc_si128(c2,kk); c3 = _mm_aesenc_si128(c3,kk)
-void AES::_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
-{
-	/* Because our CTR supports full 128-bit nonces, we must do a full 128-bit (big-endian)
-	 * increment to be compatible with canonical NIST-certified CTR implementations. That's
-	 * because it's possible to have a lot of bit saturation in the least significant 64
-	 * bits, which could on rare occasions actually cause a 64-bit wrap. If this happened
-	 * without carry it would result in incompatibility and quietly dropped packets. The
-	 * probability is low, so this would be a one in billions packet loss bug that would
-	 * probably never be found.
-	 *
-	 * This crazy code does a branch-free 128-bit increment by adding a one or a zero to
-	 * the most significant 64 bits of the 128-bit vector based on whether the add we want
-	 * to do to the least significant 64 bits would overflow. This can be computed by
-	 * NOTing those bits and comparing with what we want to add, since NOT is the same
-	 * as subtracting from uint64_max. This generates branch-free ASM on x64 with most
-	 * good compilers. */
-	__m128i swap128 = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
-	__m128i ctr0 = _mm_shuffle_epi8(_mm_loadu_si128((__m128i *)iv),swap128);
-	uint64_t notctr0msq = ~((uint64_t)_mm_extract_epi64(ctr0,0));
-	__m128i ctr1 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 1ULL),1LL)),swap128);
-	__m128i ctr2 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 2ULL),2LL)),swap128);
-	__m128i ctr3 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 3ULL),3LL)),swap128);
-	ctr0 = _mm_shuffle_epi8(ctr0,swap128);
-
-	__m128i k0 = _k.ni.k[0];
-	__m128i k1 = _k.ni.k[1];
-
-	while (len >= 64) {
-		__m128i ka = _k.ni.k[2];
-		__m128i c0 = _mm_xor_si128(ctr0,k0);
-		__m128i c1 = _mm_xor_si128(ctr1,k0);
-		__m128i c2 = _mm_xor_si128(ctr2,k0);
-		__m128i c3 = _mm_xor_si128(ctr3,k0);
-		ctr0 = _mm_shuffle_epi8(ctr0,swap128);
-		notctr0msq = ~((uint64_t)_mm_extract_epi64(ctr0,0));
-		ctr1 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 5ULL),5LL)),swap128);
-		ctr2 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 6ULL),6LL)),swap128);
-		ctr3 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 7ULL),7LL)),swap128);
-		ctr0 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 4ULL),4LL)),swap128);
-		__m128i kb = _k.ni.k[3];
-		ZT_AES_CTR_AESNI_ROUND(k1);
-		__m128i kc = _k.ni.k[4];
-		ZT_AES_CTR_AESNI_ROUND(ka);
-		__m128i kd = _k.ni.k[5];
-		ZT_AES_CTR_AESNI_ROUND(kb);
-		ka = _k.ni.k[6];
-		ZT_AES_CTR_AESNI_ROUND(kc);
-		kb = _k.ni.k[7];
-		ZT_AES_CTR_AESNI_ROUND(kd);
-		kc = _k.ni.k[8];
-		ZT_AES_CTR_AESNI_ROUND(ka);
-		kd = _k.ni.k[9];
-		ZT_AES_CTR_AESNI_ROUND(kb);
-		ka = _k.ni.k[10];
-		ZT_AES_CTR_AESNI_ROUND(kc);
-		kb = _k.ni.k[11];
-		ZT_AES_CTR_AESNI_ROUND(kd);
-		kc = _k.ni.k[12];
-		ZT_AES_CTR_AESNI_ROUND(ka);
-		kd = _k.ni.k[13];
-		ZT_AES_CTR_AESNI_ROUND(kb);
-		ka = _k.ni.k[14];
-		ZT_AES_CTR_AESNI_ROUND(kc);
-		ZT_AES_CTR_AESNI_ROUND(kd);
-		_mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,ka)));
-		_mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,ka)));
-		_mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,ka)));
-		_mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,ka)));
-		in += 64;
-		out += 64;
-		len -= 64;
-	}
-
-	__m128i k2 = _k.ni.k[2];
-	__m128i k3 = _k.ni.k[3];
-	__m128i k4 = _k.ni.k[4];
-	__m128i k5 = _k.ni.k[5];
-	__m128i k6 = _k.ni.k[6];
-	__m128i k7 = _k.ni.k[7];
-
-	while (len >= 16) {
-		__m128i c0 = _mm_xor_si128(ctr0,k0);
-		ctr0 = _mm_shuffle_epi8(ctr0,swap128);
-		ctr0 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)((~((uint64_t)_mm_extract_epi64(ctr0,0))) < 1ULL),1LL)),swap128);
-		c0 = _mm_aesenc_si128(c0,k1);
-		c0 = _mm_aesenc_si128(c0,k2);
-		c0 = _mm_aesenc_si128(c0,k3);
-		c0 = _mm_aesenc_si128(c0,k4);
-		c0 = _mm_aesenc_si128(c0,k5);
-		c0 = _mm_aesenc_si128(c0,k6);
-		__m128i ka = _k.ni.k[8];
-		c0 = _mm_aesenc_si128(c0,k7);
-		__m128i kb = _k.ni.k[9];
-		c0 = _mm_aesenc_si128(c0,ka);
-		ka = _k.ni.k[10];
-		c0 = _mm_aesenc_si128(c0,kb);
-		kb = _k.ni.k[11];
-		c0 = _mm_aesenc_si128(c0,ka);
-		ka = _k.ni.k[12];
-		c0 = _mm_aesenc_si128(c0,kb);
-		kb = _k.ni.k[13];
-		c0 = _mm_aesenc_si128(c0,ka);
-		ka = _k.ni.k[14];
-		c0 = _mm_aesenc_si128(c0,kb);
-		_mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,ka)));
-		in += 16;
-		out += 16;
-		len -= 16;
-	}
-
-	if (len) {
-		__m128i c0 = _mm_xor_si128(ctr0,k0);
-		k0 = _k.ni.k[8];
-		c0 = _mm_aesenc_si128(c0,k1);
-		c0 = _mm_aesenc_si128(c0,k2);
-		k1 = _k.ni.k[9];
-		c0 = _mm_aesenc_si128(c0,k3);
-		c0 = _mm_aesenc_si128(c0,k4);
-		k2 = _k.ni.k[10];
-		c0 = _mm_aesenc_si128(c0,k5);
-		c0 = _mm_aesenc_si128(c0,k6);
-		k3 = _k.ni.k[11];
-		c0 = _mm_aesenc_si128(c0,k7);
-		c0 = _mm_aesenc_si128(c0,k0);
-		k0 = _k.ni.k[12];
-		c0 = _mm_aesenc_si128(c0,k1);
-		c0 = _mm_aesenc_si128(c0,k2);
-		k1 = _k.ni.k[13];
-		c0 = _mm_aesenc_si128(c0,k3);
-		c0 = _mm_aesenc_si128(c0,k0);
-		k2 = _k.ni.k[14];
-		c0 = _mm_aesenc_si128(c0,k1);
-		c0 = _mm_aesenclast_si128(c0,k2);
-		uint8_t tmp[16];
-		_mm_storeu_si128((__m128i *)tmp,c0);
-		for(unsigned int i=0;i<len;++i)
-			out[i] = in[i] ^ tmp[i];
-	}
-}
-
 #endif // ZT_AES_AESNI
 
 } // namespace ZeroTier

+ 3 - 42
node/AES.hpp

@@ -37,7 +37,7 @@ class AES
 {
 public:
 	ZT_ALWAYS_INLINE AES() {}
-	ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
+	explicit ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
 	ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
 
 	/**
@@ -71,46 +71,9 @@ public:
 		_encryptSW(in,out);
 	}
 
-	/**
-	 * Compute GMAC-AES256 (GCM without ciphertext)
-	 *
-	 * @param iv 96-bit IV
-	 * @param in Input data
-	 * @param len Length of input
-	 * @param out 128-bit authorization tag from GMAC
-	 */
-	ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
-	{
-#ifdef ZT_AES_AESNI
-		if (likely(Utils::CPUID.aes)) {
-			_gmac_aesni(iv,(const uint8_t *)in,len,out);
-			return;
-		}
-#endif
-		_gmacSW(iv,(const uint8_t *)in,len,out);
-	}
-
-	/**
-	 * Encrypt or decrypt (they're the same) using AES256-CTR
-	 *
-	 * The counter here is a 128-bit big-endian that starts at the IV. The code only
-	 * increments the least significant 64 bits, making it only safe to use for a
-	 * maximum of 2^64-1 bytes (much larger than we ever do).
-	 *
-	 * @param iv 128-bit CTR IV
-	 * @param in Input plaintext or ciphertext
-	 * @param len Length of input
-	 * @param out Output plaintext or ciphertext
-	 */
-	ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
+	ZT_ALWAYS_INLINE void gcm(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16],uint8_t tag[16]) const
 	{
-#ifdef ZT_AES_AESNI
-		if (likely(Utils::CPUID.aes)) {
-			_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
-			return;
-		}
-#endif
-		_ctrSW(iv,in,len,out);
+		// TODO
 	}
 
 private:
@@ -122,7 +85,6 @@ private:
 
 	void _initSW(const uint8_t key[32]);
 	void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
-	void _ctrSW(const uint8_t iv[16],const void *in,unsigned int len,void *out) const;
 	void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
 
 	/**************************************************************************/
@@ -258,7 +220,6 @@ private:
 	}
 
 	void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
-	void _ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const;
 #endif /* ZT_AES_AESNI ******************************************************/
 };
 

+ 9 - 47
node/Address.hpp

@@ -26,7 +26,6 @@
 
 #include "Constants.hpp"
 #include "Utils.hpp"
-#include "Buffer.hpp"
 
 namespace ZeroTier {
 
@@ -37,65 +36,31 @@ class Address
 {
 public:
 	ZT_ALWAYS_INLINE Address() : _a(0) {}
+	explicit ZT_ALWAYS_INLINE Address(const uint8_t b[5]) : _a(((uint64_t)b[0] << 32U) | ((uint64_t)b[1] << 24U) | ((uint64_t)b[2] << 16U) | ((uint64_t)b[3] << 8U) | (uint64_t)b[4]) {}
 	explicit ZT_ALWAYS_INLINE Address(const uint64_t a) : _a(a & 0xffffffffffULL) {}
 
-	/**
-	 * @param bits Raw address -- 5 bytes, big-endian byte order
-	 * @param len Length of array
-	 */
-	ZT_ALWAYS_INLINE Address(const void *bits,unsigned int len) { setTo(bits,len); }
-
 	ZT_ALWAYS_INLINE Address &operator=(const uint64_t a) { _a = (a & 0xffffffffffULL); return *this; }
 
 	/**
 	 * @param bits Raw address -- 5 bytes, big-endian byte order
 	 * @param len Length of array
 	 */
-	ZT_ALWAYS_INLINE void setTo(const void *bits,const unsigned int len)
+	ZT_ALWAYS_INLINE void setTo(const uint8_t b[5])
 	{
-		if (len < ZT_ADDRESS_LENGTH) {
-			_a = 0;
-			return;
-		}
-		const unsigned char *b = (const unsigned char *)bits;
-		uint64_t a = ((uint64_t)*b++) << 32;
-		a |= ((uint64_t)*b++) << 24;
-		a |= ((uint64_t)*b++) << 16;
-		a |= ((uint64_t)*b++) << 8;
-		a |= ((uint64_t)*b);
-		_a = a;
+		_a = ((uint64_t)b[0] << 32U) | ((uint64_t)b[1] << 24U) | ((uint64_t)b[2] << 16U) | ((uint64_t)b[3] << 8U) | (uint64_t)b[4];
 	}
 
 	/**
 	 * @param bits Buffer to hold 5-byte address in big-endian byte order
 	 * @param len Length of array
 	 */
-	ZT_ALWAYS_INLINE void copyTo(void *const bits,const unsigned int len) const
-	{
-		if (len < ZT_ADDRESS_LENGTH)
-			return;
-		unsigned char *b = (unsigned char *)bits;
-		*(b++) = (unsigned char)((_a >> 32) & 0xff);
-		*(b++) = (unsigned char)((_a >> 24) & 0xff);
-		*(b++) = (unsigned char)((_a >> 16) & 0xff);
-		*(b++) = (unsigned char)((_a >> 8) & 0xff);
-		*b = (unsigned char)(_a & 0xff);
-	}
-
-	/**
-	 * Append to a buffer in big-endian byte order
-	 *
-	 * @param b Buffer to append to
-	 */
-	template<unsigned int C>
-	ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
+	ZT_ALWAYS_INLINE void copyTo(uint8_t b[5]) const
 	{
-		unsigned char *p = (unsigned char *)b.appendField(ZT_ADDRESS_LENGTH);
-		*(p++) = (unsigned char)((_a >> 32) & 0xff);
-		*(p++) = (unsigned char)((_a >> 24) & 0xff);
-		*(p++) = (unsigned char)((_a >> 16) & 0xff);
-		*(p++) = (unsigned char)((_a >> 8) & 0xff);
-		*p = (unsigned char)(_a & 0xff);
+		b[0] = (uint8_t)(_a >> 32U);
+		b[1] = (uint8_t)(_a >> 24U);
+		b[2] = (uint8_t)(_a >> 16U);
+		b[3] = (uint8_t)(_a >> 8U);
+		b[4] = (uint8_t)_a;
 	}
 
 	/**
@@ -131,9 +96,6 @@ public:
 	ZT_ALWAYS_INLINE uint8_t operator[](unsigned int i) const { return (uint8_t)(_a >> (32 - (i * 8))); }
 
 	ZT_ALWAYS_INLINE operator bool() const { return (_a != 0); }
-	ZT_ALWAYS_INLINE operator unsigned int() const { return (unsigned int)_a; }
-	ZT_ALWAYS_INLINE operator unsigned long() const { return (unsigned long)_a; }
-	ZT_ALWAYS_INLINE operator unsigned long long() const { return (unsigned long long)_a; }
 
 	ZT_ALWAYS_INLINE void zero() { _a = 0; }
 

+ 31 - 14
node/Buf.hpp

@@ -77,6 +77,9 @@ extern std::atomic<uintptr_t> Buf_pool;
  * union as 'fields.' This must be a basic plain data type and must be no larger than
  * ZT_BUF_MEM_SIZE. It's typically a packed struct.
  *
+ * Buf instances with different template parameters can freely be cast to one another
+ * as there is no actual difference in size or layout.
+ *
  * @tparam U Type to overlap with data bytes in data union (can't be larger than ZT_BUF_MEM_SIZE)
  */
 template<typename U = void>
@@ -86,12 +89,10 @@ class Buf
 
 private:
 	// Direct construction isn't allowed; use get().
-	ZT_ALWAYS_INLINE Buf()
-	{}
+	ZT_ALWAYS_INLINE Buf() {}
 
 	template<typename X>
-	ZT_ALWAYS_INLINE Buf(const Buf<X> &b)
-	{ memcpy(data.bytes,b.data.bytes,ZT_BUF_MEM_SIZE); }
+	ZT_ALWAYS_INLINE Buf(const Buf<X> &b) { memcpy(data.bytes,b.data.bytes,ZT_BUF_MEM_SIZE); }
 
 public:
 	static void operator delete(void *ptr,std::size_t sz)
@@ -203,8 +204,7 @@ public:
 	 * @param ii Iterator to check
 	 * @return True if iterator has read past the size of the buffer
 	 */
-	static ZT_ALWAYS_INLINE bool writeOverflow(const int &ii)
-	{ return ((ii - ZT_BUF_MEM_SIZE) > 0); }
+	static ZT_ALWAYS_INLINE bool writeOverflow(const int &ii) { return ((ii - ZT_BUF_MEM_SIZE) > 0); }
 
 	/**
 	 * Check for overflow beyond the size of the data that should be in the buffer
@@ -216,8 +216,7 @@ public:
 	 * @param size Size of data that should be in buffer
 	 * @return True if iterator has read past the size of the data
 	 */
-	static ZT_ALWAYS_INLINE bool readOverflow(const int &ii,const unsigned int size)
-	{ return ((ii - (int)size) > 0); }
+	static ZT_ALWAYS_INLINE bool readOverflow(const int &ii,const unsigned int size) { return ((ii - (int)size) > 0); }
 
 	template<typename X>
 	ZT_ALWAYS_INLINE Buf &operator=(const Buf<X> &b) const
@@ -226,6 +225,24 @@ public:
 		return *this;
 	}
 
+	/**
+	 * Shortcut to cast between buffers whose data can be viewed through a different struct type
+	 *
+	 * @tparam X A packed struct or other primitive type that should be placed in the data union
+	 * @return Reference to this Buf templated with the supplied parameter
+	 */
+	template<typename X>
+	ZT_ALWAYS_INLINE Buf<X> &view() { return *reinterpret_cast< Buf<X> * >(this); }
+
+	/**
+	 * Shortcut to cast between buffers whose data can be viewed through a different struct type
+	 *
+	 * @tparam X A packed struct or other primitive type that should be placed in the data union
+	 * @return Reference to this Buf templated with the supplied parameter
+	 */
+	template<typename X>
+	ZT_ALWAYS_INLINE const Buf<X> &view() const { return *reinterpret_cast< Buf<X> * >(this); }
+
 	/**
 	 * Zero memory
 	 *
@@ -241,8 +258,8 @@ public:
 	 */
 	ZT_ALWAYS_INLINE uint8_t rI8(int &ii) const
 	{
-		const unsigned int s = (unsigned int)ii++;
-		return data.bytes[s & ZT_BUF_MEM_MASK];
+		const int s = ii++;
+		return data.bytes[(unsigned int)s & ZT_BUF_MEM_MASK];
 	}
 
 	/**
@@ -432,8 +449,8 @@ public:
 	 */
 	ZT_ALWAYS_INLINE void wI(int &ii,uint8_t n)
 	{
-		const unsigned int s = (unsigned int)ii++;
-		data[s & ZT_BUF_MEM_MASK] = n;
+		const int s = ii++;
+		data[(unsigned int)s & ZT_BUF_MEM_MASK] = n;
 	}
 
 	/**
@@ -508,7 +525,7 @@ public:
 	template<typename T>
 	ZT_ALWAYS_INLINE void wO(int &ii,T &t)
 	{
-		const unsigned int s = (unsigned int)ii;
+		const int s = ii;
 		if ((s + T::marshalSizeMax()) <= ZT_BUF_MEM_SIZE) {
 			int ms = t.marshal(data.bytes + s);
 			if (ms > 0)
@@ -546,7 +563,7 @@ public:
 	 */
 	ZT_ALWAYS_INLINE void wB(int &ii,const void *const bytes,const unsigned int len)
 	{
-		unsigned int s = (unsigned int)ii;
+		const int s = ii;
 		if ((ii += (int)len) <= ZT_BUF_MEM_SIZE)
 			memcpy(data.bytes + s,bytes,len);
 	}

+ 2 - 3
node/CMakeLists.txt

@@ -6,7 +6,6 @@ set(core_headers
 	Address.hpp
 	AtomicCounter.hpp
 	Buf.hpp
-	Buffer.hpp
 	C25519.hpp
 	Capability.hpp
 	CertificateOfMembership.hpp
@@ -28,10 +27,10 @@ set(core_headers
 	NetworkConfig.hpp
 	Node.hpp
 	OS.hpp
-	Packet.hpp
 	Path.hpp
 	Peer.hpp
 	Poly1305.hpp
+	Protocol.hpp
 	RingBuffer.hpp
 	RuntimeEnvironment.hpp
 	Salsa20.hpp
@@ -64,10 +63,10 @@ set(core_src
 	Network.cpp
 	NetworkConfig.cpp
 	Node.cpp
-	Packet.cpp
 	Path.cpp
 	Peer.cpp
 	Poly1305.cpp
+	Protocol.cpp
 	Salsa20.cpp
 	SelfAwareness.cpp
 	SHA512.cpp

+ 331 - 3
node/Capability.cpp

@@ -12,19 +12,21 @@
 /****/
 
 #include "Capability.hpp"
+#include "Utils.hpp"
+#include "Constants.hpp"
+#include "MAC.hpp"
 
 namespace ZeroTier {
 
 bool Capability::sign(const Identity &from,const Address &to)
 {
+	uint8_t buf[ZT_CAPABILITY_MARSHAL_SIZE_MAX + 16];
 	try {
 		for(unsigned int i=0;((i<_maxCustodyChainLength)&&(i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH));++i) {
 			if (!(_custody[i].to)) {
-				Buffer<(sizeof(Capability) * 2)> tmp;
-				this->serialize(tmp,true);
 				_custody[i].to = to;
 				_custody[i].from = from.address();
-				_custody[i].signatureLength = from.sign(tmp.data(),tmp.size(),_custody[i].signature,sizeof(_custody[i].signature));
+				_custody[i].signatureLength = from.sign(buf,(unsigned int)marshal(buf,true),_custody[i].signature,sizeof(_custody[i].signature));
 				return true;
 			}
 		}
@@ -32,4 +34,330 @@ bool Capability::sign(const Identity &from,const Address &to)
 	return false;
 }
 
+int Capability::marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX],const bool forSign) const
+{
+	int p = 0;
+	if (forSign) {
+		for(int k=0;k<8;++k)
+			data[p++] = 0x7f;
+	}
+	Utils::storeBigEndian<uint64_t>(data + p,_nwid); p += 8;
+	Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)_ts); p += 8;
+	Utils::storeBigEndian<uint32_t>(data + p,_id); p += 4;
+	Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)_ruleCount); p += 2;
+	p += Capability::marshalVirtualNetworkRules(data + 22,_rules,_ruleCount);
+	data[p++] = (uint8_t)_maxCustodyChainLength;
+	if (!forSign) {
+		for(unsigned int i=0;;++i) {
+			if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) {
+				_custody[i].to.copyTo(data + p); p += ZT_ADDRESS_LENGTH;
+				_custody[i].from.copyTo(data + p); p += ZT_ADDRESS_LENGTH;
+				data[p++] = 1;
+				Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)_custody[i].signatureLength); p += 2;
+				for(unsigned int k=0;k<_custody[i].signatureLength;++k)
+					data[p++] = _custody[i].signature[k];
+			} else {
+				for(int k=0;k<ZT_ADDRESS_LENGTH;++k)
+					data[p++] = 0;
+				break;
+			}
+		}
+	}
+	data[p++] = 0;
+	data[p++] = 0; // uint16_t size of additional fields, currently 0
+	if (forSign) {
+		for(int k=0;k<8;++k)
+			data[p++] = 0x7f;
+	}
+	return p;
+}
+
+int Capability::unmarshal(const uint8_t *data,int len)
+{
+	if (len < 22)
+		return -1;
+
+	_nwid = Utils::loadBigEndian<uint64_t>(data);
+	_ts = (int64_t)Utils::loadBigEndian<uint64_t>(data + 8);
+	_id = Utils::loadBigEndian<uint32_t>(data + 16);
+
+	const unsigned int rc = Utils::loadBigEndian<uint16_t>(data + 20);;
+	if (rc > ZT_MAX_CAPABILITY_RULES)
+		return -1;
+	const int rulesLen = unmarshalVirtualNetworkRules(data + 22,len - 22,_rules,_ruleCount,rc);
+	if (rulesLen < 0)
+		return rulesLen;
+	int p = 22 + rulesLen;
+
+	if (p >= len)
+		return -1;
+	_maxCustodyChainLength = data[p++];
+
+	for(unsigned int i=0;;++i) {
+		if ((p + ZT_ADDRESS_LENGTH) > len)
+			return -1;
+		const Address to(data + p); p += ZT_ADDRESS_LENGTH;
+		if (!to) break;
+		if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
+			return -1;
+		_custody[i].to = to;
+		if ((p + ZT_ADDRESS_LENGTH) > len)
+			return -1;
+		_custody[i].from.setTo(data + p); p += ZT_ADDRESS_LENGTH + 1;
+		if ((p + 2) > len)
+			return -1;
+		const unsigned int sl = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+		_custody[i].signatureLength = sl;
+		if ((sl > sizeof(_custody[i].signature))||((p + (int)sl) > len))
+			return -1;
+		memcpy(_custody[i].signature,data + p,sl); p += (int)sl;
+	}
+
+	if ((p + 2) > len)
+		return -1;
+	p += 2 + Utils::loadBigEndian<uint16_t>(data + p);
+	if (p > len)
+		return -1;
+
+	return p;
+}
+
+int Capability::marshalVirtualNetworkRules(uint8_t data[ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX],const ZT_VirtualNetworkRule *const rules,const unsigned int ruleCount)
+{
+	int p = 0;
+	for(unsigned int i=0;i<ruleCount;++i) {
+		data[p++] = rules[i].t;
+		switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3fU)) {
+			default:
+				data[p++] = 0;
+				break;
+			case ZT_NETWORK_RULE_ACTION_TEE:
+			case ZT_NETWORK_RULE_ACTION_WATCH:
+			case ZT_NETWORK_RULE_ACTION_REDIRECT:
+				data[p++] = 14;
+				Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.fwd.address); p += 8;
+				Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.fwd.flags); p += 4;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.fwd.length); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
+			case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
+				data[p++] = 5;
+				Address(rules[i].v.zt).copyTo(data + p); p += ZT_ADDRESS_LENGTH;
+				break;
+			case ZT_NETWORK_RULE_MATCH_VLAN_ID:
+				data[p++] = 2;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.vlanId); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
+				data[p++] = 1;
+				data[p++] = rules[i].v.vlanPcp;
+				break;
+			case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
+				data[p++] = 1;
+				data[p++] = rules[i].v.vlanDei;
+				break;
+			case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
+			case ZT_NETWORK_RULE_MATCH_MAC_DEST:
+				data[p++] = 6;
+				MAC(rules[i].v.mac).copyTo(data + p); p += 6;
+				break;
+			case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
+			case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
+				data[p++] = 5;
+				data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[0];
+				data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[1];
+				data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[2];
+				data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[3];
+				data[p++] = rules[i].v.ipv4.mask;
+				break;
+			case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
+			case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
+				data[p++] = 17;
+				for(int k=0;k<16;++k)
+					data[p++] = rules[i].v.ipv6.ip[k];
+				data[p++] = rules[i].v.ipv6.mask;
+				break;
+			case ZT_NETWORK_RULE_MATCH_IP_TOS:
+				data[p++] = 3;
+				data[p++] = rules[i].v.ipTos.mask;
+				data[p++] = rules[i].v.ipTos.value[0];
+				data[p++] = rules[i].v.ipTos.value[1];
+				break;
+			case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
+				data[p++] = 1;
+				data[p++] = rules[i].v.ipProtocol;
+				break;
+			case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
+				data[p++] = 2;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.etherType); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_ICMP:
+				data[p++] = 3;
+				data[p++] = rules[i].v.icmp.type;
+				data[p++] = rules[i].v.icmp.code;
+				data[p++] = rules[i].v.icmp.flags;
+				break;
+			case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
+			case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
+				data[p++] = 4;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.port[0]); p += 2;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.port[1]); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
+				data[p++] = 8;
+				Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.characteristics); p += 8;
+				break;
+			case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
+				data[p++] = 4;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.frameSize[0]); p += 2;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.frameSize[1]); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_RANDOM:
+				data[p++] = 4;
+				Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.randomProbability); p += 4;
+				break;
+			case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
+			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
+			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
+			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
+			case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
+			case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
+			case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
+				data[p++] = 8;
+				Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.tag.id); p += 4;
+				Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.tag.value); p += 4;
+				break;
+			case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
+				data[p++] = 19;
+				Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.intRange.start); p += 8;
+				Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end); p += 8;
+				Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.intRange.idx); p += 2;
+				data[p++] = rules[i].v.intRange.format;
+				break;
+		}
+	}
+	return p;
+}
+
+int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int len,ZT_VirtualNetworkRule *const rules,unsigned int &ruleCount,const unsigned int maxRuleCount)
+{
+	int p = 0;
+	unsigned int rc = 0;
+	while (rc < maxRuleCount) {
+		if (p >= len)
+			return -1;
+		rules[ruleCount].t = data[p++];
+		const int fieldLen = (int)data[p++];
+		if ((p + fieldLen) > len)
+			return -1;
+		switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {
+			default:
+				break;
+			case ZT_NETWORK_RULE_ACTION_TEE:
+			case ZT_NETWORK_RULE_ACTION_WATCH:
+			case ZT_NETWORK_RULE_ACTION_REDIRECT:
+				if ((p + 14) > len) return -1;
+				rules[ruleCount].v.fwd.address = Utils::loadBigEndian<uint64_t>(data + p); p += 8;
+				rules[ruleCount].v.fwd.flags = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
+				rules[ruleCount].v.fwd.length = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
+			case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
+				if ((p + ZT_ADDRESS_LENGTH) > len) return -1;
+				rules[ruleCount].v.zt = Address(data + p).toInt(); p += ZT_ADDRESS_LENGTH;
+				break;
+			case ZT_NETWORK_RULE_MATCH_VLAN_ID:
+				if ((p + 2) > len) return -1;
+				rules[ruleCount].v.vlanId = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
+				if ((p + 1) > len) return -1;
+				rules[ruleCount].v.vlanPcp = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
+				if ((p + 1) > len) return -1;
+				rules[ruleCount].v.vlanDei = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
+			case ZT_NETWORK_RULE_MATCH_MAC_DEST:
+				if ((p + 6) > len) return -1;
+				memcpy(rules[ruleCount].v.mac,data + p,6); p += 6;
+				break;
+			case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
+			case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
+				if ((p + 5) > len) return -1;
+				memcpy(&(rules[ruleCount].v.ipv4.ip),data + p,4); p += 4;
+				rules[ruleCount].v.ipv4.mask = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
+			case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
+				if ((p + 17) > len) return -1;
+				memcpy(rules[ruleCount].v.ipv6.ip,data + p,16); p += 16;
+				rules[ruleCount].v.ipv6.mask = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_IP_TOS:
+				if ((p + 3) > len) return -1;
+				rules[ruleCount].v.ipTos.mask = data[p++];
+				rules[ruleCount].v.ipTos.value[0] = data[p++];
+				rules[ruleCount].v.ipTos.value[1] = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
+				if ((p + 1) > len) return -1;
+				rules[ruleCount].v.ipProtocol = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
+				if ((p + 2) > len) return -1;
+				rules[ruleCount].v.etherType = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_ICMP:
+				if ((p + 3) > len) return -1;
+				rules[ruleCount].v.icmp.type = data[p++];
+				rules[ruleCount].v.icmp.code = data[p++];
+				rules[ruleCount].v.icmp.flags = data[p++];
+				break;
+			case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
+			case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
+				if ((p + 4) > len) return -1;
+				rules[ruleCount].v.port[0] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				rules[ruleCount].v.port[1] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
+				if ((p + 8) > len) return -1;
+				rules[ruleCount].v.characteristics = Utils::loadBigEndian<uint64_t>(data + p); p += 8;
+				break;
+			case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
+				if ((p + 4) > len) return -1;
+				rules[ruleCount].v.frameSize[0] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				rules[ruleCount].v.frameSize[1] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				break;
+			case ZT_NETWORK_RULE_MATCH_RANDOM:
+				if ((p + 4) > len) return -1;
+				rules[ruleCount].v.randomProbability = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
+				break;
+			case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
+			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
+			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
+			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
+			case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
+			case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
+			case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
+				if ((p + 4) > len) return -1;
+				rules[ruleCount].v.tag.id = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
+				rules[ruleCount].v.tag.value = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
+				break;
+			case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
+				if ((p + 19) > len) return -1;
+				rules[ruleCount].v.intRange.start = Utils::loadBigEndian<uint64_t>(data + p); p += 8;
+				rules[ruleCount].v.intRange.end = (uint32_t)(Utils::loadBigEndian<uint64_t>(data + p) - rules[ruleCount].v.intRange.start); p += 8;
+				rules[ruleCount].v.intRange.idx = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
+				rules[ruleCount].v.intRange.format = data[p++];
+				break;
+		}
+		p += fieldLen;
+		++rc;
+	}
+	ruleCount = rc;
+	return p;
+}
+
 } // namespace ZeroTier

+ 12 - 293
node/Capability.hpp

@@ -23,9 +23,13 @@
 #include "Address.hpp"
 #include "C25519.hpp"
 #include "Utils.hpp"
-#include "Buffer.hpp"
 #include "Identity.hpp"
 
+#define ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX 21
+
+#define ZT_CAPABILITY__CUSTODY_CHAIN_ITEM_MARSHAL_SIZE_MAX (5 + 5 + 2 + ZT_SIGNATURE_BUFFER_SIZE)
+#define ZT_CAPABILITY_MARSHAL_SIZE_MAX (8 + 8 + 4 + 1 + 2 + (ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX * ZT_MAX_CAPABILITY_RULES) + 2 + (ZT_CAPABILITY__CUSTODY_CHAIN_ITEM_MARSHAL_SIZE_MAX * ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
+
 namespace ZeroTier {
 
 class RuntimeEnvironment;
@@ -79,7 +83,7 @@ public:
 	 * @param rules Network flow rules for this capability
 	 * @param ruleCount Number of flow rules
 	 */
-	ZT_ALWAYS_INLINE Capability(uint32_t id,uint64_t nwid,int64_t ts,unsigned int mccl,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount) :
+	ZT_ALWAYS_INLINE Capability(const uint32_t id,const uint64_t nwid,const int64_t ts,const unsigned int mccl,const ZT_VirtualNetworkRule *const rules,const unsigned int ruleCount) :
 		_nwid(nwid),
 		_ts(ts),
 		_id(id),
@@ -121,7 +125,7 @@ public:
 	ZT_ALWAYS_INLINE Address issuedTo() const
 	{
 		Address i2;
-		for(unsigned int i=0;i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH;++i) {
+		for(int i=0;i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH;++i) {
 			if (!_custody[i].to)
 				return i2;
 			else i2 = _custody[i].to;
@@ -151,297 +155,12 @@ public:
 	 */
 	ZT_ALWAYS_INLINE Credential::VerifyResult verify(const RuntimeEnvironment *RR,void *tPtr) const { return _verify(RR,tPtr,*this); }
 
-	template<unsigned int C>
-	static inline void serializeRules(Buffer<C> &b,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount)
-	{
-		for(unsigned int i=0;i<ruleCount;++i) {
-			// Each rule consists of its 8-bit type followed by the size of that type's
-			// field followed by field data. The inclusion of the size will allow non-supported
-			// rules to be ignored but still parsed.
-			b.append((uint8_t)rules[i].t);
-			switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3f)) {
-				default:
-					b.append((uint8_t)0);
-					break;
-				case ZT_NETWORK_RULE_ACTION_TEE:
-				case ZT_NETWORK_RULE_ACTION_WATCH:
-				case ZT_NETWORK_RULE_ACTION_REDIRECT:
-					b.append((uint8_t)14);
-					b.append((uint64_t)rules[i].v.fwd.address);
-					b.append((uint32_t)rules[i].v.fwd.flags);
-					b.append((uint16_t)rules[i].v.fwd.length); // unused for redirect
-					break;
-				case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
-				case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
-					b.append((uint8_t)5);
-					Address(rules[i].v.zt).appendTo(b);
-					break;
-				case ZT_NETWORK_RULE_MATCH_VLAN_ID:
-					b.append((uint8_t)2);
-					b.append((uint16_t)rules[i].v.vlanId);
-					break;
-				case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
-					b.append((uint8_t)1);
-					b.append((uint8_t)rules[i].v.vlanPcp);
-					break;
-				case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
-					b.append((uint8_t)1);
-					b.append((uint8_t)rules[i].v.vlanDei);
-					break;
-				case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
-				case ZT_NETWORK_RULE_MATCH_MAC_DEST:
-					b.append((uint8_t)6);
-					b.append(rules[i].v.mac,6);
-					break;
-				case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
-				case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
-					b.append((uint8_t)5);
-					b.append(&(rules[i].v.ipv4.ip),4);
-					b.append((uint8_t)rules[i].v.ipv4.mask);
-					break;
-				case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
-				case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
-					b.append((uint8_t)17);
-					b.append(rules[i].v.ipv6.ip,16);
-					b.append((uint8_t)rules[i].v.ipv6.mask);
-					break;
-				case ZT_NETWORK_RULE_MATCH_IP_TOS:
-					b.append((uint8_t)3);
-					b.append((uint8_t)rules[i].v.ipTos.mask);
-					b.append((uint8_t)rules[i].v.ipTos.value[0]);
-					b.append((uint8_t)rules[i].v.ipTos.value[1]);
-					break;
-				case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
-					b.append((uint8_t)1);
-					b.append((uint8_t)rules[i].v.ipProtocol);
-					break;
-				case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
-					b.append((uint8_t)2);
-					b.append((uint16_t)rules[i].v.etherType);
-					break;
-				case ZT_NETWORK_RULE_MATCH_ICMP:
-					b.append((uint8_t)3);
-					b.append((uint8_t)rules[i].v.icmp.type);
-					b.append((uint8_t)rules[i].v.icmp.code);
-					b.append((uint8_t)rules[i].v.icmp.flags);
-					break;
-				case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
-				case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
-					b.append((uint8_t)4);
-					b.append((uint16_t)rules[i].v.port[0]);
-					b.append((uint16_t)rules[i].v.port[1]);
-					break;
-				case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
-					b.append((uint8_t)8);
-					b.append((uint64_t)rules[i].v.characteristics);
-					break;
-				case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
-					b.append((uint8_t)4);
-					b.append((uint16_t)rules[i].v.frameSize[0]);
-					b.append((uint16_t)rules[i].v.frameSize[1]);
-					break;
-				case ZT_NETWORK_RULE_MATCH_RANDOM:
-					b.append((uint8_t)4);
-					b.append((uint32_t)rules[i].v.randomProbability);
-					break;
-				case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
-				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
-				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
-				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
-				case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
-				case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
-				case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
-					b.append((uint8_t)8);
-					b.append((uint32_t)rules[i].v.tag.id);
-					b.append((uint32_t)rules[i].v.tag.value);
-					break;
-				case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
-					b.append((uint8_t)19);
-					b.append((uint64_t)rules[i].v.intRange.start);
-					b.append((uint64_t)(rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end)); // more future-proof
-					b.append((uint16_t)rules[i].v.intRange.idx);
-					b.append((uint8_t)rules[i].v.intRange.format);
-					break;
-			}
-		}
-	}
-
-	template<unsigned int C>
-	static inline void deserializeRules(const Buffer<C> &b,unsigned int &p,ZT_VirtualNetworkRule *rules,unsigned int &ruleCount,const unsigned int maxRuleCount)
-	{
-		while ((ruleCount < maxRuleCount)&&(p < b.size())) {
-			rules[ruleCount].t = (uint8_t)b[p++];
-			const unsigned int fieldLen = (unsigned int)b[p++];
-			switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {
-				default:
-					break;
-				case ZT_NETWORK_RULE_ACTION_TEE:
-				case ZT_NETWORK_RULE_ACTION_WATCH:
-				case ZT_NETWORK_RULE_ACTION_REDIRECT:
-					rules[ruleCount].v.fwd.address = b.template at<uint64_t>(p);
-					rules[ruleCount].v.fwd.flags = b.template at<uint32_t>(p + 8);
-					rules[ruleCount].v.fwd.length = b.template at<uint16_t>(p + 12);
-					break;
-				case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
-				case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
-					rules[ruleCount].v.zt = Address(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt();
-					break;
-				case ZT_NETWORK_RULE_MATCH_VLAN_ID:
-					rules[ruleCount].v.vlanId = b.template at<uint16_t>(p);
-					break;
-				case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
-					rules[ruleCount].v.vlanPcp = (uint8_t)b[p];
-					break;
-				case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
-					rules[ruleCount].v.vlanDei = (uint8_t)b[p];
-					break;
-				case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
-				case ZT_NETWORK_RULE_MATCH_MAC_DEST:
-					memcpy(rules[ruleCount].v.mac,b.field(p,6),6);
-					break;
-				case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
-				case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
-					memcpy(&(rules[ruleCount].v.ipv4.ip),b.field(p,4),4);
-					rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4];
-					break;
-				case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
-				case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
-					memcpy(rules[ruleCount].v.ipv6.ip,b.field(p,16),16);
-					rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16];
-					break;
-				case ZT_NETWORK_RULE_MATCH_IP_TOS:
-					rules[ruleCount].v.ipTos.mask = (uint8_t)b[p];
-					rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p+1];
-					rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p+2];
-					break;
-				case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
-					rules[ruleCount].v.ipProtocol = (uint8_t)b[p];
-					break;
-				case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
-					rules[ruleCount].v.etherType = b.template at<uint16_t>(p);
-					break;
-				case ZT_NETWORK_RULE_MATCH_ICMP:
-					rules[ruleCount].v.icmp.type = (uint8_t)b[p];
-					rules[ruleCount].v.icmp.code = (uint8_t)b[p+1];
-					rules[ruleCount].v.icmp.flags = (uint8_t)b[p+2];
-					break;
-				case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
-				case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
-					rules[ruleCount].v.port[0] = b.template at<uint16_t>(p);
-					rules[ruleCount].v.port[1] = b.template at<uint16_t>(p + 2);
-					break;
-				case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
-					rules[ruleCount].v.characteristics = b.template at<uint64_t>(p);
-					break;
-				case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
-					rules[ruleCount].v.frameSize[0] = b.template at<uint16_t>(p);
-					rules[ruleCount].v.frameSize[1] = b.template at<uint16_t>(p + 2);
-					break;
-				case ZT_NETWORK_RULE_MATCH_RANDOM:
-					rules[ruleCount].v.randomProbability = b.template at<uint32_t>(p);
-					break;
-				case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
-				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
-				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
-				case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
-				case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
-				case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
-				case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
-					rules[ruleCount].v.tag.id = b.template at<uint32_t>(p);
-					rules[ruleCount].v.tag.value = b.template at<uint32_t>(p + 4);
-					break;
-				case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
-					rules[ruleCount].v.intRange.start = b.template at<uint64_t>(p);
-					rules[ruleCount].v.intRange.end = (uint32_t)(b.template at<uint64_t>(p + 8) - rules[ruleCount].v.intRange.start);
-					rules[ruleCount].v.intRange.idx = b.template at<uint16_t>(p + 16);
-					rules[ruleCount].v.intRange.format = (uint8_t)b[p + 18];
-					break;
-			}
-			p += fieldLen;
-			++ruleCount;
-		}
-	}
-
-	template<unsigned int C>
-	inline void serialize(Buffer<C> &b,const bool forSign = false) const
-	{
-		if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
-
-		// These are the same between Tag and Capability
-		b.append(_nwid);
-		b.append(_ts);
-		b.append(_id);
-
-		b.append((uint16_t)_ruleCount);
-		serializeRules(b,_rules,_ruleCount);
-		b.append((uint8_t)_maxCustodyChainLength);
-
-		if (!forSign) {
-			for(unsigned int i=0;;++i) {
-				if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) {
-					_custody[i].to.appendTo(b);
-					_custody[i].from.appendTo(b);
-					b.append((uint8_t)1);
-					b.append((uint16_t)_custody[i].signatureLength);
-					b.append(_custody[i].signature,_custody[i].signatureLength);
-				} else {
-					b.append((unsigned char)0,ZT_ADDRESS_LENGTH); // zero 'to' terminates chain
-					break;
-				}
-			}
-		}
-
-		// This is the size of any additional fields, currently 0.
-		b.append((uint16_t)0);
-
-		if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
-	}
-
-	template<unsigned int C>
-	inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
-	{
-		*this = Capability();
-
-		unsigned int p = startAt;
+	static ZT_ALWAYS_INLINE int marshalSizeMax() { return ZT_CAPABILITY_MARSHAL_SIZE_MAX; }
+	int marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX],bool forSign = false) const;
+	int unmarshal(const uint8_t *data,int len);
 
-		_nwid = b.template at<uint64_t>(p); p += 8;
-		_ts = b.template at<uint64_t>(p); p += 8;
-		_id = b.template at<uint32_t>(p); p += 4;
-
-		const unsigned int rc = b.template at<uint16_t>(p); p += 2;
-		if (rc > ZT_MAX_CAPABILITY_RULES)
-			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
-		deserializeRules(b,p,_rules,_ruleCount,rc);
-
-		_maxCustodyChainLength = (unsigned int)b[p++];
-		if ((_maxCustodyChainLength < 1)||(_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
-			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
-
-		for(unsigned int i=0;;++i) {
-			const Address to(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
-			if (!to)
-				break;
-			if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
-				throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
-			_custody[i].to = to;
-			_custody[i].from.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
-			if (b[p++] == 1) {
-				_custody[i].signatureLength = b.template at<uint16_t>(p);
-				if (_custody[i].signatureLength > sizeof(_custody[i].signature))
-					throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
-				p += 2;
-				memcpy(_custody[i].signature,b.field(p,_custody[i].signatureLength),_custody[i].signatureLength); p += _custody[i].signatureLength;
-			} else {
-				p += 2 + b.template at<uint16_t>(p);
-			}
-		}
-
-		p += 2 + b.template at<uint16_t>(p);
-		if (p > b.size())
-			throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
-
-		return (p - startAt);
-	}
+	static int marshalVirtualNetworkRules(uint8_t data[ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX],const ZT_VirtualNetworkRule *rules,unsigned int ruleCount);
+	static int unmarshalVirtualNetworkRules(const uint8_t *data,int len,ZT_VirtualNetworkRule *rules,unsigned int &ruleCount,unsigned int maxRuleCount);
 
 	// Provides natural sort order by ID
 	ZT_ALWAYS_INLINE bool operator<(const Capability &c) const { return (_id < c._id); }

+ 2 - 2
node/Constants.hpp

@@ -52,9 +52,9 @@
 #define ZT_DEFAULT_MTU 2800
 
 /**
- * Maximum number of packet fragments we'll support (protocol limit: 16)
+ * Maximum number of packet fragments we'll support (11 is the maximum that will fit in a Buf)
  */
-#define ZT_MAX_PACKET_FRAGMENTS 12
+#define ZT_MAX_PACKET_FRAGMENTS 11
 
 /**
  * Size of RX queue in packets

+ 2 - 2
node/Identity.cpp

@@ -94,7 +94,7 @@ void Identity::generate(const Type t)
 	char *const genmem = new char[ZT_IDENTITY_GEN_MEMORY];
 	do {
 		C25519::generateSatisfying(_Identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
-		_address.setTo(digest + 59,ZT_ADDRESS_LENGTH); // last 5 bytes are address
+		_address.setTo(digest + 59); // last 5 bytes are address
 	} while (_address.isReserved());
 	delete [] genmem;
 
@@ -379,7 +379,7 @@ bool Identity::fromString(const char *str)
 
 int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const
 {
-	_address.copyTo(data,ZT_ADDRESS_LENGTH);
+	_address.copyTo(data);
 	switch(_type) {
 
 		case C25519:

+ 16 - 53
node/MAC.hpp

@@ -32,8 +32,6 @@ class MAC
 {
 public:
 	ZT_ALWAYS_INLINE MAC() : _m(0ULL) {}
-	ZT_ALWAYS_INLINE MAC(const MAC &m) : _m(m._m) {}
-
 	ZT_ALWAYS_INLINE MAC(const unsigned char a,const unsigned char b,const unsigned char c,const unsigned char d,const unsigned char e,const unsigned char f) :
 		_m( ((((uint64_t)a) & 0xffULL) << 40U) |
 		    ((((uint64_t)b) & 0xffULL) << 32U) |
@@ -41,7 +39,7 @@ public:
 		    ((((uint64_t)d) & 0xffULL) << 16U) |
 		    ((((uint64_t)e) & 0xffULL) << 8U) |
 		    (((uint64_t)f) & 0xffULL) ) {}
-	ZT_ALWAYS_INLINE MAC(const void *bits,unsigned int len) { setTo(bits,len); }
+	ZT_ALWAYS_INLINE MAC(const uint8_t b[6]) { setTo(b); }
 	ZT_ALWAYS_INLINE MAC(const Address &ztaddr,uint64_t nwid) { fromAddress(ztaddr,nwid); }
 	ZT_ALWAYS_INLINE MAC(const uint64_t m) : _m(m & 0xffffffffffffULL) {}
 
@@ -64,30 +62,17 @@ public:
 	 * @param bits Raw MAC in big-endian byte order
 	 * @param len Length, must be >= 6 or result is zero
 	 */
-	ZT_ALWAYS_INLINE void setTo(const void *bits,unsigned int len)
+	ZT_ALWAYS_INLINE void setTo(const uint8_t b[6])
 	{
-		if (len < 6) {
-			_m = 0ULL;
-			return;
-		}
-		const uint8_t *const b = (const uint8_t *)bits;
-		_m =  (uint64_t)b[0] << 40U;
-		_m |= (uint64_t)b[1] << 32U;
-		_m |= (uint64_t)b[2] << 24U;
-		_m |= (uint64_t)b[3] << 16U;
-		_m |= (uint64_t)b[4] << 8U;
-		_m |= (uint64_t)b[5];
+		_m = ((uint64_t)b[0] << 40U) | ((uint64_t)b[1] << 32U) | ((uint64_t)b[2] << 24U) | ((uint64_t)b[3] << 16U) | ((uint64_t)b[4] << 8U) | (uint64_t)b[5];
 	}
 
 	/**
 	 * @param buf Destination buffer for MAC in big-endian byte order
 	 * @param len Length of buffer, must be >= 6 or nothing is copied
 	 */
-	ZT_ALWAYS_INLINE void copyTo(void *buf,unsigned int len) const
+	ZT_ALWAYS_INLINE void copyTo(uint8_t b[6]) const
 	{
-		if (len < 6)
-			return;
-		uint8_t *const b = (uint8_t *)buf;
 		b[0] = (uint8_t)(_m >> 40U);
 		b[1] = (uint8_t)(_m >> 32U);
 		b[2] = (uint8_t)(_m >> 24U);
@@ -96,23 +81,6 @@ public:
 		b[5] = (uint8_t)_m;
 	}
 
-	/**
-	 * Append to a buffer in big-endian byte order
-	 *
-	 * @param b Buffer to append to
-	 */
-	template<unsigned int C>
-	ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
-	{
-		uint8_t *p = (uint8_t *)b.appendField(6);
-		*(p++) = (unsigned char)((_m >> 40) & 0xff);
-		*(p++) = (unsigned char)((_m >> 32) & 0xff);
-		*(p++) = (unsigned char)((_m >> 24) & 0xff);
-		*(p++) = (unsigned char)((_m >> 16) & 0xff);
-		*(p++) = (unsigned char)((_m >> 8) & 0xff);
-		*p = (unsigned char)(_m & 0xff);
-	}
-
 	/**
 	 * @return True if this is broadcast (all 0xff)
 	 */
@@ -131,13 +99,13 @@ public:
 	 */
 	ZT_ALWAYS_INLINE void fromAddress(const Address &ztaddr,uint64_t nwid)
 	{
-		uint64_t m = ((uint64_t)firstOctetForNetwork(nwid)) << 40;
+		uint64_t m = ((uint64_t)firstOctetForNetwork(nwid)) << 40U;
 		m |= ztaddr.toInt(); // a is 40 bits
-		m ^= ((nwid >> 8) & 0xff) << 32;
-		m ^= ((nwid >> 16) & 0xff) << 24;
-		m ^= ((nwid >> 24) & 0xff) << 16;
-		m ^= ((nwid >> 32) & 0xff) << 8;
-		m ^= (nwid >> 40) & 0xff;
+		m ^= ((nwid >> 8U) & 0xffU) << 32U;
+		m ^= ((nwid >> 16U) & 0xffU) << 24U;
+		m ^= ((nwid >> 24U) & 0xffU) << 16U;
+		m ^= ((nwid >> 32U) & 0xffU) << 8U;
+		m ^= (nwid >> 40U) & 0xffU;
 		_m = m;
 	}
 
@@ -151,11 +119,11 @@ public:
 	ZT_ALWAYS_INLINE Address toAddress(uint64_t nwid) const
 	{
 		uint64_t a = _m & 0xffffffffffULL; // least significant 40 bits of MAC are formed from address
-		a ^= ((nwid >> 8) & 0xff) << 32; // ... XORed with bits 8-48 of the nwid in little-endian byte order, so unmask it
-		a ^= ((nwid >> 16) & 0xff) << 24;
-		a ^= ((nwid >> 24) & 0xff) << 16;
-		a ^= ((nwid >> 32) & 0xff) << 8;
-		a ^= (nwid >> 40) & 0xff;
+		a ^= ((nwid >> 8U) & 0xffU) << 32U; // ... XORed with bits 8-48 of the nwid in little-endian byte order, so unmask it
+		a ^= ((nwid >> 16U) & 0xffU) << 24U;
+		a ^= ((nwid >> 24U) & 0xffU) << 16U;
+		a ^= ((nwid >> 32U) & 0xffU) << 8U;
+		a ^= (nwid >> 40U) & 0xffU;
 		return Address(a);
 	}
 
@@ -165,7 +133,7 @@ public:
 	 */
 	static ZT_ALWAYS_INLINE unsigned char firstOctetForNetwork(uint64_t nwid)
 	{
-		unsigned char a = ((unsigned char)(nwid & 0xfe) | 0x02); // locally administered, not multicast, from LSB of network ID
+		const uint8_t a = ((uint8_t)(nwid & 0xfeU) | 0x02U); // locally administered, not multicast, from LSB of network ID
 		return ((a == 0x52) ? 0x32 : a); // blacklist 0x52 since it's used by KVM, libvirt, and other popular virtualization engines... seems de-facto standard on Linux
 	}
 
@@ -205,11 +173,6 @@ public:
 		return buf;
 	}
 
-	ZT_ALWAYS_INLINE MAC &operator=(const MAC &m)
-	{
-		_m = m._m;
-		return *this;
-	}
 	ZT_ALWAYS_INLINE MAC &operator=(const uint64_t m)
 	{
 		_m = m & 0xffffffffffffULL;

+ 185 - 0
node/Protocol.cpp

@@ -0,0 +1,185 @@
+/*
+ * Copyright (c)2013-2020 ZeroTier, Inc.
+ *
+ * Use of this software is governed by the Business Source License included
+ * in the LICENSE.TXT file in the project's root directory.
+ *
+ * Change Date: 2024-01-01
+ *
+ * On the date above, in accordance with the Business Source License, use
+ * of this software will be governed by version 2.0 of the Apache License.
+ */
+/****/
+
+#include "Protocol.hpp"
+#include "Buf.hpp"
+#include "Utils.hpp"
+
+#if defined(__GCC__) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
+#define ZT_PACKET_USE_ATOMIC_INTRINSICS
+#endif
+#ifndef ZT_PACKET_USE_ATOMIC_INTRINSICS
+#include <atomic>
+#endif
+
+namespace ZeroTier {
+namespace Protocol {
+
+namespace {
+
+const uint8_t ZEROES32[32] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
+
+/**
+ * Deterministically mangle a 256-bit crypto key based on packet
+ *
+ * This uses extra data from the packet to mangle the secret, giving us an
+ * effective IV that is somewhat more than 64 bits. This is "free" for
+ * Salsa20 since it has negligible key setup time so using a different
+ * key each time is fine.
+ *
+ * @param in Input key (32 bytes)
+ * @param out Output buffer (32 bytes)
+ */
+ZT_ALWAYS_INLINE void _salsa20MangleKey(const uint8_t *const in,uint8_t *const out,const Buf< Header<> > &packet,const unsigned int packetSize)
+{
+	// IV and source/destination addresses. Using the addresses divides the
+	// key space into two halves-- A->B and B->A (since order will change).
+	for(int i=0;i<18;++i) // 8 + (ZT_ADDRESS_LENGTH * 2) == 18
+		out[i] = in[i] ^ packet.data.bytes[i];
+
+	// Flags, but with hop count masked off. Hop count is altered by forwarding
+	// nodes. It's one of the only parts of a packet modifiable by people
+	// without the key.
+	out[18] = in[18] ^ (packet.data.fields.flags & 0xf8U);
+
+	// Raw packet size in bytes -- thus each packet size defines a new
+	// key space.
+	out[19] = in[19] ^ (uint8_t)packetSize;
+	out[20] = in[20] ^ (uint8_t)(packetSize >> 8U); // little endian
+
+	// Rest of raw key is used unchanged
+	for(int i=21;i<32;++i)
+		out[i] = in[i];
+}
+
+unsigned long long _initPacketID()
+{
+	unsigned long long tmp = 0;
+	Utils::getSecureRandom(&tmp,sizeof(tmp));
+	tmp >>= 31U;
+	tmp |= (((uint64_t)time(nullptr)) & 0xffffffffULL) << 33U;
+	return tmp;
+}
+#ifdef ZT_PACKET_USE_ATOMIC_INTRINSICS
+unsigned long long _packetIdCtr = _initPacketID();
+#else
+static std::atomic<unsigned long long> _packetIdCtr(_initPacketID());
+#endif
+
+} // anonymous namespace
+
+void armor(Buf< Header<> > &packet,const unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH],const uint8_t cipherSuite)
+{
+	packet.data.fields.flags = (packet.data.fields.flags & 0xc7U) | ((cipherSuite << 3U) & 0x38U); // FFCCCHHH
+	if (cipherSuite == ZT_PROTO_CIPHER_SUITE__AES_GCM) {
+		// TODO
+	} else if (cipherSuite != ZT_PROTO_CIPHER_SUITE__NONE) {
+		uint8_t mangledKey[ZT_PEER_SECRET_KEY_LENGTH],macKey[ZT_POLY1305_KEY_LEN];
+		uint64_t mac[2];
+
+		_salsa20MangleKey(key,mangledKey,packet,packetSize);
+		Salsa20 s20(mangledKey,&(packet.data.fields.packetId));
+		s20.crypt12(ZEROES32,macKey,sizeof(macKey));
+
+		uint8_t *payload = packet.data.bytes + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
+		const unsigned int payloadLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
+
+		if (cipherSuite == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)
+			s20.crypt12(payload,payload,payloadLen);
+
+		poly1305(mac,payload,payloadLen,macKey);
+		packet.data.fields.mac = mac[0];
+	}
+}
+
+int dearmor(Buf< Header<> > &packet,const unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH])
+{
+	const int cipherSuite = (int)(packet.data.fields.flags & 0x38U);
+	if (cipherSuite == ZT_PROTO_CIPHER_SUITE__AES_GCM) {
+		// TODO
+	} else if (cipherSuite != ZT_PROTO_CIPHER_SUITE__NONE) {
+		uint8_t mangledKey[ZT_PEER_SECRET_KEY_LENGTH],macKey[ZT_POLY1305_KEY_LEN];
+		uint64_t mac[2];
+
+		_salsa20MangleKey(key,mangledKey,packet,packetSize);
+		Salsa20 s20(mangledKey,&(packet.data.fields.packetId));
+		s20.crypt12(ZEROES32,macKey,sizeof(macKey));
+
+		uint8_t *payload = packet.data.bytes + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
+		const unsigned int payloadLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
+
+		if (cipherSuite == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)
+			s20.crypt12(payload,payload,payloadLen);
+
+		poly1305(mac,payload,payloadLen,macKey);
+		if (packet.data.fields.mac != mac[0])
+			return -1;
+	}
+	return cipherSuite;
+}
+
+unsigned int compress(Buf< Header<> > &packet,const unsigned int packetSize)
+{
+	uint8_t tmp[ZT_BUF_MEM_SIZE + 32];
+
+	if ((packet.data.fields.verb & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0) // sanity check for multiple calls to compress()
+		return packetSize;
+
+	const unsigned int uncompressedLen = packetSize - ZT_PROTO_PACKET_PAYLOAD_START;
+	const int compressedLen = LZ4_compress_fast(
+		reinterpret_cast<const char *>(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START),
+	  reinterpret_cast<char *>(tmp),
+		(int)uncompressedLen,
+		sizeof(tmp) - ZT_PROTO_PACKET_PAYLOAD_START,
+		2);
+	if ((compressedLen > 0)&&(compressedLen < uncompressedLen)) {
+		packet.data.fields.verb |= ZT_PROTO_VERB_FLAG_COMPRESSED;
+		memcpy(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START,tmp,compressedLen);
+		return (unsigned int)compressedLen + ZT_PROTO_PACKET_PAYLOAD_START;
+	}
+
+	return packetSize;
+}
+
+int uncompress(Buf< Header<> > &packet,const unsigned int packetSize)
+{
+	uint8_t tmp[ZT_BUF_MEM_SIZE];
+
+	if ((packet.data.fields.verb & ZT_PROTO_VERB_FLAG_COMPRESSED) == 0)
+		return (int)packetSize;
+
+	const int uncompressedLen = LZ4_decompress_safe(
+		reinterpret_cast<const char *>(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START),
+		reinterpret_cast<char *>(tmp),
+		(int)(packetSize - ZT_PROTO_PACKET_PAYLOAD_START),
+		sizeof(tmp) - ZT_PROTO_PACKET_PAYLOAD_START);
+
+	if ((uncompressedLen > 0)&&(uncompressedLen <= (sizeof(tmp) - ZT_PROTO_PACKET_PAYLOAD_START))) {
+		packet.data.fields.verb &= (uint8_t)(~((uint8_t)ZT_PROTO_VERB_FLAG_COMPRESSED));
+		memcpy(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START,tmp,uncompressedLen);
+		return uncompressedLen + ZT_PROTO_PACKET_PAYLOAD_START;
+	}
+	return -1;
+}
+
+uint64_t getPacketId()
+{
+#ifdef ZT_PACKET_USE_ATOMIC_INTRINSICS
+	return __sync_add_and_fetch(&_packetIdCtr,1ULL);
+#else
+	return ++_packetIdCtr;
+#endif
+}
+
+} // namespace Protocol
+} // namespace ZeroTier

+ 928 - 0
node/Protocol.hpp

@@ -0,0 +1,928 @@
+/*
+ * Copyright (c)2013-2020 ZeroTier, Inc.
+ *
+ * Use of this software is governed by the Business Source License included
+ * in the LICENSE.TXT file in the project's root directory.
+ *
+ * Change Date: 2024-01-01
+ *
+ * On the date above, in accordance with the Business Source License, use
+ * of this software will be governed by version 2.0 of the Apache License.
+ */
+/****/
+
+#ifndef ZT_PROTOCOL_HPP
+#define ZT_PROTOCOL_HPP
+
+#include "Constants.hpp"
+#include "AES.hpp"
+#include "Salsa20.hpp"
+#include "Poly1305.hpp"
+#include "LZ4.hpp"
+#include "Buf.hpp"
+
+/**
+ * Protocol version -- incremented only for major changes
+ *
+ * 1  - 0.2.0 ... 0.2.5
+ * 2  - 0.3.0 ... 0.4.5
+ *    + Added signature and originating peer to multicast frame
+ *    + Double size of multicast frame bloom filter
+ * 3  - 0.5.0 ... 0.6.0
+ *    + Yet another multicast redesign
+ *    + New crypto completely changes key agreement cipher
+ * 4  - 0.6.0 ... 1.0.6
+ *    + BREAKING CHANGE: New identity format based on hashcash design
+ * 5  - 1.1.0 ... 1.1.5
+ *    + Supports echo
+ *    + Supports in-band world (root server definition) updates
+ *    + Clustering! (Though this will work with protocol v4 clients.)
+ *    + Otherwise backward compatible with protocol v4
+ * 6  - 1.1.5 ... 1.1.10
+ *    + Network configuration format revisions including binary values
+ * 7  - 1.1.10 ... 1.1.17
+ *    + Introduce trusted paths for local SDN use
+ * 8  - 1.1.17 ... 1.2.0
+ *    + Multipart network configurations for large network configs
+ *    + Tags and Capabilities
+ *    + inline push of CertificateOfMembership deprecated
+ * 9  - 1.2.0 ... 1.2.14
+ * 10 - 1.4.0 ... 1.6.0
+ *    + Multipath capability and load balancing
+ * 11 - 2.0.0 ... CURRENT
+ *    + Peer-to-peer multicast replication
+ *    + Old planet/moon stuff is DEAD!
+ *    + AES encryption support
+ *    + NIST P-384 (type 1) identities
+ *    + Ephemeral keys
+ */
+#define ZT_PROTO_VERSION 11
+
+/**
+ * Packet buffer size (can be changed)
+ */
+#define ZT_PROTO_MAX_PACKET_LENGTH (ZT_MAX_PACKET_FRAGMENTS * ZT_DEFAULT_PHYSMTU)
+
+/**
+ * Minimum viable packet length (a.k.a. header length)
+ */
+#define ZT_PROTO_MIN_PACKET_LENGTH 28
+
+/**
+ * Index at which the encrypted section of a packet begins
+ */
+#define ZT_PROTO_PACKET_ENCRYPTED_SECTION_START 27
+
+
+/**
+ * Index at which packet payload begins (after verb)
+ */
+#define ZT_PROTO_PACKET_PAYLOAD_START 28
+
+/**
+ * Maximum hop count allowed by packet structure (3 bits, 0-7)
+ *
+ * This is a protocol constant. It's the maximum allowed by the length
+ * of the hop counter -- three bits. See node/Constants.hpp for the
+ * pragmatic forwarding limit, which is typically lower.
+ */
+#define ZT_PROTO_MAX_HOPS 7
+
+/**
+ * NONE/Poly1305 (using Salsa20/12 to generate poly1305 key)
+ */
+#define ZT_PROTO_CIPHER_SUITE__POLY1305_NONE 0
+
+/**
+ * Salsa2012/Poly1305
+ */
+#define ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012 1
+
+/**
+ * No encryption or authentication at all
+ *
+ * For trusted paths the MAC field is the trusted path ID.
+ */
+#define ZT_PROTO_CIPHER_SUITE__NONE 2
+
+/**
+ * AES-GCM with AES-256
+ */
+#define ZT_PROTO_CIPHER_SUITE__AES_GCM 3
+
+/**
+ * Magic number indicating a fragment
+ */
+#define ZT_PACKET_FRAGMENT_INDICATOR 0xff
+
+/**
+ * Minimum viable fragment length
+ */
+#define ZT_PROTO_MIN_FRAGMENT_LENGTH 16
+
+/**
+ * Index at which packet fragment payload starts
+ */
+#define ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT 16
+
+/**
+ * Header flag indicating that a packet is fragmented and more fragments should be expected
+ */
+#define ZT_PROTO_FLAG_FRAGMENTED 0x40
+
+/**
+ * Verb flag indicating payload is compressed with LZ4
+ */
+#define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80
+
+/**
+ * Signed locator for this node
+ */
+#define ZT_PROTO_HELLO_NODE_META_LOCATOR "l"
+
+/**
+ * Ephemeral C25519 public key
+ */
+#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_KEY_C25519 "e0"
+
+/**
+ * Ephemeral NIST P-384 public key
+ */
+#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_KEY_P384 "e1"
+
+/**
+ * Addresses of ZeroTier nodes to whom this node will relay or one entry for 0000000000 if promiscuous.
+ */
+#define ZT_PROTO_HELLO_NODE_META_WILL_RELAY_TO "r"
+
+/**
+ * X coordinate of your node (sent in OK(HELLO))
+ */
+#define ZT_PROTO_HELLO_NODE_META_LOCATION_X "gX"
+
+/**
+ * Y coordinate of your node (sent in OK(HELLO))
+ */
+#define ZT_PROTO_HELLO_NODE_META_LOCATION_Y "gY"
+
+/**
+ * Z coordinate of your node (sent in OK(HELLO))
+ */
+#define ZT_PROTO_HELLO_NODE_META_LOCATION_Z "gZ"
+
+/****************************************************************************/
+
+/*
+ * Packet format:
+ *   <[8] 64-bit packet ID / crypto IV>
+ *   <[5] destination ZT address>
+ *   <[5] source ZT address>
+ *   <[1] flags/cipher/hops>
+ *   <[8] 64-bit MAC (or trusted path ID in trusted path mode)>
+ *   [... -- begin encryption envelope -- ...]
+ *   <[1] encrypted flags (MS 3 bits) and verb (LS 5 bits)>
+ *   [... verb-specific payload ...]
+ *
+ * Packets smaller than 28 bytes are invalid and silently discarded.
+ *
+ * The flags/cipher/hops bit field is: FFCCCHHH where C is a 3-bit cipher
+ * selection allowing up to 7 cipher suites, F is outside-envelope flags,
+ * and H is hop count.
+ *
+ * The three-bit hop count is the only part of a packet that is mutable in
+ * transit without invalidating the MAC. All other bits in the packet are
+ * immutable. This is because intermediate nodes can increment the hop
+ * count up to 7 (protocol max).
+ *
+ * For unencrypted packets, MAC is computed on plaintext. Only HELLO is ever
+ * sent in the clear, as it's the "here is my public key" message.
+ *
+ * Fragments are sent if a packet is larger than UDP MTU. The first fragment
+ * is sent with its normal header with the fragmented flag set. Remaining
+ * fragments are sent this way.
+ *
+ * The fragmented bit indicates that there is at least one fragment. Fragments
+ * themselves contain the total, so the receiver must "learn" this from the
+ * first fragment it receives.
+ *
+ * Fragments are sent with the following format:
+ *   <[8] packet ID of packet whose fragment this belongs to>
+ *   <[5] destination ZT address>
+ *   <[1] 0xff, a reserved address, signals that this isn't a normal packet>
+ *   <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
+ *   <[1] ZT hop count (top 5 bits unused and must be zero)>
+ *   <[...] fragment data>
+ *
+ * The protocol supports a maximum of 16 fragments. If a fragment is received
+ * before its main packet header, it should be cached for a brief period of
+ * time to see if its parent arrives. Loss of any fragment constitutes packet
+ * loss; there is no retransmission mechanism. The receiver must wait for full
+ * receipt to authenticate and decrypt; there is no per-fragment MAC. (But if
+ * fragments are corrupt, the MAC will fail for the whole assembled packet.)
+ */
+
+namespace ZeroTier {
+namespace Protocol {
+
+/**
+ * Packet verb (message type)
+ */
+enum Verb
+{
+	VERB_NOP = 0x00,
+
+	/**
+	 * Announcement of a node's existence and vitals:
+	 *   <[1] protocol version>
+	 *   <[1] software major version>
+	 *   <[1] software minor version>
+	 *   <[2] software revision>
+	 *   <[8] timestamp for determining latency>
+	 *   <[...] binary serialized identity>
+	 *   <[...] physical destination address of packet>
+	 *   [... begin encrypted region ...]
+	 *   <[2] 16-bit reserved (legacy) field, always 0>
+	 *   <[2] 16-bit length of meta-data dictionary>
+	 *   <[...] meta-data dictionary>
+	 *   [... end encrypted region ...]
+	 *   <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
+	 *
+	 * HELLO is sent with authentication but without the usual encryption so
+	 * that peers can exchange identities.
+	 *
+	 * Destination address is the actual wire address to which the packet
+	 * was sent. See InetAddress::serialize() for format.
+	 *
+	 * Starting at "begin encrypted section" the reset of the packet is
+	 * encrypted with Salsa20/12. This is not the normal packet encryption
+	 * and is technically not necessary as nothing in HELLO is secret. It
+	 * exists merely to shield meta-data info from passive listeners to
+	 * slightly improve privacy, and for backward compatibility with older
+	 * nodes that required it.
+	 *
+	 * HELLO (and its OK response) ends with a large 384-bit HMAC to allow
+	 * identity exchanges to be authenticated with additional strength beyond
+	 * ordinary packet authentication.
+	 *
+	 * OK payload:
+	 *   <[8] HELLO timestamp field echo>
+	 *   <[1] protocol version>
+	 *   <[1] software major version>
+	 *   <[1] software minor version>
+	 *   <[2] software revision>
+	 *   <[...] physical destination address of packet>
+	 *   <[2] 16-bit reserved (legacy) field, always 0>
+	 *   <[2] 16-bit length of meta-data dictionary>
+	 *   <[...] meta-data dictionary>
+	 *   <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
+	 *
+	 * With the exception of the timestamp, the other fields pertain to the
+	 * respondent who is sending OK and are not echoes.
+	 *
+	 * ERROR has no payload.
+	 */
+	VERB_HELLO = 0x01,
+
+	/**
+	 * Error response:
+	 *   <[1] in-re verb>
+	 *   <[8] in-re packet ID>
+	 *   <[1] error code>
+	 *   <[...] error-dependent payload>
+	 *
+	 * If this is not in response to a single packet then verb can be
+	 * NOP and packet ID can be zero.
+	 */
+	VERB_ERROR = 0x02,
+
+	/**
+	 * Success response:
+	 *   <[1] in-re verb>
+	 *   <[8] in-re packet ID>
+	 *   <[...] request-specific payload>
+	 */
+	VERB_OK = 0x03,
+
+	/**
+	 * Query an identity by address:
+	 *   <[5] address to look up>
+	 *   [<[...] additional addresses to look up>
+	 *
+	 * OK response payload:
+	 *   <[...] identity>
+	 *   <[...] locator>
+	 *   [... additional identity/locator pairs]
+	 *
+	 * If the address is not found, no response is generated. The semantics
+	 * of WHOIS is similar to ARP and NDP in that persistent retrying can
+	 * be performed.
+	 *
+	 * It is possible for an identity but a null/empty locator to be returned
+	 * if no locator is known for a node. Older versions will also send no
+	 * locator field at all.
+	 */
+	VERB_WHOIS = 0x04,
+
+	/**
+	 * Relay-mediated NAT traversal or firewall punching initiation:
+	 *   <[1] flags (unused, currently 0)>
+	 *   <[5] ZeroTier address of peer that might be found at this address>
+	 *   <[2] 16-bit protocol address port>
+	 *   <[1] protocol address length (4 for IPv4, 16 for IPv6)>
+	 *   <[...] protocol address (network byte order)>
+	 *
+	 * An upstream node can send this to inform both sides of a relay of
+	 * information they might use to establish a direct connection.
+	 *
+	 * Upon receipt a peer sends HELLO to establish a direct link.
+	 *
+	 * No OK or ERROR is generated.
+	 */
+	VERB_RENDEZVOUS = 0x05,
+
+	/**
+	 * ZT-to-ZT unicast ethernet frame (shortened EXT_FRAME):
+	 *   <[8] 64-bit network ID>
+	 *   <[2] 16-bit ethertype>
+	 *   <[...] ethernet payload>
+	 *
+	 * MAC addresses are derived from the packet's source and destination
+	 * ZeroTier addresses. This is a shortened EXT_FRAME that elides full
+	 * Ethernet framing and other optional flags and features when they
+	 * are not necessary.
+	 *
+	 * ERROR may be generated if a membership certificate is needed for a
+	 * closed network. Payload will be network ID.
+	 */
+	VERB_FRAME = 0x06,
+
+	/**
+	 * Full Ethernet frame with MAC addressing and optional fields:
+	 *   <[8] 64-bit network ID>
+	 *   <[1] flags>
+	 *   <[6] destination MAC or all zero for destination node>
+	 *   <[6] source MAC or all zero for node of origin>
+	 *   <[2] 16-bit ethertype>
+	 *   <[...] ethernet payload>
+	 *
+	 * Flags:
+	 *   0x01 - Certificate of network membership attached (DEPRECATED)
+	 *   0x02 - Most significant bit of subtype (see below)
+	 *   0x04 - Middle bit of subtype (see below)
+	 *   0x08 - Least significant bit of subtype (see below)
+	 *   0x10 - ACK requested in the form of OK(EXT_FRAME)
+	 *
+	 * Subtypes (0..7):
+	 *   0x0 - Normal frame (bridging can be determined by checking MAC)
+	 *   0x1 - TEEd outbound frame
+	 *   0x2 - REDIRECTed outbound frame
+	 *   0x3 - WATCHed outbound frame (TEE with ACK, ACK bit also set)
+	 *   0x4 - TEEd inbound frame
+	 *   0x5 - REDIRECTed inbound frame
+	 *   0x6 - WATCHed inbound frame
+	 *   0x7 - (reserved for future use)
+	 *
+	 * An extended frame carries full MAC addressing, making it a
+	 * superset of VERB_FRAME. If 0x20 is set then p2p or hub and
+	 * spoke multicast propagation is requested.
+	 *
+	 * OK payload (if ACK flag is set):
+	 *   <[8] 64-bit network ID>
+	 *   <[1] flags>
+	 *   <[6] destination MAC or all zero for destination node>
+	 *   <[6] source MAC or all zero for node of origin>
+	 *   <[2] 16-bit ethertype>
+	 */
+	VERB_EXT_FRAME = 0x07,
+
+	/**
+	 * ECHO request (a.k.a. ping):
+	 *   <[...] arbitrary payload>
+	 *
+	 * This generates OK with a copy of the transmitted payload. No ERROR
+	 * is generated. Response to ECHO requests is optional and ECHO may be
+	 * ignored if a node detects a possible flood.
+	 */
+	VERB_ECHO = 0x08,
+
+	/**
+	 * Announce interest in multicast group(s):
+	 *   <[8] 64-bit network ID>
+	 *   <[6] multicast Ethernet address>
+	 *   <[4] multicast additional distinguishing information (ADI)>
+	 *   [... additional tuples of network/address/adi ...]
+	 *
+	 * LIKEs may be sent to any peer, though a good implementation should
+	 * restrict them to peers on the same network they're for and to network
+	 * controllers and root servers. In the current network, root servers
+	 * will provide the service of final multicast cache.
+	 */
+	VERB_MULTICAST_LIKE = 0x09,
+
+	/**
+	 * Network credentials push:
+	 *   [<[...] one or more certificates of membership>]
+	 *   <[1] 0x00, null byte marking end of COM array>
+	 *   <[2] 16-bit number of capabilities>
+	 *   <[...] one or more serialized Capability>
+	 *   <[2] 16-bit number of tags>
+	 *   <[...] one or more serialized Tags>
+	 *   <[2] 16-bit number of revocations>
+	 *   <[...] one or more serialized Revocations>
+	 *   <[2] 16-bit number of certificates of ownership>
+	 *   <[...] one or more serialized CertificateOfOwnership>
+	 *
+	 * This can be sent by anyone at any time to push network credentials.
+	 * These will of course only be accepted if they are properly signed.
+	 * Credentials can be for any number of networks.
+	 *
+	 * The use of a zero byte to terminate the COM section is for legacy
+	 * backward compatibility. Newer fields are prefixed with a length.
+	 *
+	 * OK/ERROR are not generated.
+	 */
+	VERB_NETWORK_CREDENTIALS = 0x0a,
+
+	/**
+	 * Network configuration request:
+	 *   <[8] 64-bit network ID>
+	 *   <[2] 16-bit length of request meta-data dictionary>
+	 *   <[...] string-serialized request meta-data>
+	 *   <[8] 64-bit revision of netconf we currently have>
+	 *   <[8] 64-bit timestamp of netconf we currently have>
+	 *
+	 * This message requests network configuration from a node capable of
+	 * providing it.
+	 *
+	 * Responses to this are always whole configs intended for the recipient.
+	 * For patches and other updates a NETWORK_CONFIG is sent instead.
+	 *
+	 * It would be valid and correct as of 1.2.0 to use NETWORK_CONFIG always,
+	 * but OK(NETWORK_CONFIG_REQUEST) should be sent for compatibility.
+	 *
+	 * OK response payload:
+	 *   <[8] 64-bit network ID>
+	 *   <[2] 16-bit length of network configuration dictionary chunk>
+	 *   <[...] network configuration dictionary (may be incomplete)>
+	 *   [ ... end of legacy single chunk response ... ]
+	 *   <[1] 8-bit flags>
+	 *   <[8] 64-bit config update ID (should never be 0)>
+	 *   <[4] 32-bit total length of assembled dictionary>
+	 *   <[4] 32-bit index of chunk>
+	 *   [ ... end signed portion ... ]
+	 *   <[1] 8-bit chunk signature type>
+	 *   <[2] 16-bit length of chunk signature>
+	 *   <[...] chunk signature>
+	 *
+	 * The chunk signature signs the entire payload of the OK response.
+	 * Currently only one signature type is supported: ed25519 (1).
+	 *
+	 * Each config chunk is signed to prevent memory exhaustion or
+	 * traffic crowding DOS attacks against config fragment assembly.
+	 *
+	 * If the packet is from the network controller it is permitted to end
+	 * before the config update ID or other chunking related or signature
+	 * fields. This is to support older controllers that don't include
+	 * these fields and may be removed in the future.
+	 *
+	 * ERROR response payload:
+	 *   <[8] 64-bit network ID>
+	 */
+	VERB_NETWORK_CONFIG_REQUEST = 0x0b,
+
+	/**
+	 * Network configuration data push:
+	 *   <[8] 64-bit network ID>
+	 *   <[2] 16-bit length of network configuration dictionary chunk>
+	 *   <[...] network configuration dictionary (may be incomplete)>
+	 *   <[1] 8-bit flags>
+	 *   <[8] 64-bit config update ID (should never be 0)>
+	 *   <[4] 32-bit total length of assembled dictionary>
+	 *   <[4] 32-bit index of chunk>
+	 *   [ ... end signed portion ... ]
+	 *   <[1] 8-bit chunk signature type>
+	 *   <[2] 16-bit length of chunk signature>
+	 *   <[...] chunk signature>
+	 *
+	 * This is a direct push variant for network config updates. It otherwise
+	 * carries the same payload as OK(NETWORK_CONFIG_REQUEST) and has the same
+	 * semantics.
+	 *
+	 * The legacy mode missing the additional chunking fields is not supported
+	 * here.
+	 *
+	 * Flags:
+	 *   0x01 - Use fast propagation
+	 *
+	 * An OK should be sent if the config is successfully received and
+	 * accepted.
+	 *
+	 * OK payload:
+	 *   <[8] 64-bit network ID>
+	 *   <[8] 64-bit config update ID>
+	 */
+	VERB_NETWORK_CONFIG = 0x0c,
+
+	/**
+	 * Request endpoints for multicast distribution:
+	 *   <[8] 64-bit network ID>
+	 *   <[1] flags>
+	 *   <[6] MAC address of multicast group being queried>
+	 *   <[4] 32-bit ADI for multicast group being queried>
+	 *   <[4] 32-bit requested max number of multicast peers>
+	 *
+	 * This message asks a peer for additional known endpoints that have
+	 * LIKEd a given multicast group. It's sent when the sender wishes
+	 * to send multicast but does not have the desired number of recipient
+	 * peers.
+	 *
+	 * OK response payload: (multiple OKs can be generated)
+	 *   <[8] 64-bit network ID>
+	 *   <[6] MAC address of multicast group being queried>
+	 *   <[4] 32-bit ADI for multicast group being queried>
+	 *   <[4] 32-bit total number of known members in this multicast group>
+	 *   <[2] 16-bit number of members enumerated in this packet>
+	 *   <[...] series of 5-byte ZeroTier addresses of enumerated members>
+	 *
+	 * ERROR is not generated; queries that return no response are dropped.
+	 */
+	VERB_MULTICAST_GATHER = 0x0d,
+
+	/** *** DEPRECATED ***
+	 * Multicast frame:
+	 *   <[8] 64-bit network ID>
+	 *   <[1] flags>
+	 *  [<[4] 32-bit implicit gather limit>]
+	 *  [<[6] source MAC>]
+	 *   <[6] destination MAC (multicast address)>
+	 *   <[4] 32-bit multicast ADI (multicast address extension)>
+	 *   <[2] 16-bit ethertype>
+	 *   <[...] ethernet payload>
+	 *
+	 * Flags:
+	 *   0x01 - Network certificate of membership attached (DEPRECATED)
+	 *   0x02 - Implicit gather limit field is present
+	 *   0x04 - Source MAC is specified -- otherwise it's computed from sender
+	 *   0x08 - Please replicate (sent to multicast replicators)
+	 *
+	 * OK and ERROR responses are optional. OK may be generated if there are
+	 * implicit gather results or if the recipient wants to send its own
+	 * updated certificate of network membership to the sender. ERROR may be
+	 * generated if a certificate is needed or if multicasts to this group
+	 * are no longer wanted (multicast unsubscribe).
+	 *
+	 * OK response payload:
+	 *   <[8] 64-bit network ID>
+	 *   <[6] MAC address of multicast group>
+	 *   <[4] 32-bit ADI for multicast group>
+	 *   <[1] flags>
+	 *  [<[...] network certificate of membership (DEPRECATED)>]
+	 *  [<[...] implicit gather results if flag 0x01 is set>]
+	 *
+	 * OK flags (same bits as request flags):
+	 *   0x01 - OK includes certificate of network membership (DEPRECATED)
+	 *   0x02 - OK includes implicit gather results
+	 *
+	 * ERROR response payload:
+	 *   <[8] 64-bit network ID>
+	 *   <[6] multicast group MAC>
+	 *   <[4] 32-bit multicast group ADI>
+	 */
+	VERB_MULTICAST_FRAME_deprecated = 0x0e,
+
+	/**
+	 * Push of potential endpoints for direct communication:
+	 *   <[2] 16-bit number of paths>
+	 *   <[...] paths>
+	 *
+	 * Path record format:
+	 *   <[1] 8-bit path flags (always 0, currently unused)>
+	 *   <[2] length of extended path characteristics or 0 for none>
+	 *   <[...] extended path characteristics>
+	 *   <[1] address type>
+	 *   <[1] address length in bytes>
+	 *   <[...] address>
+	 *
+	 * The receiver may, upon receiving a push, attempt to establish a
+	 * direct link to one or more of the indicated addresses. It is the
+	 * responsibility of the sender to limit which peers it pushes direct
+	 * paths to to those with whom it has a trust relationship. The receiver
+	 * must obey any restrictions provided such as exclusivity or blacklists.
+	 * OK responses to this message are optional.
+	 *
+	 * Note that a direct path push does not imply that learned paths can't
+	 * be used unless they are blacklisted explicitly or unless flag 0x01
+	 * is set.
+	 *
+	 * OK and ERROR are not generated.
+	 */
+	VERB_PUSH_DIRECT_PATHS = 0x10,
+
+	/**
+	 * A message with arbitrary user-definable content:
+	 *   <[8] 64-bit arbitrary message type ID>
+	 *  [<[...] message payload>]
+	 *
+	 * This can be used to send arbitrary messages over VL1. It generates no
+	 * OK or ERROR and has no special semantics outside of whatever the user
+	 * (via the ZeroTier core API) chooses to give it.
+	 *
+	 * Message type IDs less than or equal to 65535 are reserved for use by
+	 * ZeroTier, Inc. itself. We recommend making up random ones for your own
+	 * implementations.
+	 */
+	VERB_USER_MESSAGE = 0x14,
+
+	/**
+	 * Encapsulate a ZeroTier packet for multicast distribution:
+	 *   [... begin signed portion ...]
+	 *   <[1] 8-bit flags>
+	 *   <[5] 40-bit ZeroTier address of sender>
+	 *   <[2] 16-bit length of inner payload>
+	 *   <[1] inner payload verb>
+	 *   <[...] inner payload data>
+	 *   [... end signed portion ...]
+	 *   <[2] 16-bit length of signature or 0 if un-signed>
+	 *  [<[...] optional signature of multicast>]
+	 *   <[...] address (min prefix) list>
+	 */
+	VERB_MULTICAST = 0x16,
+
+	/**
+	 * Encapsulate a full ZeroTier packet in another:
+	 *   <[...] raw encapsulated packet>
+	 *
+	 * Encapsulation exists to enable secure relaying as opposed to the usual
+	 * "dumb" relaying. The latter is faster but secure relaying has roles
+	 * where endpoint privacy is desired. Multiply nested ENCAP packets
+	 * could allow ZeroTier to act as an onion router.
+	 *
+	 * When encapsulated packets are forwarded they do have their hop count
+	 * field incremented.
+	 */
+	VERB_ENCAP = 0x17
+
+	// protocol max: 0x1f
+};
+
+/**
+ * Error codes used in ERROR packets.
+ */
+enum ErrorCode
+{
+	/* Invalid request */
+	ERROR_INVALID_REQUEST = 0x01,
+
+	/* Bad/unsupported protocol version */
+	ERROR_BAD_PROTOCOL_VERSION = 0x02,
+
+	/* Unknown object queried */
+	ERROR_OBJ_NOT_FOUND = 0x03,
+
+	/* Verb or use case not supported/enabled by this node */
+	ERROR_UNSUPPORTED_OPERATION = 0x05,
+
+	/* Network access denied; updated credentials needed */
+	ERROR_NEED_MEMBERSHIP_CERTIFICATE = 0x06,
+
+	/* Tried to join network, but you're not a member */
+	ERROR_NETWORK_ACCESS_DENIED_ = 0x07, /* extra _ at end to avoid Windows name conflict */
+
+	/* Cannot deliver a forwarded ZeroTier packet (e.g. hops exceeded, no routes) */
+	ERROR_CANNOT_DELIVER = 0x09
+};
+
+/**
+ * EXT_FRAME subtypes, which are packed into three bits in the flags field.
+ */
+enum ExtFrameSubtype
+{
+	EXT_FRAME_SUBTYPE_NORMAL = 0x0,
+	EXT_FRAME_SUBTYPE_TEE_OUTBOUND = 0x1,
+	EXT_FRAME_SUBTYPE_REDIRECT_OUTBOUND = 0x2,
+	EXT_FRAME_SUBTYPE_WATCH_OUTBOUND = 0x3,
+	EXT_FRAME_SUBTYPE_TEE_INBOUND = 0x4,
+	EXT_FRAME_SUBTYPE_REDIRECT_INBOUND = 0x5,
+	EXT_FRAME_SUBTYPE_WATCH_INBOUND = 0x6
+};
+
+/**
+ * EXT_FRAME flags
+ */
+enum ExtFrameFlag
+{
+	EXT_FRAME_FLAG_COM_ATTACHED_deprecated = 0x01,
+	// bits 0x02, 0x04, and 0x08 are occupied by the ExtFrameSubtype
+	EXT_FRAME_FLAG_ACK_REQUESTED = 0x10
+};
+
+/****************************************************************************/
+
+/*
+ * These are bit-packed structures for rapid parsing of packets or at least
+ * the fixed size headers thereof. Not all packet types have these as some
+ * are full of variable length fields are are more easily parsed through
+ * incremental decoding.
+ *
+ * All fields larger than one byte are in big-endian byte order on the wire.
+ */
+
+ZT_PACKED_STRUCT(struct HELLO {
+	uint8_t versionProtocol;
+	uint8_t versionMajor;
+	uint8_t versionMinor;
+	uint16_t versionRev;
+	uint64_t timestamp;
+});
+
+ZT_PACKED_STRUCT(struct RENDEZVOUS {
+	uint8_t flags;
+	uint8_t peerAddress[5];
+	uint16_t port;
+	uint8_t addressLength;
+	uint8_t address[16];
+});
+
+ZT_PACKED_STRUCT(struct FRAME {
+	uint64_t networkId;
+	uint16_t etherType;
+	uint8_t data[];
+});
+
+ZT_PACKED_STRUCT(struct EXT_FRAME {
+	uint64_t networkId;
+	uint8_t flags;
+	uint8_t destMac[6];
+	uint8_t sourceMac[6];
+	uint16_t etherType;
+	uint8_t data[];
+});
+
+ZT_PACKED_STRUCT(struct MULTICAST_LIKE_Entry {
+	uint64_t networkId;
+	uint8_t mac[6];
+	uint32_t adi;
+});
+
+ZT_PACKED_STRUCT(struct MULTICAST_LIKE {
+	MULTICAST_LIKE_Entry groups[];
+});
+
+namespace OK {
+
+ZT_PACKED_STRUCT(struct HELLO {
+	uint64_t timestampEcho;
+	uint8_t versionProtocol;
+	uint8_t versionMajor;
+	uint8_t versionMinor;
+	uint16_t versionRev;
+});
+
+ZT_PACKED_STRUCT(struct EXT_FRAME {
+	uint64_t networkId;
+	uint8_t flags;
+	uint8_t destMac[6];
+	uint8_t sourceMac[6];
+	uint16_t etherType;
+});
+
+/**
+ * OK response header
+ *
+ * The OK header comes after the packet header but before type-specific payloads.
+ *
+ * @tparam PT OK payload type (default: uint8_t[])
+ */
+template<typename PT = uint8_t[]>
+ZT_PACKED_STRUCT(struct Header {
+	uint8_t inReVerb;
+	uint64_t inRePacketId;
+	PT p;
+});
+
+} // namespace OK
+
+namespace ERROR {
+
+/**
+ * Error header
+ *
+ * The error header comes after the packet header but before type-specific payloads.
+ *
+ * @tparam PT Error payload type (default: uint8_t[])
+ */
+template<typename PT = uint8_t[]>
+ZT_PACKED_STRUCT(struct Header {
+	uint8_t inReVerb;
+	uint64_t inRePacketId;
+	uint8_t error;
+	PT p;
+});
+
+} // namespace ERROR
+
+/**
+ * Normal packet header
+ *
+ * @tparam PT Packet payload type (default: uint8_t[])
+ */
+template<typename PT = uint8_t[]>
+ZT_PACKED_STRUCT(struct Header {
+	uint64_t packetId;
+	uint8_t destination[5];
+	uint8_t source[5];
+	uint8_t flags;
+	uint64_t mac;
+	// --- begin encrypted envelope ---
+	uint8_t verb;
+	PT p;
+});
+
+/**
+ * Packet fragment header
+ */
+ZT_PACKED_STRUCT(struct FragmentHeader {
+	uint64_t packetId;
+	uint8_t destination[5];
+	uint8_t fragmentIndicator; // always 0xff for fragments
+	uint8_t counts; // total: most significant four bits, number: least significant four bits
+	uint8_t hops; // top 5 bits unused and must be zero
+	uint8_t p[];
+});
+
+/****************************************************************************/
+
+/**
+ * Increment the 3-bit hops field embedded in the packet flags field
+ *
+ * @return New hop count (can be greater than allowed if there is an overflow)
+ */
+template<typename X>
+ZT_ALWAYS_INLINE unsigned int incrementPacketHops(Buf< Header<X> > &packet)
+{
+	uint8_t f = packet.data.fields.flags;
+	uint8_t h = f;
+	f &= 0xf8U;
+	++h;
+	packet.data.fields.flags = f | (h & 0x07U);
+	return h;
+}
+
+/**
+ * @return 3-bit hops field embedded in packet flags field
+ */
+template<typename X>
+ZT_ALWAYS_INLINE unsigned int packetHops(Buf< Header<X> > &packet) const { return (packet.data.fields.flags & 0x07U); }
+
+/**
+ * Armor a packet for transport
+ *
+ * @param packet Packet to armor
+ * @param packetSize Size of data in packet (must be at least the minimum packet size)
+ * @param key 256-bit symmetric key
+ * @param cipherSuite Cipher suite to apply
+ */
+void armor(Buf< Header<> > &packet,unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH],uint8_t cipherSuite);
+
+/**
+ * Dearmor a packet and check message authentication code
+ *
+ * If the packet is valid and MAC (if indicated) passes, the cipher suite
+ * is returned. Otherwise -1 is returned to indicate a MAC failure.
+ *
+ * @param packet Packet to dearmor
+ * @param packetSize Size of data in packet (must be at least the minimum packet size)
+ * @param key 256-bit symmetric key
+ * @return Cipher suite or -1 if MAC validation failed
+ */
+int dearmor(Buf< Header<> > &packet,unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]);
+
+/**
+ * Compress packet payload
+ *
+ * @param packet Packet to compress
+ * @param packetSize Original packet size
+ * @return New packet size (returns original size of compression didn't help, in which case packet is unmodified)
+ */
+unsigned int compress(Buf< Header<> > &packet,unsigned int packetSize);
+
+/**
+ * Uncompress packet payload (if compressed)
+ *
+ * @param packet Packet to uncompress
+ * @param packetSize Original packet size
+ * @return New packet size or -1 on decompression error (returns original packet size if packet wasn't compressed)
+ */
+int uncompress(Buf< Header<> > &packet,unsigned int packetSize);
+
+/**
+ * Get a sequential non-repeating packet ID for the next packet (thread-safe)
+ *
+ * @return Next packet ID / cryptographic nonce
+ */
+uint64_t getPacketId();
+
+} // namespace Protocol
+} // namespace ZeroTier
+
+#endif

+ 12 - 8
node/Utils.cpp

@@ -165,7 +165,7 @@ void getSecureRandom(void *buf,unsigned int bytes)
 {
 	static Mutex globalLock;
 	static bool initialized = false;
-	static uint64_t randomState[4];
+	static uint64_t randomState[8];
 	static uint8_t randomBuf[65536];
 	static unsigned long randomPtr = sizeof(randomBuf);
 
@@ -175,7 +175,7 @@ void getSecureRandom(void *buf,unsigned int bytes)
 		if (randomPtr >= sizeof(randomBuf)) {
 			randomPtr = 0;
 
-			if (unlikely(!initialized)) {
+			if (!initialized) {
 				initialized = true;
 #ifdef __WINDOWS__
 				HCRYPTPROV cryptProvider = NULL;
@@ -225,14 +225,18 @@ void getSecureRandom(void *buf,unsigned int bytes)
 #endif
 			}
 
-			for(int k=0;k<4;++k) { if (++randomState[k] != 0) break; }
-			uint8_t h[48];
-			HMACSHA384((const uint8_t *)randomState,randomBuf,sizeof(randomBuf),h); // compute HMAC on random buffer using state as secret key
-			AES c(h);
-			c.ctr(h + 32,randomBuf,sizeof(randomBuf),randomBuf); // encrypt random buffer with AES-CTR using HMAC result as key
+			SHA512(randomState,randomState,sizeof(randomState));
+			AES aes(reinterpret_cast<const uint8_t *>(randomState));
+			uint64_t ctr[2];
+			ctr[0] = randomState[6];
+			ctr[1] = randomState[7];
+			for(unsigned long i=0;i<sizeof(randomBuf);i+=16) {
+				++ctr[0];
+				aes.encrypt(reinterpret_cast<const uint8_t *>(ctr),randomBuf + i);
+			}
 		}
 
-		((uint8_t *)buf)[i] = randomBuf[randomPtr++];
+		reinterpret_cast<uint8_t *>(buf)[i] = randomBuf[randomPtr++];
 	}
 }