Przeglądaj źródła

Merge branch 'dev' of https://github.com/zerotier/ZeroTierOne into dev

Joseph Henry 4 lat temu
rodzic
commit
927bc2e33d

+ 4 - 1
java/jni/Android.mk

@@ -15,7 +15,7 @@ APP_UNIFIED_HEADERS := true
 
 LOCAL_CFLAGS := -DZT_USE_MINIUPNPC
 ifeq ($(TARGET_ARCH_ABI),x86_64)
-    LOCAL_CXXFLAGS := -maes -mpclmul -msse4.1
+    LOCAL_CXXFLAGS := -maes -mpclmul -msse3 -msse4.1
 endif
 ifeq ($(TARGET_ARCH_ABI),arm64-v8a)
     LOCAL_ARM_NEON := true
@@ -25,6 +25,8 @@ endif
 # ZeroTierOne SDK source files
 LOCAL_SRC_FILES := \
     $(ZT1)/node/AES.cpp \
+    $(ZT1)/node/AES_aesni.cpp \
+    $(ZT1)/node/AES_armcrypto.cpp \
     $(ZT1)/node/Bond.cpp \
     $(ZT1)/node/BondController.cpp \
     $(ZT1)/node/C25519.cpp \
@@ -58,6 +60,7 @@ LOCAL_SRC_FILES := \
 # JNI Files
 LOCAL_SRC_FILES += \
 	com_zerotierone_sdk_Node.cpp \
+	ZT_jniarray.cpp \
 	ZT_jniutils.cpp \
 	ZT_jnilookup.cpp
 

+ 111 - 0
java/jni/ZT_jniarray.cpp

@@ -0,0 +1,111 @@
+//
+// Created by Grant Limberg on 10/21/20.
+//
+
+#include "ZT_jniarray.h"
+#include <vector>
+#include <string>
+
+jclass java_util_ArrayList;
+jmethodID java_util_ArrayList_;
+jmethodID java_util_ArrayList_size;
+jmethodID java_util_ArrayList_get;
+jmethodID java_util_ArrayList_add;
+
+void InitListJNI(JNIEnv* env) {
+    java_util_ArrayList      = static_cast<jclass>(env->NewGlobalRef(env->FindClass("java/util/ArrayList")));
+    java_util_ArrayList_     = env->GetMethodID(java_util_ArrayList, "<init>", "(I)V");
+    java_util_ArrayList_size = env->GetMethodID (java_util_ArrayList, "size", "()I");
+    java_util_ArrayList_get  = env->GetMethodID(java_util_ArrayList, "get", "(I)Ljava/lang/Object;");
+    java_util_ArrayList_add  = env->GetMethodID(java_util_ArrayList, "add", "(Ljava/lang/Object;)Z");
+}
+
+jclass ListJNI::getListClass(JNIEnv* env) {
+    jclass jclazz = env->FindClass("java/util/List");
+    assert(jclazz != nullptr);
+    return jclazz;
+}
+
+jclass ListJNI::getArrayListClass(JNIEnv* env) {
+    jclass jclazz = env->FindClass("java/util/ArrayList");
+    assert(jclazz != nullptr);
+    return jclazz;
+}
+
+jclass ListJNI::getIteratorClass(JNIEnv* env) {
+    jclass jclazz = env->FindClass("java/util/Iterator");
+    assert(jclazz != nullptr);
+    return jclazz;
+}
+
+jmethodID ListJNI::getIteratorMethod(JNIEnv* env) {
+    static jmethodID mid = env->GetMethodID(
+            getListClass(env), "iterator", "()Ljava/util/Iterator;");
+    assert(mid != nullptr);
+    return mid;
+}
+
+jmethodID ListJNI::getHasNextMethod(JNIEnv* env) {
+    static jmethodID mid = env->GetMethodID(
+            getIteratorClass(env), "hasNext", "()Z");
+    assert(mid != nullptr);
+    return mid;
+}
+
+jmethodID ListJNI::getNextMethod(JNIEnv* env) {
+    static jmethodID mid = env->GetMethodID(
+            getIteratorClass(env), "next", "()Ljava/lang/Object;");
+    assert(mid != nullptr);
+    return mid;
+}
+
+jmethodID ListJNI::getArrayListConstructorMethodId(JNIEnv* env, jclass jclazz) {
+    static jmethodID mid = env->GetMethodID(
+            jclazz, "<init>", "(I)V");
+    assert(mid != nullptr);
+    return mid;
+}
+
+jmethodID ListJNI::getListAddMethodId(JNIEnv* env) {
+    static jmethodID mid = env->GetMethodID(
+            getListClass(env), "add", "(Ljava/lang/Object;)Z");
+    assert(mid != nullptr);
+    return mid;
+}
+
+jclass ByteJNI::getByteClass(JNIEnv* env) {
+    jclass jclazz = env->FindClass("java/lang/Byte");
+    assert(jclazz != nullptr);
+    return jclazz;
+}
+
+jmethodID ByteJNI::getByteValueMethod(JNIEnv* env) {
+    static jmethodID mid = env->GetMethodID(
+            getByteClass(env), "byteValue", "()B");
+    assert(mid != nullptr);
+    return mid;
+}
+
+jobject cppToJava(JNIEnv* env, std::vector<std::string> vector) {
+    jobject result = env->NewObject(java_util_ArrayList, java_util_ArrayList_, vector.size());
+    for (std::string s: vector) {
+        jstring element = env->NewStringUTF(s.c_str());
+        env->CallBooleanMethod(result, java_util_ArrayList_add, element);
+        env->DeleteLocalRef(element);
+    }
+    return result;
+}
+
+std::vector<std::string> javaToCpp(JNIEnv* env, jobject arrayList) {
+    jint len = env->CallIntMethod(arrayList, java_util_ArrayList_size);
+    std::vector<std::string> result;
+    result.reserve(len);
+    for (jint i=0; i<len; i++) {
+        jstring element = static_cast<jstring>(env->CallObjectMethod(arrayList, java_util_ArrayList_get, i));
+        const char* pchars = env->GetStringUTFChars(element, nullptr);
+        result.emplace_back(pchars);
+        env->ReleaseStringUTFChars(element, pchars);
+        env->DeleteLocalRef(element);
+    }
+    return result;
+}

+ 60 - 0
java/jni/ZT_jniarray.h

@@ -0,0 +1,60 @@
+//
+// Created by Grant Limberg on 10/21/20.
+//
+
+#ifndef ZEROTIERANDROID_ZT_JNIARRAY_H
+#define ZEROTIERANDROID_ZT_JNIARRAY_H
+
+#include <jni.h>
+#include <vector>
+#include <string>
+
+extern jclass java_util_ArrayList;
+extern jmethodID java_util_ArrayList_;
+extern jmethodID java_util_ArrayList_size;
+extern jmethodID java_util_ArrayList_get;
+extern jmethodID java_util_ArrayList_add;
+
+void InitListJNI(JNIEnv* env);
+
+class ListJNI {
+public:
+    // Get the java class id of java.util.List.
+    static jclass getListClass(JNIEnv* env);
+
+    // Get the java class id of java.util.ArrayList.
+    static jclass getArrayListClass(JNIEnv* env);
+
+    // Get the java class id of java.util.Iterator.
+    static jclass getIteratorClass(JNIEnv* env);
+
+    // Get the java method id of java.util.List.iterator().
+    static jmethodID getIteratorMethod(JNIEnv* env);
+
+    // Get the java method id of java.util.Iterator.hasNext().
+    static jmethodID getHasNextMethod(JNIEnv* env);
+
+    // Get the java method id of java.util.Iterator.next().
+    static jmethodID getNextMethod(JNIEnv* env);
+
+    // Get the java method id of arrayList constructor.
+    static jmethodID getArrayListConstructorMethodId(JNIEnv* env, jclass jclazz);
+
+    // Get the java method id of java.util.List.add().
+    static jmethodID getListAddMethodId(JNIEnv* env);
+};
+
+class ByteJNI {
+public:
+    // Get the java class id of java.lang.Byte.
+    static jclass getByteClass(JNIEnv* env);
+
+    // Get the java method id of java.lang.Byte.byteValue.
+    static jmethodID getByteValueMethod(JNIEnv* env);
+};
+
+jobject cppToJava(JNIEnv* env, std::vector<std::string> vector);
+
+std::vector<std::string> javaToCpp(JNIEnv* env, jobject arrayList);
+
+#endif //ZEROTIERANDROID_ZT_JNIARRAY_H

+ 2 - 2
java/jni/ZT_jnilookup.cpp

@@ -65,8 +65,8 @@ jclass JniLookup::findClass(const std::string &name)
         LOGE("Error retreiving JNI Environment");
         return NULL;
     }
-
-    jclass cls = env->FindClass(name.c_str());
+    const char *c = name.c_str();
+    jclass cls = env->FindClass(c);
     if(env->ExceptionCheck())
     {
         LOGE("Error finding class: %s", name.c_str());

+ 79 - 0
java/jni/ZT_jniutils.cpp

@@ -18,9 +18,16 @@
 
 #include "ZT_jniutils.h"
 #include "ZT_jnilookup.h"
+#include "ZT_jniarray.h"
+
 #include <string>
 #include <assert.h>
 
+#include <arpa/inet.h>
+#include <netinet/in.h>
+#include <sys/types.h>
+#include <sys/socket.h>
+
 extern JniLookup lookup;
 
 #ifdef __cplusplus
@@ -623,6 +630,7 @@ jobject newNetworkConfig(JNIEnv *env, const ZT_VirtualNetworkConfig &vnetConfig)
     jfieldID netconfRevisionField = NULL;
     jfieldID assignedAddressesField = NULL;
     jfieldID routesField = NULL;
+    jfieldID dnsField = NULL;
 
     vnetConfigClass = lookup.findClass("com/zerotier/sdk/VirtualNetworkConfig");
     if(vnetConfigClass == NULL)
@@ -739,6 +747,13 @@ jobject newNetworkConfig(JNIEnv *env, const ZT_VirtualNetworkConfig &vnetConfig)
         return NULL;
     }
 
+    dnsField = lookup.findField(vnetConfigClass, "dns", "Lcom/zerotier/sdk/VirtualNetworkDNS;");
+    if(env->ExceptionCheck() || dnsField == NULL)
+    {
+        LOGE("Error getting DNS field");
+        return NULL;
+    }
+
     env->SetLongField(vnetConfigObj, nwidField, vnetConfig.nwid);
     env->SetLongField(vnetConfigObj, macField, vnetConfig.mac);
     jstring nameStr = env->NewStringUTF(vnetConfig.name);
@@ -824,6 +839,10 @@ jobject newNetworkConfig(JNIEnv *env, const ZT_VirtualNetworkConfig &vnetConfig)
 
     env->SetObjectField(vnetConfigObj, routesField, routesArrayObj);
 
+    jobject dnsObj = newVirtualNetworkDNS(env, vnetConfig.dns);
+    if (dnsObj != NULL) {
+        env->SetObjectField(vnetConfigObj, dnsField, dnsObj);
+    }
     return vnetConfigObj;
 }
 
@@ -947,6 +966,66 @@ jobject newVirtualNetworkRoute(JNIEnv *env, const ZT_VirtualNetworkRoute &route)
     return routeObj;
 }
 
+jobject newVirtualNetworkDNS(JNIEnv *env, const ZT_VirtualNetworkDNS &dns)
+{
+    jclass virtualNetworkDNSClass = NULL;
+    jmethodID dnsConstructor = NULL;
+
+    virtualNetworkDNSClass = lookup.findClass("com/zerotier/sdk/VirtualNetworkDNS");
+    if (env->ExceptionCheck() || virtualNetworkDNSClass == NULL) {
+        return NULL;
+    }
+
+    dnsConstructor = lookup.findMethod(virtualNetworkDNSClass, "<init>", "()V");
+    if(env->ExceptionCheck() || dnsConstructor == NULL) {
+        return NULL;
+    }
+
+    jobject dnsObj = env->NewObject(virtualNetworkDNSClass, dnsConstructor);
+    if(env->ExceptionCheck() || dnsObj == NULL) {
+        return NULL;
+    }
+
+    jfieldID domainField = NULL;
+    jfieldID serversField = NULL;
+
+    domainField = lookup.findField(virtualNetworkDNSClass, "domain", "Ljava/lang/String;");
+    if(env->ExceptionCheck() || domainField == NULL)
+    {
+        return NULL;
+    }
+
+    serversField = lookup.findField(virtualNetworkDNSClass, "servers", "Ljava/util/ArrayList;");
+    if(env->ExceptionCheck() || serversField == NULL) {
+        return NULL;
+    }
+
+    if (strlen(dns.domain) > 0) {
+        InitListJNI(env);
+        jstring domain = env->NewStringUTF(dns.domain);
+
+        jobject addrArray = env->NewObject(java_util_ArrayList, java_util_ArrayList_, 0);
+
+        struct sockaddr_storage nullAddr;
+        memset(&nullAddr, 0, sizeof(struct sockaddr_storage));
+        for(int i = 0; i < ZT_MAX_DNS_SERVERS; ++i) {
+            struct sockaddr_storage tmp = dns.server_addr[i];
+
+            if (memcmp(&tmp, &nullAddr, sizeof(struct sockaddr_storage)) != 0) {
+                jobject addr = newInetSocketAddress(env, tmp);
+                env->CallBooleanMethod(addrArray, java_util_ArrayList_add, addr);
+                env->DeleteLocalRef(addr);
+            }
+        }
+
+        env->SetObjectField(dnsObj, domainField, domain);
+        env->SetObjectField(dnsObj, serversField, addrArray);
+
+        return dnsObj;
+    }
+    return NULL;
+}
+
 #ifdef __cplusplus
 }
 #endif

+ 2 - 0
java/jni/ZT_jniutils.h

@@ -76,6 +76,8 @@ jobject newVersion(JNIEnv *env, int major, int minor, int rev);
 
 jobject newVirtualNetworkRoute(JNIEnv *env, const ZT_VirtualNetworkRoute &route);
 
+jobject newVirtualNetworkDNS(JNIEnv *env, const ZT_VirtualNetworkDNS &dns);
+
 #ifdef __cplusplus
 }
 #endif

+ 4 - 0
java/src/com/zerotier/sdk/VirtualNetworkConfig.java

@@ -56,6 +56,7 @@ public final class VirtualNetworkConfig implements Comparable<VirtualNetworkConf
     private long netconfRevision;
     private InetSocketAddress[] assignedAddresses;
     private VirtualNetworkRoute[] routes;
+    private VirtualNetworkDNS dns;
 
     private VirtualNetworkConfig() {
 
@@ -161,6 +162,7 @@ public final class VirtualNetworkConfig implements Comparable<VirtualNetworkConf
                this.broadcastEnabled == cfg.broadcastEnabled &&
                this.portError == cfg.portError &&
                this.enabled == cfg.enabled &&
+               this.dns.equals(cfg.dns) &&
                aaEqual && routesEqual;
     }
 
@@ -278,4 +280,6 @@ public final class VirtualNetworkConfig implements Comparable<VirtualNetworkConf
      * @return
      */
     public final VirtualNetworkRoute[] routes() { return routes; }
+
+    public final VirtualNetworkDNS dns() { return dns; }
 }

+ 29 - 0
java/src/com/zerotier/sdk/VirtualNetworkDNS.java

@@ -0,0 +1,29 @@
+/*
+ * ZeroTier One - Network Virtualization Everywhere
+ * Copyright (C) 2011-2020  ZeroTier, Inc.  https://www.zerotier.com/
+ */
+
+package com.zerotier.sdk;
+
+import java.net.InetSocketAddress;
+import java.util.ArrayList;
+
+public class VirtualNetworkDNS implements Comparable<VirtualNetworkDNS> {
+    private String domain;
+    private ArrayList<InetSocketAddress> servers;
+
+    public VirtualNetworkDNS() {}
+
+    public boolean equals(VirtualNetworkDNS o) {
+        return domain.equals(o.domain) && servers.equals(o.servers);
+    }
+
+    @Override
+    public int compareTo(VirtualNetworkDNS o) {
+        return domain.compareTo(o.domain);
+    }
+
+    public String getSearchDomain() { return domain; }
+
+    public ArrayList<InetSocketAddress> getServers() { return servers; }
+}

+ 1 - 2
java/src/com/zerotier/sdk/VirtualNetworkRoute.java

@@ -103,7 +103,6 @@ public final class VirtualNetworkRoute implements Comparable<VirtualNetworkRoute
             viaEquals = via.toString().equals(other.via.toString());
         }
 
-        return viaEquals &&
-                viaEquals;
+        return viaEquals && targetEquals;
     }
 }

+ 4 - 4
make-linux.mk

@@ -119,15 +119,15 @@ ifeq ($(CC_MACH),x86_64)
 	ZT_ARCHITECTURE=2
 	ZT_USE_X64_ASM_SALSA=1
 	ZT_USE_X64_ASM_ED25519=1
-	override CFLAGS+=-msse -msse2 -maes -mpclmul
-	override CXXFLAGS+=-msse -msse2 -maes -mpclmul
+	override CFLAGS+=-msse -msse2
+	override CXXFLAGS+=-msse -msse2
 endif
 ifeq ($(CC_MACH),amd64)
 	ZT_ARCHITECTURE=2
 	ZT_USE_X64_ASM_SALSA=1
 	ZT_USE_X64_ASM_ED25519=1
-	override CFLAGS+=-msse -msse2 -maes -mpclmul
-	override CXXFLAGS+=-msse -msse2 -maes -mpclmul
+	override CFLAGS+=-msse -msse2
+	override CXXFLAGS+=-msse -msse2
 endif
 ifeq ($(CC_MACH),powerpc64le)
 	ZT_ARCHITECTURE=8

+ 23 - 997
node/AES.cpp

@@ -31,37 +31,6 @@ namespace ZeroTier {
 
 namespace {
 
-#ifdef ZT_AES_NEON
-
-ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
-{
-	uint8x16_t r0, r1, t0, t1;
-	r0 = vld1q_u8(b);
-	const uint8x16_t z = veorq_u8(h, h);
-	y = veorq_u8(r0, y);
-	y = vrbitq_u8(y);
-	const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
-	t0 = vextq_u8(y, y, 8);
-	__asm__ __volatile__("pmull     %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
-	__asm__ __volatile__("pmull2   %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
-	__asm__ __volatile__("pmull     %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
-	__asm__ __volatile__("pmull2   %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
-	t0 = veorq_u8(t0, t1);
-	t1 = vextq_u8(z, t0, 8);
-	r0 = veorq_u8(r0, t1);
-	t1 = vextq_u8(t0, z, 8);
-	r1 = veorq_u8(r1, t1);
-	__asm__ __volatile__("pmull2   %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
-	t1 = vextq_u8(t0, z, 8);
-	r1 = veorq_u8(r1, t1);
-	t1 = vextq_u8(z, t0, 8);
-	r0 = veorq_u8(r0, t1);
-	__asm__ __volatile__("pmull     %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
-	return vrbitq_u8(veorq_u8(r0, t0));
-}
-
-#endif // ZT_AES_NEON
-
 #define s_bmul32(N, x, y, rh, rl) \
 	uint32_t x0t_##N = (x) & 0x11111111U; \
 	uint32_t x1t_##N = (x) & 0x22222222U; \
@@ -141,36 +110,6 @@ void s_gfmul(const uint64_t hh, const uint64_t hl, uint64_t &y0, uint64_t &y1) n
 
 } // anonymous namespace
 
-#ifdef ZT_AES_AESNI
-
-// SSE shuffle parameter to reverse bytes in a 128-bit vector.
-static const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
-
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
-static __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
-{
-	y = _mm_shuffle_epi8(y, s_sseSwapBytes);
-	__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
-	__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
-	__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
-	__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
-	t2 = _mm_xor_si128(t2, t3);
-	t3 = _mm_slli_si128(t2, 8);
-	t2 = _mm_srli_si128(t2, 8);
-	t1 = _mm_xor_si128(t1, t3);
-	t4 = _mm_xor_si128(t4, t2);
-	__m128i t5 = _mm_srli_epi32(t1, 31);
-	t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
-	t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
-	t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
-	t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
-	t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
-	return _mm_shuffle_epi8(t4, s_sseSwapBytes);
-}
-
-#endif
-
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
 void AES::GMAC::update(const void *const data, unsigned int len) noexcept
 {
 	const uint8_t *in = reinterpret_cast<const uint8_t *>(data);
@@ -178,108 +117,20 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
 
 #ifdef ZT_AES_AESNI
 	if (likely(Utils::CPUID.aes)) {
-		__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
-
-		// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
-		if (_rp) {
-			for (;;) {
-				if (!len)
-					return;
-				--len;
-				_r[_rp++] = *(in++);
-				if (_rp == 16) {
-					y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
-					break;
-				}
-			}
-		}
-
-		if (likely(len >= 64)) {
-			const __m128i sb = s_sseSwapBytes;
-			const __m128i h = _aes._k.ni.h[0];
-			const __m128i hh = _aes._k.ni.h[1];
-			const __m128i hhh = _aes._k.ni.h[2];
-			const __m128i hhhh = _aes._k.ni.h[3];
-			const __m128i h2 = _aes._k.ni.h2[0];
-			const __m128i hh2 = _aes._k.ni.h2[1];
-			const __m128i hhh2 = _aes._k.ni.h2[2];
-			const __m128i hhhh2 = _aes._k.ni.h2[3];
-			const uint8_t *const end64 = in + (len & ~((unsigned int)63));
-			len &= 63;
-			do {
-				__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
-				__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
-				__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
-				__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
-				in += 64;
-				__m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
-				__m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
-				__m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
-				a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
-				b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
-				c = _mm_srli_epi32(a, 31);
-				a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
-				b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
-				c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
-				a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
-				b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
-				y = _mm_shuffle_epi8(b, sb);
-			} while (likely(in != end64));
-		}
-
-		while (len >= 16) {
-			y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
-			in += 16;
-			len -= 16;
-		}
-
-		_mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
-
-		// Any overflow is cached for a later run or finish().
-		for (unsigned int i = 0; i < len; ++i)
-			_r[i] = in[i];
-		_rp = len; // len is always less than 16 here
-
+		p_aesNIUpdate(in, len);
 		return;
 	}
 #endif // ZT_AES_AESNI
 
 #ifdef ZT_AES_NEON
 	if (Utils::ARMCAP.pmull) {
-		uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
-		const uint8x16_t h = _aes._k.neon.h;
-
-		if (_rp) {
-			for(;;) {
-				if (!len)
-					return;
-				--len;
-				_r[_rp++] = *(in++);
-				if (_rp == 16) {
-					y = s_clmul_armneon_crypto(h, y, _r);
-					break;
-				}
-			}
-		}
-
-		while (len >= 16) {
-			y = s_clmul_armneon_crypto(h, y, in);
-			in += 16;
-			len -= 16;
-		}
-
-		vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
-
-		for (unsigned int i = 0; i < len; ++i)
-			_r[i] = in[i];
-		_rp = len; // len is always less than 16 here
-
+		p_armUpdate(in, len);
 		return;
 	}
 #endif // ZT_AES_NEON
 
-	const uint64_t h0 = _aes._k.sw.h[0];
-	const uint64_t h1 = _aes._k.sw.h[1];
+	const uint64_t h0 = _aes.p_k.sw.h[0];
+	const uint64_t h1 = _aes.p_k.sw.h[1];
 	uint64_t y0 = _y[0];
 	uint64_t y1 = _y[1];
 
@@ -324,116 +175,24 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
 	_rp = len; // len is always less than 16 here
 }
 
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
 void AES::GMAC::finish(uint8_t tag[16]) noexcept
 {
 #ifdef ZT_AES_AESNI
 	if (likely(Utils::CPUID.aes)) {
-		__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
-
-		// Handle any remaining bytes, padding the last block with zeroes.
-		if (_rp) {
-			while (_rp < 16)
-				_r[_rp++] = 0;
-			y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
-		}
-
-		// Interleave encryption of IV with the final GHASH of y XOR (length * 8).
-		// Then XOR these together to get the final tag.
-		const __m128i *const k = _aes._k.ni.k;
-		const __m128i h = _aes._k.ni.h[0];
-		y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
-		y = _mm_shuffle_epi8(y, s_sseSwapBytes);
-		__m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
-		__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
-		__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
-		__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
-		__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
-		encIV = _mm_aesenc_si128(encIV, k[1]);
-		t2 = _mm_xor_si128(t2, t3);
-		t3 = _mm_slli_si128(t2, 8);
-		encIV = _mm_aesenc_si128(encIV, k[2]);
-		t2 = _mm_srli_si128(t2, 8);
-		t1 = _mm_xor_si128(t1, t3);
-		encIV = _mm_aesenc_si128(encIV, k[3]);
-		t4 = _mm_xor_si128(t4, t2);
-		__m128i t5 = _mm_srli_epi32(t1, 31);
-		t1 = _mm_slli_epi32(t1, 1);
-		__m128i t6 = _mm_srli_epi32(t4, 31);
-		encIV = _mm_aesenc_si128(encIV, k[4]);
-		t4 = _mm_slli_epi32(t4, 1);
-		t3 = _mm_srli_si128(t5, 12);
-		encIV = _mm_aesenc_si128(encIV, k[5]);
-		t6 = _mm_slli_si128(t6, 4);
-		t5 = _mm_slli_si128(t5, 4);
-		encIV = _mm_aesenc_si128(encIV, k[6]);
-		t1 = _mm_or_si128(t1, t5);
-		t4 = _mm_or_si128(t4, t6);
-		encIV = _mm_aesenc_si128(encIV, k[7]);
-		t4 = _mm_or_si128(t4, t3);
-		t5 = _mm_slli_epi32(t1, 31);
-		encIV = _mm_aesenc_si128(encIV, k[8]);
-		t6 = _mm_slli_epi32(t1, 30);
-		t3 = _mm_slli_epi32(t1, 25);
-		encIV = _mm_aesenc_si128(encIV, k[9]);
-		t5 = _mm_xor_si128(t5, t6);
-		t5 = _mm_xor_si128(t5, t3);
-		encIV = _mm_aesenc_si128(encIV, k[10]);
-		t6 = _mm_srli_si128(t5, 4);
-		t4 = _mm_xor_si128(t4, t6);
-		encIV = _mm_aesenc_si128(encIV, k[11]);
-		t5 = _mm_slli_si128(t5, 12);
-		t1 = _mm_xor_si128(t1, t5);
-		t4 = _mm_xor_si128(t4, t1);
-		t5 = _mm_srli_epi32(t1, 1);
-		encIV = _mm_aesenc_si128(encIV, k[12]);
-		t2 = _mm_srli_epi32(t1, 2);
-		t3 = _mm_srli_epi32(t1, 7);
-		encIV = _mm_aesenc_si128(encIV, k[13]);
-		t4 = _mm_xor_si128(t4, t2);
-		t4 = _mm_xor_si128(t4, t3);
-		encIV = _mm_aesenclast_si128(encIV, k[14]);
-		t4 = _mm_xor_si128(t4, t5);
-		_mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
-
+		p_aesNIFinish(tag);
 		return;
 	}
 #endif // ZT_AES_AESNI
 
 #ifdef ZT_AES_NEON
 	if (Utils::ARMCAP.pmull) {
-		uint64_t tmp[2];
-		uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
-		const uint8x16_t h = _aes._k.neon.h;
-
-		if (_rp) {
-			while (_rp < 16)
-				_r[_rp++] = 0;
-			y = s_clmul_armneon_crypto(h, y, _r);
-		}
-
-		tmp[0] = Utils::hton((uint64_t)_len << 3U);
-		tmp[1] = 0;
-		y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
-
-		Utils::copy< 12 >(tmp, _iv);
-#if __BYTE_ORDER == __BIG_ENDIAN
-		reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
-#else
-		reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
-#endif
-		_aes.encrypt(tmp, tmp);
-
-		uint8x16_t yy = y;
-		Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
-		Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
-
+		p_armFinish(tag);
 		return;
 	}
 #endif // ZT_AES_NEON
 
-	const uint64_t h0 = _aes._k.sw.h[0];
-	const uint64_t h1 = _aes._k.sw.h[1];
+	const uint64_t h0 = _aes.p_k.sw.h[0];
+	const uint64_t h1 = _aes.p_k.sw.h[1];
 	uint64_t y0 = _y[0];
 	uint64_t y1 = _y[1];
 
@@ -463,140 +222,6 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
 
 // AES-CTR ------------------------------------------------------------------------------------------------------------
 
-#ifdef ZT_AES_AESNI
-
-/* Disable VAES stuff on compilers too old to compile these intrinsics,
- * and MinGW64 also seems not to support them so disable on Windows.
- * The performance gain can be significant but regular SSE is already so
- * fast it's highly unlikely to be a rate limiting factor except on massive
- * servers and network infrastructure stuff. */
-#if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
-
-#define ZT_AES_VAES512 1
-
-static
-__attribute__((__target__("sse4,avx,avx2,vaes,avx512f,avx512bw")))
-void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
-{
-	const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
-	const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
-	const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
-	const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
-	const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
-	const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
-	const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
-	const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
-	const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
-	const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
-	const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
-	const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
-	const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
-	const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
-	const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
-	do {
-		__m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
-		__m512i d0 = _mm512_set_epi64(
-			(long long)Utils::hton(c1 + 3ULL), (long long)c0,
-			(long long)Utils::hton(c1 + 2ULL), (long long)c0,
-			(long long)Utils::hton(c1 + 1ULL), (long long)c0,
-			(long long)Utils::hton(c1), (long long)c0);
-		c1 += 4;
-		in += 64;
-		len -= 64;
-		d0 = _mm512_xor_si512(d0, kk0);
-		d0 = _mm512_aesenc_epi128(d0, kk1);
-		d0 = _mm512_aesenc_epi128(d0, kk2);
-		d0 = _mm512_aesenc_epi128(d0, kk3);
-		d0 = _mm512_aesenc_epi128(d0, kk4);
-		d0 = _mm512_aesenc_epi128(d0, kk5);
-		d0 = _mm512_aesenc_epi128(d0, kk6);
-		d0 = _mm512_aesenc_epi128(d0, kk7);
-		d0 = _mm512_aesenc_epi128(d0, kk8);
-		d0 = _mm512_aesenc_epi128(d0, kk9);
-		d0 = _mm512_aesenc_epi128(d0, kk10);
-		d0 = _mm512_aesenc_epi128(d0, kk11);
-		d0 = _mm512_aesenc_epi128(d0, kk12);
-		d0 = _mm512_aesenc_epi128(d0, kk13);
-		d0 = _mm512_aesenclast_epi128(d0, kk14);
-		_mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
-		out += 64;
-	} while (likely(len >= 64));
-}
-
-#define ZT_AES_VAES256 1
-
-static
-__attribute__((__target__("sse4,avx,avx2,vaes")))
-void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
-{
-	const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
-	const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
-	const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
-	const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
-	const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
-	const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
-	const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
-	const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
-	const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
-	const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
-	const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
-	const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
-	const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
-	const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
-	const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
-	do {
-		__m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
-		__m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
-		__m256i d0 = _mm256_set_epi64x(
-			(long long)Utils::hton(c1 + 1ULL), (long long)c0,
-			(long long)Utils::hton(c1), (long long)c0);
-		__m256i d1 = _mm256_set_epi64x(
-			(long long)Utils::hton(c1 + 3ULL), (long long)c0,
-			(long long)Utils::hton(c1 + 2ULL), (long long)c0);
-		c1 += 4;
-		in += 64;
-		len -= 64;
-		d0 = _mm256_xor_si256(d0, kk0);
-		d1 = _mm256_xor_si256(d1, kk0);
-		d0 = _mm256_aesenc_epi128(d0, kk1);
-		d1 = _mm256_aesenc_epi128(d1, kk1);
-		d0 = _mm256_aesenc_epi128(d0, kk2);
-		d1 = _mm256_aesenc_epi128(d1, kk2);
-		d0 = _mm256_aesenc_epi128(d0, kk3);
-		d1 = _mm256_aesenc_epi128(d1, kk3);
-		d0 = _mm256_aesenc_epi128(d0, kk4);
-		d1 = _mm256_aesenc_epi128(d1, kk4);
-		d0 = _mm256_aesenc_epi128(d0, kk5);
-		d1 = _mm256_aesenc_epi128(d1, kk5);
-		d0 = _mm256_aesenc_epi128(d0, kk6);
-		d1 = _mm256_aesenc_epi128(d1, kk6);
-		d0 = _mm256_aesenc_epi128(d0, kk7);
-		d1 = _mm256_aesenc_epi128(d1, kk7);
-		d0 = _mm256_aesenc_epi128(d0, kk8);
-		d1 = _mm256_aesenc_epi128(d1, kk8);
-		d0 = _mm256_aesenc_epi128(d0, kk9);
-		d1 = _mm256_aesenc_epi128(d1, kk9);
-		d0 = _mm256_aesenc_epi128(d0, kk10);
-		d1 = _mm256_aesenc_epi128(d1, kk10);
-		d0 = _mm256_aesenc_epi128(d0, kk11);
-		d1 = _mm256_aesenc_epi128(d1, kk11);
-		d0 = _mm256_aesenc_epi128(d0, kk12);
-		d1 = _mm256_aesenc_epi128(d1, kk12);
-		d0 = _mm256_aesenc_epi128(d0, kk13);
-		d1 = _mm256_aesenc_epi128(d1, kk13);
-		d0 = _mm256_aesenclast_epi128(d0, kk14);
-		d1 = _mm256_aesenclast_epi128(d1, kk14);
-		_mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
-		_mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
-		out += 64;
-	} while (likely(len >= 64));
-}
-
-#endif // does compiler support AVX2 and AVX512 AES intrinsics?
-
-#endif // ZT_AES_AESNI
-
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
 void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
 {
 	const uint8_t *in = reinterpret_cast<const uint8_t *>(input);
@@ -604,388 +229,14 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
 
 #ifdef ZT_AES_AESNI
 	if (likely(Utils::CPUID.aes)) {
-		const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
-		uint64_t c1 = Utils::ntoh(_ctr[1]);
-
-		const __m128i *const k = _aes._k.ni.k;
-		const __m128i k0 = k[0];
-		const __m128i k1 = k[1];
-		const __m128i k2 = k[2];
-		const __m128i k3 = k[3];
-		const __m128i k4 = k[4];
-		const __m128i k5 = k[5];
-		const __m128i k6 = k[6];
-		const __m128i k7 = k[7];
-		const __m128i k8 = k[8];
-		const __m128i k9 = k[9];
-		const __m128i k10 = k[10];
-		const __m128i k11 = k[11];
-		const __m128i k12 = k[12];
-		const __m128i k13 = k[13];
-		const __m128i k14 = k[14];
-
-		// Complete any unfinished blocks from previous calls to crypt().
-		unsigned int totalLen = _len;
-		if ((totalLen & 15U)) {
-			for (;;) {
-				if (unlikely(!len)) {
-					_ctr[1] = Utils::hton(c1);
-					_len = totalLen;
-					return;
-				}
-				--len;
-				out[totalLen++] = *(in++);
-				if (!(totalLen & 15U)) {
-					__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
-					d0 = _mm_xor_si128(d0, k0);
-					d0 = _mm_aesenc_si128(d0, k1);
-					d0 = _mm_aesenc_si128(d0, k2);
-					d0 = _mm_aesenc_si128(d0, k3);
-					d0 = _mm_aesenc_si128(d0, k4);
-					d0 = _mm_aesenc_si128(d0, k5);
-					d0 = _mm_aesenc_si128(d0, k6);
-					d0 = _mm_aesenc_si128(d0, k7);
-					d0 = _mm_aesenc_si128(d0, k8);
-					d0 = _mm_aesenc_si128(d0, k9);
-					d0 = _mm_aesenc_si128(d0, k10);
-					__m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
-					d0 = _mm_aesenc_si128(d0, k11);
-					const __m128i p0 = _mm_loadu_si128(outblk);
-					d0 = _mm_aesenc_si128(d0, k12);
-					d0 = _mm_aesenc_si128(d0, k13);
-					d0 = _mm_aesenclast_si128(d0, k14);
-					_mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
-					break;
-				}
-			}
-		}
-
-		out += totalLen;
-		_len = totalLen + len;
-
-		if (likely(len >= 64)) {
-
-#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
-			if (Utils::CPUID.vaes && (len >= 256)) {
-				if (Utils::CPUID.avx512f) {
-					p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
-				} else {
-					p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
-				}
-				goto skip_conventional_aesni_64;
-			}
-#endif
-
-#if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
-			if (Utils::CPUID.vaes && (len >= 256)) {
-				p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
-				goto skip_conventional_aesni_64;
-			}
-#endif
-
-			const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
-			len &= 63;
-			__m128i d0, d1, d2, d3;
-			do {
-				const uint64_t c10 = Utils::hton(c1);
-				const uint64_t c11 = Utils::hton(c1 + 1ULL);
-				const uint64_t c12 = Utils::hton(c1 + 2ULL);
-				const uint64_t c13 = Utils::hton(c1 + 3ULL);
-				d0 = _mm_insert_epi64(dd, (long long)c10, 1);
-				d1 = _mm_insert_epi64(dd, (long long)c11, 1);
-				d2 = _mm_insert_epi64(dd, (long long)c12, 1);
-				d3 = _mm_insert_epi64(dd, (long long)c13, 1);
-				c1 += 4;
-				d0 = _mm_xor_si128(d0, k0);
-				d1 = _mm_xor_si128(d1, k0);
-				d2 = _mm_xor_si128(d2, k0);
-				d3 = _mm_xor_si128(d3, k0);
-				d0 = _mm_aesenc_si128(d0, k1);
-				d1 = _mm_aesenc_si128(d1, k1);
-				d2 = _mm_aesenc_si128(d2, k1);
-				d3 = _mm_aesenc_si128(d3, k1);
-				d0 = _mm_aesenc_si128(d0, k2);
-				d1 = _mm_aesenc_si128(d1, k2);
-				d2 = _mm_aesenc_si128(d2, k2);
-				d3 = _mm_aesenc_si128(d3, k2);
-				d0 = _mm_aesenc_si128(d0, k3);
-				d1 = _mm_aesenc_si128(d1, k3);
-				d2 = _mm_aesenc_si128(d2, k3);
-				d3 = _mm_aesenc_si128(d3, k3);
-				d0 = _mm_aesenc_si128(d0, k4);
-				d1 = _mm_aesenc_si128(d1, k4);
-				d2 = _mm_aesenc_si128(d2, k4);
-				d3 = _mm_aesenc_si128(d3, k4);
-				d0 = _mm_aesenc_si128(d0, k5);
-				d1 = _mm_aesenc_si128(d1, k5);
-				d2 = _mm_aesenc_si128(d2, k5);
-				d3 = _mm_aesenc_si128(d3, k5);
-				d0 = _mm_aesenc_si128(d0, k6);
-				d1 = _mm_aesenc_si128(d1, k6);
-				d2 = _mm_aesenc_si128(d2, k6);
-				d3 = _mm_aesenc_si128(d3, k6);
-				d0 = _mm_aesenc_si128(d0, k7);
-				d1 = _mm_aesenc_si128(d1, k7);
-				d2 = _mm_aesenc_si128(d2, k7);
-				d3 = _mm_aesenc_si128(d3, k7);
-				d0 = _mm_aesenc_si128(d0, k8);
-				d1 = _mm_aesenc_si128(d1, k8);
-				d2 = _mm_aesenc_si128(d2, k8);
-				d3 = _mm_aesenc_si128(d3, k8);
-				d0 = _mm_aesenc_si128(d0, k9);
-				d1 = _mm_aesenc_si128(d1, k9);
-				d2 = _mm_aesenc_si128(d2, k9);
-				d3 = _mm_aesenc_si128(d3, k9);
-				d0 = _mm_aesenc_si128(d0, k10);
-				d1 = _mm_aesenc_si128(d1, k10);
-				d2 = _mm_aesenc_si128(d2, k10);
-				d3 = _mm_aesenc_si128(d3, k10);
-				d0 = _mm_aesenc_si128(d0, k11);
-				d1 = _mm_aesenc_si128(d1, k11);
-				d2 = _mm_aesenc_si128(d2, k11);
-				d3 = _mm_aesenc_si128(d3, k11);
-				d0 = _mm_aesenc_si128(d0, k12);
-				d1 = _mm_aesenc_si128(d1, k12);
-				d2 = _mm_aesenc_si128(d2, k12);
-				d3 = _mm_aesenc_si128(d3, k12);
-				d0 = _mm_aesenc_si128(d0, k13);
-				d1 = _mm_aesenc_si128(d1, k13);
-				d2 = _mm_aesenc_si128(d2, k13);
-				d3 = _mm_aesenc_si128(d3, k13);
-				d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
-				d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
-				d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
-				d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
-				in += 64;
-				_mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
-				_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
-				_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
-				_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
-				out += 64;
-			} while (likely(in != eof64));
-
-		}
-
-		skip_conventional_aesni_64:
-		while (len >= 16) {
-			__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
-			d0 = _mm_xor_si128(d0, k0);
-			d0 = _mm_aesenc_si128(d0, k1);
-			d0 = _mm_aesenc_si128(d0, k2);
-			d0 = _mm_aesenc_si128(d0, k3);
-			d0 = _mm_aesenc_si128(d0, k4);
-			d0 = _mm_aesenc_si128(d0, k5);
-			d0 = _mm_aesenc_si128(d0, k6);
-			d0 = _mm_aesenc_si128(d0, k7);
-			d0 = _mm_aesenc_si128(d0, k8);
-			d0 = _mm_aesenc_si128(d0, k9);
-			d0 = _mm_aesenc_si128(d0, k10);
-			d0 = _mm_aesenc_si128(d0, k11);
-			d0 = _mm_aesenc_si128(d0, k12);
-			d0 = _mm_aesenc_si128(d0, k13);
-			_mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
-			in += 16;
-			len -= 16;
-			out += 16;
-		}
-
-		// Any remaining input is placed in _out. This will be picked up and crypted
-		// on subsequent calls to crypt() or finish() as it'll mean _len will not be
-		// an even multiple of 16.
-		for (unsigned int i = 0; i < len; ++i)
-			out[i] = in[i];
-
-		_ctr[1] = Utils::hton(c1);
+		p_aesNICrypt(in, out, len);
 		return;
 	}
 #endif // ZT_AES_AESNI
 
 #ifdef ZT_AES_NEON
 	if (Utils::ARMCAP.aes) {
-		uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
-		const uint32x4_t one = {0,0,0,1};
-
-		uint8x16_t k0 = _aes._k.neon.ek[0];
-		uint8x16_t k1 = _aes._k.neon.ek[1];
-		uint8x16_t k2 = _aes._k.neon.ek[2];
-		uint8x16_t k3 = _aes._k.neon.ek[3];
-		uint8x16_t k4 = _aes._k.neon.ek[4];
-		uint8x16_t k5 = _aes._k.neon.ek[5];
-		uint8x16_t k6 = _aes._k.neon.ek[6];
-		uint8x16_t k7 = _aes._k.neon.ek[7];
-		uint8x16_t k8 = _aes._k.neon.ek[8];
-		uint8x16_t k9 = _aes._k.neon.ek[9];
-		uint8x16_t k10 = _aes._k.neon.ek[10];
-		uint8x16_t k11 = _aes._k.neon.ek[11];
-		uint8x16_t k12 = _aes._k.neon.ek[12];
-		uint8x16_t k13 = _aes._k.neon.ek[13];
-		uint8x16_t k14 = _aes._k.neon.ek[14];
-
-		unsigned int totalLen = _len;
-		if ((totalLen & 15U)) {
-			for (;;) {
-				if (unlikely(!len)) {
-					vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
-					_len = totalLen;
-					return;
-				}
-				--len;
-				out[totalLen++] = *(in++);
-				if (!(totalLen & 15U)) {
-					uint8_t *const otmp = out + (totalLen - 16);
-					uint8x16_t d0 = vrev32q_u8(dd);
-					uint8x16_t pt = vld1q_u8(otmp);
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
-					d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
-					d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
-					vst1q_u8(otmp, veorq_u8(pt, d0));
-					dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
-					break;
-				}
-			}
-		}
-
-		out += totalLen;
-		_len = totalLen + len;
-
-		if (likely(len >= 64)) {
-			const uint32x4_t four = vshlq_n_u32(one, 2);
-			uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
-			uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
-			uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
-			for (;;) {
-				len -= 64;
-				uint8x16_t d0 = vrev32q_u8(dd);
-				uint8x16_t d1 = vrev32q_u8(dd1);
-				uint8x16_t d2 = vrev32q_u8(dd2);
-				uint8x16_t d3 = vrev32q_u8(dd3);
-				uint8x16_t pt0 = vld1q_u8(in);
-				in += 16;
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
-				uint8x16_t pt1 = vld1q_u8(in);
-				in += 16;
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
-				uint8x16_t pt2 = vld1q_u8(in);
-				in += 16;
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
-				uint8x16_t pt3 = vld1q_u8(in);
-				in += 16;
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
-				d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
-				d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
-				d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
-				d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
-				d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
-				d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
-				d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
-				d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
-
-				d0 = veorq_u8(pt0, d0);
-				d1 = veorq_u8(pt1, d1);
-				d2 = veorq_u8(pt2, d2);
-				d3 = veorq_u8(pt3, d3);
-
-				vst1q_u8(out, d0);
-				vst1q_u8(out + 16, d1);
-				vst1q_u8(out + 32, d2);
-				vst1q_u8(out + 48, d3);
-				out += 64;
-
-				dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
-				if (unlikely(len < 64))
-					break;
-				dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
-				dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
-				dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
-			}
-		}
-
-		while (len >= 16) {
-			len -= 16;
-			uint8x16_t d0 = vrev32q_u8(dd);
-			uint8x16_t pt = vld1q_u8(in);
-			in += 16;
-			dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
-			d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
-			d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
-			vst1q_u8(out, veorq_u8(pt, d0));
-			out += 16;
-		}
-
-		// Any remaining input is placed in _out. This will be picked up and crypted
-		// on subsequent calls to crypt() or finish() as it'll mean _len will not be
-		// an even multiple of 16.
-		for (unsigned int i = 0; i < len; ++i)
-			out[i] = in[i];
-
-		vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
+		p_armCrypt(in, out, len);
 		return;
 	}
 #endif // ZT_AES_NEON
@@ -1003,7 +254,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
 			--len;
 			out[totalLen++] = *(in++);
 			if (!(totalLen & 15U)) {
-				_aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
+				_aes.p_encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
 				reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(++ctr);
 				uint8_t *outblk = out + (totalLen - 16);
 				for (int i = 0; i < 16; ++i)
@@ -1017,7 +268,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
 	_len = (totalLen + len);
 
 	if (likely(len >= 16)) {
-		const uint32_t *const restrict rk = _aes._k.sw.ek;
+		const uint32_t *const restrict rk = _aes.p_k.sw.ek;
 		const uint32_t ctr0rk0 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[0]) ^rk[0];
 		const uint32_t ctr1rk1 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[1]) ^rk[1];
 		const uint32_t ctr2rk2 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[2]) ^rk[2];
@@ -1238,9 +489,9 @@ const uint8_t AES::Td4[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0
                                0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
 const uint32_t AES::rcon[15] = {0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6c000000, 0xd8000000, 0xab000000, 0x4d000000, 0x9a000000};
 
-void AES::_initSW(const uint8_t key[32]) noexcept
+void AES::p_initSW(const uint8_t *key) noexcept
 {
-	uint32_t *rk = _k.sw.ek;
+	uint32_t *rk = p_k.sw.ek;
 
 	rk[0] = Utils::loadBigEndian< uint32_t >(key);
 	rk[1] = Utils::loadBigEndian< uint32_t >(key + 4);
@@ -1266,13 +517,13 @@ void AES::_initSW(const uint8_t key[32]) noexcept
 		rk += 8;
 	}
 
-	_encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)_k.sw.h);
-	_k.sw.h[0] = Utils::ntoh(_k.sw.h[0]);
-	_k.sw.h[1] = Utils::ntoh(_k.sw.h[1]);
+	p_encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)p_k.sw.h);
+	p_k.sw.h[0] = Utils::ntoh(p_k.sw.h[0]);
+	p_k.sw.h[1] = Utils::ntoh(p_k.sw.h[1]);
 
 	for (int i = 0; i < 60; ++i)
-		_k.sw.dk[i] = _k.sw.ek[i];
-	rk = _k.sw.dk;
+		p_k.sw.dk[i] = p_k.sw.ek[i];
+	rk = p_k.sw.dk;
 
 	for (int i = 0, j = 56; i < j; i += 4, j -= 4) {
 		uint32_t temp = rk[i];
@@ -1297,9 +548,9 @@ void AES::_initSW(const uint8_t key[32]) noexcept
 	}
 }
 
-void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
+void AES::p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept
 {
-	const uint32_t *const restrict rk = _k.sw.ek;
+	const uint32_t *const restrict rk = p_k.sw.ek;
 	const uint32_t m8 = 0x000000ff;
 	const uint32_t m8_8 = 0x0000ff00;
 	const uint32_t m8_16 = 0x00ff0000;
@@ -1373,9 +624,9 @@ void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
 	Utils::storeBigEndian< uint32_t >(out + 12, s3);
 }
 
-void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
+void AES::p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept
 {
-	const uint32_t *restrict rk = _k.sw.dk;
+	const uint32_t *restrict rk = p_k.sw.dk;
 	const uint32_t m8 = 0x000000ff;
 	uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
 	uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
@@ -1446,229 +697,4 @@ void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
 	Utils::storeBigEndian< uint32_t >(out + 12, s3);
 }
 
-#ifdef ZT_AES_AESNI
-
-static __m128i _init256_1_aesni(__m128i a, __m128i b) noexcept
-{
-	__m128i x, y;
-	b = _mm_shuffle_epi32(b, 0xff);
-	y = _mm_slli_si128(a, 0x04);
-	x = _mm_xor_si128(a, y);
-	y = _mm_slli_si128(y, 0x04);
-	x = _mm_xor_si128(x, y);
-	y = _mm_slli_si128(y, 0x04);
-	x = _mm_xor_si128(x, y);
-	x = _mm_xor_si128(x, b);
-	return x;
-}
-
-static __m128i _init256_2_aesni(__m128i a, __m128i b) noexcept
-{
-	__m128i x, y, z;
-	y = _mm_aeskeygenassist_si128(a, 0x00);
-	z = _mm_shuffle_epi32(y, 0xaa);
-	y = _mm_slli_si128(b, 0x04);
-	x = _mm_xor_si128(b, y);
-	y = _mm_slli_si128(y, 0x04);
-	x = _mm_xor_si128(x, y);
-	y = _mm_slli_si128(y, 0x04);
-	x = _mm_xor_si128(x, y);
-	x = _mm_xor_si128(x, z);
-	return x;
-}
-
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
-void AES::_init_aesni(const uint8_t key[32]) noexcept
-{
-	__m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
-	_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
-	_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
-	_k.ni.k[2] = k2 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
-	_k.ni.k[3] = k3 = t2 = _init256_2_aesni(t1, t2);
-	_k.ni.k[4] = k4 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
-	_k.ni.k[5] = k5 = t2 = _init256_2_aesni(t1, t2);
-	_k.ni.k[6] = k6 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
-	_k.ni.k[7] = k7 = t2 = _init256_2_aesni(t1, t2);
-	_k.ni.k[8] = k8 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
-	_k.ni.k[9] = k9 = t2 = _init256_2_aesni(t1, t2);
-	_k.ni.k[10] = k10 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
-	_k.ni.k[11] = k11 = t2 = _init256_2_aesni(t1, t2);
-	_k.ni.k[12] = k12 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
-	_k.ni.k[13] = k13 = t2 = _init256_2_aesni(t1, t2);
-	_k.ni.k[14] = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
-	_k.ni.k[15] = _mm_aesimc_si128(k13);
-	_k.ni.k[16] = _mm_aesimc_si128(k12);
-	_k.ni.k[17] = _mm_aesimc_si128(k11);
-	_k.ni.k[18] = _mm_aesimc_si128(k10);
-	_k.ni.k[19] = _mm_aesimc_si128(k9);
-	_k.ni.k[20] = _mm_aesimc_si128(k8);
-	_k.ni.k[21] = _mm_aesimc_si128(k7);
-	_k.ni.k[22] = _mm_aesimc_si128(k6);
-	_k.ni.k[23] = _mm_aesimc_si128(k5);
-	_k.ni.k[24] = _mm_aesimc_si128(k4);
-	_k.ni.k[25] = _mm_aesimc_si128(k3);
-	_k.ni.k[26] = _mm_aesimc_si128(k2);
-	_k.ni.k[27] = _mm_aesimc_si128(k1);
-
-	__m128i h = _k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
-	h = _mm_aesenc_si128(h, k1);
-	h = _mm_aesenc_si128(h, k2);
-	h = _mm_aesenc_si128(h, k3);
-	h = _mm_aesenc_si128(h, k4);
-	h = _mm_aesenc_si128(h, k5);
-	h = _mm_aesenc_si128(h, k6);
-	h = _mm_aesenc_si128(h, k7);
-	h = _mm_aesenc_si128(h, k8);
-	h = _mm_aesenc_si128(h, k9);
-	h = _mm_aesenc_si128(h, k10);
-	h = _mm_aesenc_si128(h, k11);
-	h = _mm_aesenc_si128(h, k12);
-	h = _mm_aesenc_si128(h, k13);
-	h = _mm_aesenclast_si128(h, _k.ni.k[14]);
-	__m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
-	__m128i hh = p_gmacPCLMUL128(hswap, h);
-	__m128i hhh = p_gmacPCLMUL128(hswap, hh);
-	__m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
-	_k.ni.h[0] = hswap;
-	_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
-	_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
-	_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
-	_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
-	_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
-	_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
-	_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
-}
-
-void AES::_encrypt_aesni(const void *const in, void *const out) const noexcept
-{
-	__m128i tmp = _mm_loadu_si128((const __m128i *)in);
-	tmp = _mm_xor_si128(tmp, _k.ni.k[0]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[1]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[2]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[3]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[4]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[5]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[6]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[7]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[8]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[9]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[10]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[11]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[12]);
-	tmp = _mm_aesenc_si128(tmp, _k.ni.k[13]);
-	_mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, _k.ni.k[14]));
-}
-
-void AES::_decrypt_aesni(const void *in, void *out) const noexcept
-{
-	__m128i tmp = _mm_loadu_si128((const __m128i *)in);
-	tmp = _mm_xor_si128(tmp, _k.ni.k[14]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[15]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[16]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[17]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[18]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[19]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[20]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[21]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[22]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[23]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[24]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[25]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[26]);
-	tmp = _mm_aesdec_si128(tmp, _k.ni.k[27]);
-	_mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, _k.ni.k[0]));
-}
-
-#endif // ZT_AES_AESNI
-
-#ifdef ZT_AES_NEON
-
-#define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
-#define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
-#define ZT_INIT_ARMNEON_CRYPTO_NK 8
-#define ZT_INIT_ARMNEON_CRYPTO_NB 4
-#define ZT_INIT_ARMNEON_CRYPTO_NR 14
-
-void AES::_init_armneon_crypto(const uint8_t key[32]) noexcept
-{
-	static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
-																			0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
-																			0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
-
-	uint64_t h[2];
-	uint32_t *const w = reinterpret_cast<uint32_t *>(_k.neon.ek);
-
-	for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
-		const unsigned int j = i * 4;
-		w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
-	}
-
-	for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
-		uint32_t t = w[i - 1];
-		const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
-		if (imod == 0) {
-			t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
-		} else if (imod == 4) {
-			t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
-		}
-		w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
-	}
-
-	for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
-		w[i] = Utils::hton(w[i]);
-
-	_k.neon.dk[0] = _k.neon.ek[14];
-	for (int i=1;i<14;++i)
-		_k.neon.dk[i] = vaesimcq_u8(_k.neon.ek[14 - i]);
-	_k.neon.dk[14] = _k.neon.ek[0];
-
-	_encrypt_armneon_crypto(Utils::ZERO256, h);
-	Utils::copy<16>(&(_k.neon.h), h);
-	_k.neon.h = vrbitq_u8(_k.neon.h);
-	_k.sw.h[0] = Utils::ntoh(h[0]);
-	_k.sw.h[1] = Utils::ntoh(h[1]);
-}
-
-void AES::_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
-{
-	uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[0]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[1]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[2]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[3]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[4]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[5]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[6]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[7]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[8]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[9]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[10]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[11]));
-	tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[12]));
-	tmp = veorq_u8(vaeseq_u8(tmp, _k.neon.ek[13]), _k.neon.ek[14]);
-	vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
-}
-
-void AES::_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
-{
-	uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[0]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[1]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[2]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[3]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[4]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[5]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[6]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[7]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[8]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[9]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[10]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[11]));
-	tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[12]));
-	tmp = veorq_u8(vaesdq_u8(tmp, _k.neon.dk[13]), _k.neon.dk[14]);
-	vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
-}
-
-#endif // ZT_AES_NEON
-
 } // namespace ZeroTier

+ 36 - 21
node/AES.hpp

@@ -18,6 +18,7 @@
 #include "Utils.hpp"
 #include "SHA512.hpp"
 
+// Uncomment to disable all hardware acceleration (usually for testing)
 //#define ZT_AES_NO_ACCEL
 
 #if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_X64)
@@ -73,7 +74,7 @@ public:
 	{ this->init(key); }
 
 	ZT_INLINE ~AES()
-	{ Utils::burn(&_k, sizeof(_k)); }
+	{ Utils::burn(&p_k, sizeof(p_k)); }
 
 	/**
 	 * Set (or re-set) this AES256 cipher's key
@@ -84,17 +85,17 @@ public:
 	{
 #ifdef ZT_AES_AESNI
 		if (likely(Utils::CPUID.aes)) {
-			_init_aesni(reinterpret_cast<const uint8_t *>(key));
+			p_init_aesni(reinterpret_cast<const uint8_t *>(key));
 			return;
 		}
 #endif
 #ifdef ZT_AES_NEON
 		if (Utils::ARMCAP.aes) {
-			_init_armneon_crypto(reinterpret_cast<const uint8_t *>(key));
+			p_init_armneon_crypto(reinterpret_cast<const uint8_t *>(key));
 			return;
 		}
 #endif
-		_initSW(reinterpret_cast<const uint8_t *>(key));
+		p_initSW(reinterpret_cast<const uint8_t *>(key));
 	}
 
 	/**
@@ -107,17 +108,17 @@ public:
 	{
 #ifdef ZT_AES_AESNI
 		if (likely(Utils::CPUID.aes)) {
-			_encrypt_aesni(in, out);
+			p_encrypt_aesni(in, out);
 			return;
 		}
 #endif
 #ifdef ZT_AES_NEON
 		if (Utils::ARMCAP.aes) {
-			_encrypt_armneon_crypto(in, out);
+			p_encrypt_armneon_crypto(in, out);
 			return;
 		}
 #endif
-		_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
+		p_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
 	}
 
 	/**
@@ -130,17 +131,17 @@ public:
 	{
 #ifdef ZT_AES_AESNI
 		if (likely(Utils::CPUID.aes)) {
-			_decrypt_aesni(in, out);
+			p_decrypt_aesni(in, out);
 			return;
 		}
 #endif
 #ifdef ZT_AES_NEON
 		if (Utils::ARMCAP.aes) {
-			_decrypt_armneon_crypto(in, out);
+			p_decrypt_armneon_crypto(in, out);
 			return;
 		}
 #endif
-		_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
+		p_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
 	}
 
 	class GMACSIVEncryptor;
@@ -225,6 +226,14 @@ public:
 		void finish(uint8_t tag[16]) noexcept;
 
 	private:
+#ifdef ZT_AES_AESNI
+		void p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept;
+		void p_aesNIFinish(uint8_t tag[16]) noexcept;
+#endif
+#ifdef ZT_AES_NEON
+		void p_armUpdate(const uint8_t *in, unsigned int len) noexcept;
+		void p_armFinish(uint8_t tag[16]) noexcept;
+#endif
 		const AES &_aes;
 		unsigned int _rp;
 		unsigned int _len;
@@ -292,6 +301,12 @@ public:
 		void finish() noexcept;
 
 	private:
+#ifdef ZT_AES_AESNI
+		void p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
+#endif
+#ifdef ZT_AES_NEON
+		void p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
+#endif
 		const AES &_aes;
 		uint64_t _ctr[2];
 		uint8_t *_out;
@@ -318,7 +333,7 @@ public:
 		 * @param k0 First of two AES instances keyed with K0
 		 * @param k1 Second of two AES instances keyed with K1
 		 */
-		ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept:
+		ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept :
 			_gmac(k0),
 			_ctr(k1)
 		{}
@@ -528,9 +543,9 @@ private:
 	static const uint8_t Td4[256];
 	static const uint32_t rcon[15];
 
-	void _initSW(const uint8_t key[32]) noexcept;
-	void _encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept;
-	void _decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept;
+	void p_initSW(const uint8_t *key) noexcept;
+	void p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept;
+	void p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept;
 
 	union
 	{
@@ -559,18 +574,18 @@ private:
 			uint32_t ek[60];
 			uint32_t dk[60];
 		} sw;
-	} _k;
+	} p_k;
 
 #ifdef ZT_AES_AESNI
-	void _init_aesni(const uint8_t key[32]) noexcept;
-	void _encrypt_aesni(const void *in, void *out) const noexcept;
-	void _decrypt_aesni(const void *in, void *out) const noexcept;
+	void p_init_aesni(const uint8_t *key) noexcept;
+	void p_encrypt_aesni(const void *in, void *out) const noexcept;
+	void p_decrypt_aesni(const void *in, void *out) const noexcept;
 #endif
 
 #ifdef ZT_AES_NEON
-	void _init_armneon_crypto(const uint8_t key[32]) noexcept;
-	void _encrypt_armneon_crypto(const void *in, void *out) const noexcept;
-	void _decrypt_armneon_crypto(const void *in, void *out) const noexcept;
+	void p_init_armneon_crypto(const uint8_t *key) noexcept;
+	void p_encrypt_armneon_crypto(const void *in, void *out) const noexcept;
+	void p_decrypt_armneon_crypto(const void *in, void *out) const noexcept;
 #endif
 };
 

+ 651 - 0
node/AES_aesni.cpp

@@ -0,0 +1,651 @@
+/*
+ * Copyright (c)2013-2020 ZeroTier, Inc.
+ *
+ * Use of this software is governed by the Business Source License included
+ * in the LICENSE.TXT file in the project's root directory.
+ *
+ * Change Date: 2025-01-01
+ *
+ * On the date above, in accordance with the Business Source License, use
+ * of this software will be governed by version 2.0 of the Apache License.
+ */
+/****/
+
+#include "Constants.hpp"
+#include "AES.hpp"
+
+#ifdef ZT_AES_AESNI
+
+#ifdef __GNUC__
+#pragma GCC diagnostic ignored "-Wstrict-aliasing"
+#endif
+
+namespace ZeroTier {
+
+namespace {
+
+const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
+__m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
+{
+	y = _mm_shuffle_epi8(y, s_sseSwapBytes);
+	__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
+	__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
+	__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
+	__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
+	t2 = _mm_xor_si128(t2, t3);
+	t3 = _mm_slli_si128(t2, 8);
+	t2 = _mm_srli_si128(t2, 8);
+	t1 = _mm_xor_si128(t1, t3);
+	t4 = _mm_xor_si128(t4, t2);
+	__m128i t5 = _mm_srli_epi32(t1, 31);
+	t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
+	t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
+	t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
+	t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
+	t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
+	return _mm_shuffle_epi8(t4, s_sseSwapBytes);
+}
+
+/* Disable VAES stuff on compilers too old to compile these intrinsics,
+ * and MinGW64 also seems not to support them so disable on Windows.
+ * The performance gain can be significant but regular SSE is already so
+ * fast it's highly unlikely to be a rate limiting factor except on massive
+ * servers and network infrastructure stuff. */
+#if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
+
+#define ZT_AES_VAES512 1
+
+__attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
+void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
+{
+	const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
+	const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
+	const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
+	const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
+	const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
+	const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
+	const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
+	const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
+	const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
+	const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
+	const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
+	const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
+	const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
+	const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
+	const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
+	do {
+		__m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
+		__m512i d0 = _mm512_set_epi64(
+			(long long)Utils::hton(c1 + 3ULL), (long long)c0,
+			(long long)Utils::hton(c1 + 2ULL), (long long)c0,
+			(long long)Utils::hton(c1 + 1ULL), (long long)c0,
+			(long long)Utils::hton(c1), (long long)c0);
+		c1 += 4;
+		in += 64;
+		len -= 64;
+		d0 = _mm512_xor_si512(d0, kk0);
+		d0 = _mm512_aesenc_epi128(d0, kk1);
+		d0 = _mm512_aesenc_epi128(d0, kk2);
+		d0 = _mm512_aesenc_epi128(d0, kk3);
+		d0 = _mm512_aesenc_epi128(d0, kk4);
+		d0 = _mm512_aesenc_epi128(d0, kk5);
+		d0 = _mm512_aesenc_epi128(d0, kk6);
+		d0 = _mm512_aesenc_epi128(d0, kk7);
+		d0 = _mm512_aesenc_epi128(d0, kk8);
+		d0 = _mm512_aesenc_epi128(d0, kk9);
+		d0 = _mm512_aesenc_epi128(d0, kk10);
+		d0 = _mm512_aesenc_epi128(d0, kk11);
+		d0 = _mm512_aesenc_epi128(d0, kk12);
+		d0 = _mm512_aesenc_epi128(d0, kk13);
+		d0 = _mm512_aesenclast_epi128(d0, kk14);
+		_mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
+		out += 64;
+	} while (likely(len >= 64));
+}
+
+#define ZT_AES_VAES256 1
+
+__attribute__((__target__("sse4,aes,avx,avx2,vaes")))
+void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
+{
+	const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
+	const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
+	const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
+	const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
+	const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
+	const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
+	const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
+	const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
+	const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
+	const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
+	const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
+	const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
+	const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
+	const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
+	const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
+	do {
+		__m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
+		__m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
+		__m256i d0 = _mm256_set_epi64x(
+			(long long)Utils::hton(c1 + 1ULL), (long long)c0,
+			(long long)Utils::hton(c1), (long long)c0);
+		__m256i d1 = _mm256_set_epi64x(
+			(long long)Utils::hton(c1 + 3ULL), (long long)c0,
+			(long long)Utils::hton(c1 + 2ULL), (long long)c0);
+		c1 += 4;
+		in += 64;
+		len -= 64;
+		d0 = _mm256_xor_si256(d0, kk0);
+		d1 = _mm256_xor_si256(d1, kk0);
+		d0 = _mm256_aesenc_epi128(d0, kk1);
+		d1 = _mm256_aesenc_epi128(d1, kk1);
+		d0 = _mm256_aesenc_epi128(d0, kk2);
+		d1 = _mm256_aesenc_epi128(d1, kk2);
+		d0 = _mm256_aesenc_epi128(d0, kk3);
+		d1 = _mm256_aesenc_epi128(d1, kk3);
+		d0 = _mm256_aesenc_epi128(d0, kk4);
+		d1 = _mm256_aesenc_epi128(d1, kk4);
+		d0 = _mm256_aesenc_epi128(d0, kk5);
+		d1 = _mm256_aesenc_epi128(d1, kk5);
+		d0 = _mm256_aesenc_epi128(d0, kk6);
+		d1 = _mm256_aesenc_epi128(d1, kk6);
+		d0 = _mm256_aesenc_epi128(d0, kk7);
+		d1 = _mm256_aesenc_epi128(d1, kk7);
+		d0 = _mm256_aesenc_epi128(d0, kk8);
+		d1 = _mm256_aesenc_epi128(d1, kk8);
+		d0 = _mm256_aesenc_epi128(d0, kk9);
+		d1 = _mm256_aesenc_epi128(d1, kk9);
+		d0 = _mm256_aesenc_epi128(d0, kk10);
+		d1 = _mm256_aesenc_epi128(d1, kk10);
+		d0 = _mm256_aesenc_epi128(d0, kk11);
+		d1 = _mm256_aesenc_epi128(d1, kk11);
+		d0 = _mm256_aesenc_epi128(d0, kk12);
+		d1 = _mm256_aesenc_epi128(d1, kk12);
+		d0 = _mm256_aesenc_epi128(d0, kk13);
+		d1 = _mm256_aesenc_epi128(d1, kk13);
+		d0 = _mm256_aesenclast_epi128(d0, kk14);
+		d1 = _mm256_aesenclast_epi128(d1, kk14);
+		_mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
+		_mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
+		out += 64;
+	} while (likely(len >= 64));
+}
+
+#endif // does compiler support AVX2 and AVX512 AES intrinsics?
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
+__m128i p_init256_1_aesni(__m128i a, __m128i b) noexcept
+{
+	__m128i x, y;
+	b = _mm_shuffle_epi32(b, 0xff);
+	y = _mm_slli_si128(a, 0x04);
+	x = _mm_xor_si128(a, y);
+	y = _mm_slli_si128(y, 0x04);
+	x = _mm_xor_si128(x, y);
+	y = _mm_slli_si128(y, 0x04);
+	x = _mm_xor_si128(x, y);
+	x = _mm_xor_si128(x, b);
+	return x;
+}
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
+__m128i p_init256_2_aesni(__m128i a, __m128i b) noexcept
+{
+	__m128i x, y, z;
+	y = _mm_aeskeygenassist_si128(a, 0x00);
+	z = _mm_shuffle_epi32(y, 0xaa);
+	y = _mm_slli_si128(b, 0x04);
+	x = _mm_xor_si128(b, y);
+	y = _mm_slli_si128(y, 0x04);
+	x = _mm_xor_si128(x, y);
+	y = _mm_slli_si128(y, 0x04);
+	x = _mm_xor_si128(x, y);
+	x = _mm_xor_si128(x, z);
+	return x;
+}
+
+} // anonymous namespace
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
+void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
+{
+	__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
+
+	// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
+	if (_rp) {
+		for (;;) {
+			if (!len)
+				return;
+			--len;
+			_r[_rp++] = *(in++);
+			if (_rp == 16) {
+				y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
+				break;
+			}
+		}
+	}
+
+	if (likely(len >= 64)) {
+		const __m128i sb = s_sseSwapBytes;
+		const __m128i h = _aes.p_k.ni.h[0];
+		const __m128i hh = _aes.p_k.ni.h[1];
+		const __m128i hhh = _aes.p_k.ni.h[2];
+		const __m128i hhhh = _aes.p_k.ni.h[3];
+		const __m128i h2 = _aes.p_k.ni.h2[0];
+		const __m128i hh2 = _aes.p_k.ni.h2[1];
+		const __m128i hhh2 = _aes.p_k.ni.h2[2];
+		const __m128i hhhh2 = _aes.p_k.ni.h2[3];
+		const uint8_t *const end64 = in + (len & ~((unsigned int)63));
+		len &= 63U;
+		do {
+			__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
+			__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
+			__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
+			__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
+			in += 64;
+			__m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
+			__m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
+			__m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
+			a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
+			b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
+			c = _mm_srli_epi32(a, 31);
+			a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
+			b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
+			c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
+			a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
+			b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
+			y = _mm_shuffle_epi8(b, sb);
+		} while (likely(in != end64));
+	}
+
+	while (len >= 16) {
+		y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
+		in += 16;
+		len -= 16;
+	}
+
+	_mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
+
+	// Any overflow is cached for a later run or finish().
+	for (unsigned int i = 0; i < len; ++i)
+		_r[i] = in[i];
+	_rp = len; // len is always less than 16 here
+}
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul,aes")))
+void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
+{
+	__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
+
+	// Handle any remaining bytes, padding the last block with zeroes.
+	if (_rp) {
+		while (_rp < 16)
+			_r[_rp++] = 0;
+		y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
+	}
+
+	// Interleave encryption of IV with the final GHASH of y XOR (length * 8).
+	// Then XOR these together to get the final tag.
+	const __m128i *const k = _aes.p_k.ni.k;
+	const __m128i h = _aes.p_k.ni.h[0];
+	y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
+	y = _mm_shuffle_epi8(y, s_sseSwapBytes);
+	__m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
+	__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
+	__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
+	__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
+	__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
+	encIV = _mm_aesenc_si128(encIV, k[1]);
+	t2 = _mm_xor_si128(t2, t3);
+	t3 = _mm_slli_si128(t2, 8);
+	encIV = _mm_aesenc_si128(encIV, k[2]);
+	t2 = _mm_srli_si128(t2, 8);
+	t1 = _mm_xor_si128(t1, t3);
+	encIV = _mm_aesenc_si128(encIV, k[3]);
+	t4 = _mm_xor_si128(t4, t2);
+	__m128i t5 = _mm_srli_epi32(t1, 31);
+	t1 = _mm_slli_epi32(t1, 1);
+	__m128i t6 = _mm_srli_epi32(t4, 31);
+	encIV = _mm_aesenc_si128(encIV, k[4]);
+	t4 = _mm_slli_epi32(t4, 1);
+	t3 = _mm_srli_si128(t5, 12);
+	encIV = _mm_aesenc_si128(encIV, k[5]);
+	t6 = _mm_slli_si128(t6, 4);
+	t5 = _mm_slli_si128(t5, 4);
+	encIV = _mm_aesenc_si128(encIV, k[6]);
+	t1 = _mm_or_si128(t1, t5);
+	t4 = _mm_or_si128(t4, t6);
+	encIV = _mm_aesenc_si128(encIV, k[7]);
+	t4 = _mm_or_si128(t4, t3);
+	t5 = _mm_slli_epi32(t1, 31);
+	encIV = _mm_aesenc_si128(encIV, k[8]);
+	t6 = _mm_slli_epi32(t1, 30);
+	t3 = _mm_slli_epi32(t1, 25);
+	encIV = _mm_aesenc_si128(encIV, k[9]);
+	t5 = _mm_xor_si128(t5, t6);
+	t5 = _mm_xor_si128(t5, t3);
+	encIV = _mm_aesenc_si128(encIV, k[10]);
+	t6 = _mm_srli_si128(t5, 4);
+	t4 = _mm_xor_si128(t4, t6);
+	encIV = _mm_aesenc_si128(encIV, k[11]);
+	t5 = _mm_slli_si128(t5, 12);
+	t1 = _mm_xor_si128(t1, t5);
+	t4 = _mm_xor_si128(t4, t1);
+	t5 = _mm_srli_epi32(t1, 1);
+	encIV = _mm_aesenc_si128(encIV, k[12]);
+	t2 = _mm_srli_epi32(t1, 2);
+	t3 = _mm_srli_epi32(t1, 7);
+	encIV = _mm_aesenc_si128(encIV, k[13]);
+	t4 = _mm_xor_si128(t4, t2);
+	t4 = _mm_xor_si128(t4, t3);
+	encIV = _mm_aesenclast_si128(encIV, k[14]);
+	t4 = _mm_xor_si128(t4, t5);
+	_mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
+}
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
+void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
+{
+	const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
+	uint64_t c1 = Utils::ntoh(_ctr[1]);
+
+	const __m128i *const k = _aes.p_k.ni.k;
+	const __m128i k0 = k[0];
+	const __m128i k1 = k[1];
+	const __m128i k2 = k[2];
+	const __m128i k3 = k[3];
+	const __m128i k4 = k[4];
+	const __m128i k5 = k[5];
+	const __m128i k6 = k[6];
+	const __m128i k7 = k[7];
+	const __m128i k8 = k[8];
+	const __m128i k9 = k[9];
+	const __m128i k10 = k[10];
+	const __m128i k11 = k[11];
+	const __m128i k12 = k[12];
+	const __m128i k13 = k[13];
+	const __m128i k14 = k[14];
+
+	// Complete any unfinished blocks from previous calls to crypt().
+	unsigned int totalLen = _len;
+	if ((totalLen & 15U)) {
+		for (;;) {
+			if (unlikely(!len)) {
+				_ctr[1] = Utils::hton(c1);
+				_len = totalLen;
+				return;
+			}
+			--len;
+			out[totalLen++] = *(in++);
+			if (!(totalLen & 15U)) {
+				__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
+				d0 = _mm_xor_si128(d0, k0);
+				d0 = _mm_aesenc_si128(d0, k1);
+				d0 = _mm_aesenc_si128(d0, k2);
+				d0 = _mm_aesenc_si128(d0, k3);
+				d0 = _mm_aesenc_si128(d0, k4);
+				d0 = _mm_aesenc_si128(d0, k5);
+				d0 = _mm_aesenc_si128(d0, k6);
+				d0 = _mm_aesenc_si128(d0, k7);
+				d0 = _mm_aesenc_si128(d0, k8);
+				d0 = _mm_aesenc_si128(d0, k9);
+				d0 = _mm_aesenc_si128(d0, k10);
+				__m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
+				d0 = _mm_aesenc_si128(d0, k11);
+				const __m128i p0 = _mm_loadu_si128(outblk);
+				d0 = _mm_aesenc_si128(d0, k12);
+				d0 = _mm_aesenc_si128(d0, k13);
+				d0 = _mm_aesenclast_si128(d0, k14);
+				_mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
+				break;
+			}
+		}
+	}
+
+	out += totalLen;
+	_len = totalLen + len;
+
+	if (likely(len >= 64)) {
+
+#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
+		if (Utils::CPUID.vaes && (len >= 256)) {
+			if (Utils::CPUID.avx512f) {
+				p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
+			} else {
+				p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
+			}
+			goto skip_conventional_aesni_64;
+		}
+#endif
+
+#if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
+		if (Utils::CPUID.vaes && (len >= 256)) {
+				p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
+				goto skip_conventional_aesni_64;
+			}
+#endif
+
+		const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
+		len &= 63;
+		__m128i d0, d1, d2, d3;
+		do {
+			const uint64_t c10 = Utils::hton(c1);
+			const uint64_t c11 = Utils::hton(c1 + 1ULL);
+			const uint64_t c12 = Utils::hton(c1 + 2ULL);
+			const uint64_t c13 = Utils::hton(c1 + 3ULL);
+			d0 = _mm_insert_epi64(dd, (long long)c10, 1);
+			d1 = _mm_insert_epi64(dd, (long long)c11, 1);
+			d2 = _mm_insert_epi64(dd, (long long)c12, 1);
+			d3 = _mm_insert_epi64(dd, (long long)c13, 1);
+			c1 += 4;
+			d0 = _mm_xor_si128(d0, k0);
+			d1 = _mm_xor_si128(d1, k0);
+			d2 = _mm_xor_si128(d2, k0);
+			d3 = _mm_xor_si128(d3, k0);
+			d0 = _mm_aesenc_si128(d0, k1);
+			d1 = _mm_aesenc_si128(d1, k1);
+			d2 = _mm_aesenc_si128(d2, k1);
+			d3 = _mm_aesenc_si128(d3, k1);
+			d0 = _mm_aesenc_si128(d0, k2);
+			d1 = _mm_aesenc_si128(d1, k2);
+			d2 = _mm_aesenc_si128(d2, k2);
+			d3 = _mm_aesenc_si128(d3, k2);
+			d0 = _mm_aesenc_si128(d0, k3);
+			d1 = _mm_aesenc_si128(d1, k3);
+			d2 = _mm_aesenc_si128(d2, k3);
+			d3 = _mm_aesenc_si128(d3, k3);
+			d0 = _mm_aesenc_si128(d0, k4);
+			d1 = _mm_aesenc_si128(d1, k4);
+			d2 = _mm_aesenc_si128(d2, k4);
+			d3 = _mm_aesenc_si128(d3, k4);
+			d0 = _mm_aesenc_si128(d0, k5);
+			d1 = _mm_aesenc_si128(d1, k5);
+			d2 = _mm_aesenc_si128(d2, k5);
+			d3 = _mm_aesenc_si128(d3, k5);
+			d0 = _mm_aesenc_si128(d0, k6);
+			d1 = _mm_aesenc_si128(d1, k6);
+			d2 = _mm_aesenc_si128(d2, k6);
+			d3 = _mm_aesenc_si128(d3, k6);
+			d0 = _mm_aesenc_si128(d0, k7);
+			d1 = _mm_aesenc_si128(d1, k7);
+			d2 = _mm_aesenc_si128(d2, k7);
+			d3 = _mm_aesenc_si128(d3, k7);
+			d0 = _mm_aesenc_si128(d0, k8);
+			d1 = _mm_aesenc_si128(d1, k8);
+			d2 = _mm_aesenc_si128(d2, k8);
+			d3 = _mm_aesenc_si128(d3, k8);
+			d0 = _mm_aesenc_si128(d0, k9);
+			d1 = _mm_aesenc_si128(d1, k9);
+			d2 = _mm_aesenc_si128(d2, k9);
+			d3 = _mm_aesenc_si128(d3, k9);
+			d0 = _mm_aesenc_si128(d0, k10);
+			d1 = _mm_aesenc_si128(d1, k10);
+			d2 = _mm_aesenc_si128(d2, k10);
+			d3 = _mm_aesenc_si128(d3, k10);
+			d0 = _mm_aesenc_si128(d0, k11);
+			d1 = _mm_aesenc_si128(d1, k11);
+			d2 = _mm_aesenc_si128(d2, k11);
+			d3 = _mm_aesenc_si128(d3, k11);
+			d0 = _mm_aesenc_si128(d0, k12);
+			d1 = _mm_aesenc_si128(d1, k12);
+			d2 = _mm_aesenc_si128(d2, k12);
+			d3 = _mm_aesenc_si128(d3, k12);
+			d0 = _mm_aesenc_si128(d0, k13);
+			d1 = _mm_aesenc_si128(d1, k13);
+			d2 = _mm_aesenc_si128(d2, k13);
+			d3 = _mm_aesenc_si128(d3, k13);
+			d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
+			d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
+			d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
+			d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
+			in += 64;
+			_mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
+			_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
+			_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
+			_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
+			out += 64;
+		} while (likely(in != eof64));
+
+	}
+
+	skip_conventional_aesni_64:
+	while (len >= 16) {
+		__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
+		d0 = _mm_xor_si128(d0, k0);
+		d0 = _mm_aesenc_si128(d0, k1);
+		d0 = _mm_aesenc_si128(d0, k2);
+		d0 = _mm_aesenc_si128(d0, k3);
+		d0 = _mm_aesenc_si128(d0, k4);
+		d0 = _mm_aesenc_si128(d0, k5);
+		d0 = _mm_aesenc_si128(d0, k6);
+		d0 = _mm_aesenc_si128(d0, k7);
+		d0 = _mm_aesenc_si128(d0, k8);
+		d0 = _mm_aesenc_si128(d0, k9);
+		d0 = _mm_aesenc_si128(d0, k10);
+		d0 = _mm_aesenc_si128(d0, k11);
+		d0 = _mm_aesenc_si128(d0, k12);
+		d0 = _mm_aesenc_si128(d0, k13);
+		_mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
+		in += 16;
+		len -= 16;
+		out += 16;
+	}
+
+	// Any remaining input is placed in _out. This will be picked up and crypted
+	// on subsequent calls to crypt() or finish() as it'll mean _len will not be
+	// an even multiple of 16.
+	for (unsigned int i = 0; i < len; ++i)
+		out[i] = in[i];
+
+	_ctr[1] = Utils::hton(c1);
+}
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
+void AES::p_init_aesni(const uint8_t *key) noexcept
+{
+	__m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
+	p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
+	p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
+	p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
+	p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
+	p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
+	p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
+	p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
+	p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
+	p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
+	p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
+	p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
+	p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
+	p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
+	p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
+	p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
+	p_k.ni.k[15] = _mm_aesimc_si128(k13);
+	p_k.ni.k[16] = _mm_aesimc_si128(k12);
+	p_k.ni.k[17] = _mm_aesimc_si128(k11);
+	p_k.ni.k[18] = _mm_aesimc_si128(k10);
+	p_k.ni.k[19] = _mm_aesimc_si128(k9);
+	p_k.ni.k[20] = _mm_aesimc_si128(k8);
+	p_k.ni.k[21] = _mm_aesimc_si128(k7);
+	p_k.ni.k[22] = _mm_aesimc_si128(k6);
+	p_k.ni.k[23] = _mm_aesimc_si128(k5);
+	p_k.ni.k[24] = _mm_aesimc_si128(k4);
+	p_k.ni.k[25] = _mm_aesimc_si128(k3);
+	p_k.ni.k[26] = _mm_aesimc_si128(k2);
+	p_k.ni.k[27] = _mm_aesimc_si128(k1);
+
+	__m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
+	h = _mm_aesenc_si128(h, k1);
+	h = _mm_aesenc_si128(h, k2);
+	h = _mm_aesenc_si128(h, k3);
+	h = _mm_aesenc_si128(h, k4);
+	h = _mm_aesenc_si128(h, k5);
+	h = _mm_aesenc_si128(h, k6);
+	h = _mm_aesenc_si128(h, k7);
+	h = _mm_aesenc_si128(h, k8);
+	h = _mm_aesenc_si128(h, k9);
+	h = _mm_aesenc_si128(h, k10);
+	h = _mm_aesenc_si128(h, k11);
+	h = _mm_aesenc_si128(h, k12);
+	h = _mm_aesenc_si128(h, k13);
+	h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
+	__m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
+	__m128i hh = p_gmacPCLMUL128(hswap, h);
+	__m128i hhh = p_gmacPCLMUL128(hswap, hh);
+	__m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
+	p_k.ni.h[0] = hswap;
+	p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
+	p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
+	p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
+	p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
+	p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
+	p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
+	p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
+}
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
+void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
+{
+	__m128i tmp = _mm_loadu_si128((const __m128i *)in);
+	tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
+	tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
+	_mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
+}
+
+__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
+void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
+{
+	__m128i tmp = _mm_loadu_si128((const __m128i *)in);
+	tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
+	tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
+	_mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
+}
+
+} // namespace ZeroTier
+
+#endif // ZT_AES_AESNI

+ 388 - 0
node/AES_armcrypto.cpp

@@ -0,0 +1,388 @@
+/*
+ * Copyright (c)2013-2020 ZeroTier, Inc.
+ *
+ * Use of this software is governed by the Business Source License included
+ * in the LICENSE.TXT file in the project's root directory.
+ *
+ * Change Date: 2025-01-01
+ *
+ * On the date above, in accordance with the Business Source License, use
+ * of this software will be governed by version 2.0 of the Apache License.
+ */
+/****/
+
+#include "Constants.hpp"
+#include "AES.hpp"
+
+#ifdef ZT_AES_NEON
+
+namespace ZeroTier {
+
+namespace {
+
+ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
+{
+	uint8x16_t r0, r1, t0, t1;
+	r0 = vld1q_u8(b);
+	const uint8x16_t z = veorq_u8(h, h);
+	y = veorq_u8(r0, y);
+	y = vrbitq_u8(y);
+	const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
+	t0 = vextq_u8(y, y, 8);
+	__asm__ __volatile__("pmull     %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
+	__asm__ __volatile__("pmull2   %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
+	__asm__ __volatile__("pmull     %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
+	__asm__ __volatile__("pmull2   %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
+	t0 = veorq_u8(t0, t1);
+	t1 = vextq_u8(z, t0, 8);
+	r0 = veorq_u8(r0, t1);
+	t1 = vextq_u8(t0, z, 8);
+	r1 = veorq_u8(r1, t1);
+	__asm__ __volatile__("pmull2   %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
+	t1 = vextq_u8(t0, z, 8);
+	r1 = veorq_u8(r1, t1);
+	t1 = vextq_u8(z, t0, 8);
+	r0 = veorq_u8(r0, t1);
+	__asm__ __volatile__("pmull     %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
+	return vrbitq_u8(veorq_u8(r0, t0));
+}
+
+} // anonymous namespace
+
+void AES::GMAC::p_armUpdate(const uint8_t *in, unsigned int len) noexcept
+{
+	uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
+	const uint8x16_t h = _aes.p_k.neon.h;
+
+	if (_rp) {
+		for(;;) {
+			if (!len)
+				return;
+			--len;
+			_r[_rp++] = *(in++);
+			if (_rp == 16) {
+				y = s_clmul_armneon_crypto(h, y, _r);
+				break;
+			}
+		}
+	}
+
+	while (len >= 16) {
+		y = s_clmul_armneon_crypto(h, y, in);
+		in += 16;
+		len -= 16;
+	}
+
+	vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
+
+	for (unsigned int i = 0; i < len; ++i)
+		_r[i] = in[i];
+	_rp = len; // len is always less than 16 here
+}
+
+void AES::GMAC::p_armFinish(uint8_t tag[16]) noexcept
+{
+	uint64_t tmp[2];
+	uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
+	const uint8x16_t h = _aes.p_k.neon.h;
+
+	if (_rp) {
+		while (_rp < 16)
+			_r[_rp++] = 0;
+		y = s_clmul_armneon_crypto(h, y, _r);
+	}
+
+	tmp[0] = Utils::hton((uint64_t)_len << 3U);
+	tmp[1] = 0;
+	y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
+
+	Utils::copy< 12 >(tmp, _iv);
+#if __BYTE_ORDER == __BIG_ENDIAN
+	reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
+#else
+	reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
+#endif
+	_aes.encrypt(tmp, tmp);
+
+	uint8x16_t yy = y;
+	Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
+	Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
+}
+
+void AES::CTR::p_armCrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
+{
+	uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
+	const uint32x4_t one = {0,0,0,1};
+
+	uint8x16_t k0 = _aes.p_k.neon.ek[0];
+	uint8x16_t k1 = _aes.p_k.neon.ek[1];
+	uint8x16_t k2 = _aes.p_k.neon.ek[2];
+	uint8x16_t k3 = _aes.p_k.neon.ek[3];
+	uint8x16_t k4 = _aes.p_k.neon.ek[4];
+	uint8x16_t k5 = _aes.p_k.neon.ek[5];
+	uint8x16_t k6 = _aes.p_k.neon.ek[6];
+	uint8x16_t k7 = _aes.p_k.neon.ek[7];
+	uint8x16_t k8 = _aes.p_k.neon.ek[8];
+	uint8x16_t k9 = _aes.p_k.neon.ek[9];
+	uint8x16_t k10 = _aes.p_k.neon.ek[10];
+	uint8x16_t k11 = _aes.p_k.neon.ek[11];
+	uint8x16_t k12 = _aes.p_k.neon.ek[12];
+	uint8x16_t k13 = _aes.p_k.neon.ek[13];
+	uint8x16_t k14 = _aes.p_k.neon.ek[14];
+
+	unsigned int totalLen = _len;
+	if ((totalLen & 15U)) {
+		for (;;) {
+			if (unlikely(!len)) {
+				vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
+				_len = totalLen;
+				return;
+			}
+			--len;
+			out[totalLen++] = *(in++);
+			if (!(totalLen & 15U)) {
+				uint8_t *const otmp = out + (totalLen - 16);
+				uint8x16_t d0 = vrev32q_u8(dd);
+				uint8x16_t pt = vld1q_u8(otmp);
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
+				d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
+				d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
+				vst1q_u8(otmp, veorq_u8(pt, d0));
+				dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
+				break;
+			}
+		}
+	}
+
+	out += totalLen;
+	_len = totalLen + len;
+
+	if (likely(len >= 64)) {
+		const uint32x4_t four = vshlq_n_u32(one, 2);
+		uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
+		uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
+		uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
+		for (;;) {
+			len -= 64;
+			uint8x16_t d0 = vrev32q_u8(dd);
+			uint8x16_t d1 = vrev32q_u8(dd1);
+			uint8x16_t d2 = vrev32q_u8(dd2);
+			uint8x16_t d3 = vrev32q_u8(dd3);
+			uint8x16_t pt0 = vld1q_u8(in);
+			in += 16;
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
+			uint8x16_t pt1 = vld1q_u8(in);
+			in += 16;
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
+			uint8x16_t pt2 = vld1q_u8(in);
+			in += 16;
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
+			uint8x16_t pt3 = vld1q_u8(in);
+			in += 16;
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
+			d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
+			d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
+			d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
+			d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
+			d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
+			d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
+			d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
+			d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
+
+			d0 = veorq_u8(pt0, d0);
+			d1 = veorq_u8(pt1, d1);
+			d2 = veorq_u8(pt2, d2);
+			d3 = veorq_u8(pt3, d3);
+
+			vst1q_u8(out, d0);
+			vst1q_u8(out + 16, d1);
+			vst1q_u8(out + 32, d2);
+			vst1q_u8(out + 48, d3);
+			out += 64;
+
+			dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
+			if (unlikely(len < 64))
+				break;
+			dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
+			dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
+			dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
+		}
+	}
+
+	while (len >= 16) {
+		len -= 16;
+		uint8x16_t d0 = vrev32q_u8(dd);
+		uint8x16_t pt = vld1q_u8(in);
+		in += 16;
+		dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
+		d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
+		d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
+		vst1q_u8(out, veorq_u8(pt, d0));
+		out += 16;
+	}
+
+	// Any remaining input is placed in _out. This will be picked up and crypted
+	// on subsequent calls to crypt() or finish() as it'll mean _len will not be
+	// an even multiple of 16.
+	for (unsigned int i = 0; i < len; ++i)
+		out[i] = in[i];
+
+	vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
+}
+
+#define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
+#define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
+#define ZT_INIT_ARMNEON_CRYPTO_NK 8
+#define ZT_INIT_ARMNEON_CRYPTO_NB 4
+#define ZT_INIT_ARMNEON_CRYPTO_NR 14
+
+void AES::p_init_armneon_crypto(const uint8_t *key) noexcept
+{
+	static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
+	                                    0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
+	                                    0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
+
+	uint64_t h[2];
+	uint32_t *const w = reinterpret_cast<uint32_t *>(p_k.neon.ek);
+
+	for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
+		const unsigned int j = i * 4;
+		w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
+	}
+
+	for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
+		uint32_t t = w[i - 1];
+		const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
+		if (imod == 0) {
+			t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
+		} else if (imod == 4) {
+			t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
+		}
+		w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
+	}
+
+	for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
+		w[i] = Utils::hton(w[i]);
+
+	p_k.neon.dk[0] = p_k.neon.ek[14];
+	for (int i=1;i<14;++i)
+		p_k.neon.dk[i] = vaesimcq_u8(p_k.neon.ek[14 - i]);
+	p_k.neon.dk[14] = p_k.neon.ek[0];
+
+	p_encrypt_armneon_crypto(Utils::ZERO256, h);
+	Utils::copy<16>(&(p_k.neon.h), h);
+	p_k.neon.h = vrbitq_u8(p_k.neon.h);
+	p_k.sw.h[0] = Utils::ntoh(h[0]);
+	p_k.sw.h[1] = Utils::ntoh(h[1]);
+}
+
+void AES::p_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
+{
+	uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[0]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[1]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[2]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[3]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[4]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[5]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[6]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[7]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[8]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[9]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[10]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[11]));
+	tmp = vaesmcq_u8(vaeseq_u8(tmp, p_k.neon.ek[12]));
+	tmp = veorq_u8(vaeseq_u8(tmp, p_k.neon.ek[13]), p_k.neon.ek[14]);
+	vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
+}
+
+void AES::p_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
+{
+	uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[0]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[1]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[2]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[3]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[4]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[5]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[6]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[7]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[8]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[9]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[10]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[11]));
+	tmp = vaesimcq_u8(vaesdq_u8(tmp, p_k.neon.dk[12]));
+	tmp = veorq_u8(vaesdq_u8(tmp, p_k.neon.dk[13]), p_k.neon.dk[14]);
+	vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
+}
+
+} // namespace ZeroTier
+
+#endif // ZT_AES_NEON

+ 0 - 19
node/Bond.cpp

@@ -1610,11 +1610,6 @@ void Bond::processActiveBackupTasks(void *tPtr, const int64_t now)
 
 void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool useTemplate)
 {
-	// TODO: Remove for production
-	_header=false;
-	_lastLogTS = RR->node->now();
-	_lastPrintTS = RR->node->now();
-
 	// If invalid bonding policy, try default
 	int _defaultBondingPolicy = BondController::defaultBondingPolicy();
 	if (policy <= ZT_BONDING_POLICY_NONE || policy > ZT_BONDING_POLICY_BALANCE_AWARE) {
@@ -1773,20 +1768,6 @@ void Bond::setReasonableDefaults(int policy, SharedPtr<Bond> templateBond, bool
 	_qosCutoffCount = 0;
 	throughputMeasurementInterval = _ackSendInterval * 2;
 	_defaultPathRefractoryPeriod = 8000;
-
-	char traceMsg[256];
-	sprintf(traceMsg, "%s (bond) Bond to peer %llx is configured as (monStrat=%d, fi= %d, bmi= %d, qos= %d, ack= %d, estimateInt= %d, refractory= %d, ud= %d, dd= %d)",
-		OSUtils::humanReadableTimestamp().c_str(), _peer->_id.address().toInt(),
-		_linkMonitorStrategy,
-		_failoverInterval,
-		_bondMonitorInterval,
-		_qosSendInterval,
-		_ackSendInterval,
-		_qualityEstimationInterval,
-		_defaultPathRefractoryPeriod,
-		_upDelay,
-		_downDelay);
-	RR->t->bondStateMessage(NULL, traceMsg);
 }
 
 void Bond::setUserQualityWeights(float weights[], int len)

+ 2 - 0
objects.mk

@@ -1,5 +1,7 @@
 CORE_OBJS=\
 	node/AES.o \
+	node/AES_aesni.o \
+	node/AES_armcrypto.o \
 	node/C25519.o \
 	node/Capability.o \
 	node/CertificateOfMembership.o \