|
@@ -31,37 +31,6 @@ namespace ZeroTier {
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
-#ifdef ZT_AES_NEON
|
|
|
-
|
|
|
-ZT_INLINE uint8x16_t s_clmul_armneon_crypto(uint8x16_t h, uint8x16_t y, const uint8_t b[16]) noexcept
|
|
|
-{
|
|
|
- uint8x16_t r0, r1, t0, t1;
|
|
|
- r0 = vld1q_u8(b);
|
|
|
- const uint8x16_t z = veorq_u8(h, h);
|
|
|
- y = veorq_u8(r0, y);
|
|
|
- y = vrbitq_u8(y);
|
|
|
- const uint8x16_t p = vreinterpretq_u8_u64(vdupq_n_u64(0x0000000000000087));
|
|
|
- t0 = vextq_u8(y, y, 8);
|
|
|
- __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (r0) : "w" (h), "w" (y));
|
|
|
- __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (r1) : "w" (h), "w" (y));
|
|
|
- __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t1) : "w" (h), "w" (t0));
|
|
|
- __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (h), "w" (t0));
|
|
|
- t0 = veorq_u8(t0, t1);
|
|
|
- t1 = vextq_u8(z, t0, 8);
|
|
|
- r0 = veorq_u8(r0, t1);
|
|
|
- t1 = vextq_u8(t0, z, 8);
|
|
|
- r1 = veorq_u8(r1, t1);
|
|
|
- __asm__ __volatile__("pmull2 %0.1q, %1.2d, %2.2d \n\t" :"=w" (t0) : "w" (r1), "w" (p));
|
|
|
- t1 = vextq_u8(t0, z, 8);
|
|
|
- r1 = veorq_u8(r1, t1);
|
|
|
- t1 = vextq_u8(z, t0, 8);
|
|
|
- r0 = veorq_u8(r0, t1);
|
|
|
- __asm__ __volatile__("pmull %0.1q, %1.1d, %2.1d \n\t" : "=w" (t0) : "w" (r1), "w" (p));
|
|
|
- return vrbitq_u8(veorq_u8(r0, t0));
|
|
|
-}
|
|
|
-
|
|
|
-#endif // ZT_AES_NEON
|
|
|
-
|
|
|
#define s_bmul32(N, x, y, rh, rl) \
|
|
|
uint32_t x0t_##N = (x) & 0x11111111U; \
|
|
|
uint32_t x1t_##N = (x) & 0x22222222U; \
|
|
@@ -141,36 +110,6 @@ void s_gfmul(const uint64_t hh, const uint64_t hl, uint64_t &y0, uint64_t &y1) n
|
|
|
|
|
|
} // anonymous namespace
|
|
|
|
|
|
-#ifdef ZT_AES_AESNI
|
|
|
-
|
|
|
-// SSE shuffle parameter to reverse bytes in a 128-bit vector.
|
|
|
-static const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
|
|
|
-
|
|
|
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
|
|
|
-static __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
|
|
|
-{
|
|
|
- y = _mm_shuffle_epi8(y, s_sseSwapBytes);
|
|
|
- __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
|
|
|
- __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
|
|
|
- __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
|
|
|
- __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
|
|
|
- t2 = _mm_xor_si128(t2, t3);
|
|
|
- t3 = _mm_slli_si128(t2, 8);
|
|
|
- t2 = _mm_srli_si128(t2, 8);
|
|
|
- t1 = _mm_xor_si128(t1, t3);
|
|
|
- t4 = _mm_xor_si128(t4, t2);
|
|
|
- __m128i t5 = _mm_srli_epi32(t1, 31);
|
|
|
- t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
|
|
|
- t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
|
|
|
- t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
|
|
|
- t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
|
|
|
- t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
|
|
|
- return _mm_shuffle_epi8(t4, s_sseSwapBytes);
|
|
|
-}
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
|
|
|
void AES::GMAC::update(const void *const data, unsigned int len) noexcept
|
|
|
{
|
|
|
const uint8_t *in = reinterpret_cast<const uint8_t *>(data);
|
|
@@ -178,108 +117,20 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
|
|
|
|
|
|
#ifdef ZT_AES_AESNI
|
|
|
if (likely(Utils::CPUID.aes)) {
|
|
|
- __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
|
|
|
-
|
|
|
- // Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
|
|
|
- if (_rp) {
|
|
|
- for (;;) {
|
|
|
- if (!len)
|
|
|
- return;
|
|
|
- --len;
|
|
|
- _r[_rp++] = *(in++);
|
|
|
- if (_rp == 16) {
|
|
|
- y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if (likely(len >= 64)) {
|
|
|
- const __m128i sb = s_sseSwapBytes;
|
|
|
- const __m128i h = _aes._k.ni.h[0];
|
|
|
- const __m128i hh = _aes._k.ni.h[1];
|
|
|
- const __m128i hhh = _aes._k.ni.h[2];
|
|
|
- const __m128i hhhh = _aes._k.ni.h[3];
|
|
|
- const __m128i h2 = _aes._k.ni.h2[0];
|
|
|
- const __m128i hh2 = _aes._k.ni.h2[1];
|
|
|
- const __m128i hhh2 = _aes._k.ni.h2[2];
|
|
|
- const __m128i hhhh2 = _aes._k.ni.h2[3];
|
|
|
- const uint8_t *const end64 = in + (len & ~((unsigned int)63));
|
|
|
- len &= 63;
|
|
|
- do {
|
|
|
- __m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
|
|
|
- __m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
|
|
|
- __m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
|
|
|
- __m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
|
|
|
- in += 64;
|
|
|
- __m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
|
|
|
- __m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
|
|
|
- __m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
|
|
|
- a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
|
|
|
- b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
|
|
|
- c = _mm_srli_epi32(a, 31);
|
|
|
- a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
|
|
|
- b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
|
|
|
- c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
|
|
|
- a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
|
|
|
- b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
|
|
|
- y = _mm_shuffle_epi8(b, sb);
|
|
|
- } while (likely(in != end64));
|
|
|
- }
|
|
|
-
|
|
|
- while (len >= 16) {
|
|
|
- y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
|
|
|
- in += 16;
|
|
|
- len -= 16;
|
|
|
- }
|
|
|
-
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
|
|
|
-
|
|
|
- // Any overflow is cached for a later run or finish().
|
|
|
- for (unsigned int i = 0; i < len; ++i)
|
|
|
- _r[i] = in[i];
|
|
|
- _rp = len; // len is always less than 16 here
|
|
|
-
|
|
|
+ p_aesNIUpdate(in, len);
|
|
|
return;
|
|
|
}
|
|
|
#endif // ZT_AES_AESNI
|
|
|
|
|
|
#ifdef ZT_AES_NEON
|
|
|
if (Utils::ARMCAP.pmull) {
|
|
|
- uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
|
|
|
- const uint8x16_t h = _aes._k.neon.h;
|
|
|
-
|
|
|
- if (_rp) {
|
|
|
- for(;;) {
|
|
|
- if (!len)
|
|
|
- return;
|
|
|
- --len;
|
|
|
- _r[_rp++] = *(in++);
|
|
|
- if (_rp == 16) {
|
|
|
- y = s_clmul_armneon_crypto(h, y, _r);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- while (len >= 16) {
|
|
|
- y = s_clmul_armneon_crypto(h, y, in);
|
|
|
- in += 16;
|
|
|
- len -= 16;
|
|
|
- }
|
|
|
-
|
|
|
- vst1q_u8(reinterpret_cast<uint8_t *>(_y), y);
|
|
|
-
|
|
|
- for (unsigned int i = 0; i < len; ++i)
|
|
|
- _r[i] = in[i];
|
|
|
- _rp = len; // len is always less than 16 here
|
|
|
-
|
|
|
+ p_armUpdate(in, len);
|
|
|
return;
|
|
|
}
|
|
|
#endif // ZT_AES_NEON
|
|
|
|
|
|
- const uint64_t h0 = _aes._k.sw.h[0];
|
|
|
- const uint64_t h1 = _aes._k.sw.h[1];
|
|
|
+ const uint64_t h0 = _aes.p_k.sw.h[0];
|
|
|
+ const uint64_t h1 = _aes.p_k.sw.h[1];
|
|
|
uint64_t y0 = _y[0];
|
|
|
uint64_t y1 = _y[1];
|
|
|
|
|
@@ -324,116 +175,24 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
|
|
|
_rp = len; // len is always less than 16 here
|
|
|
}
|
|
|
|
|
|
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
|
|
|
void AES::GMAC::finish(uint8_t tag[16]) noexcept
|
|
|
{
|
|
|
#ifdef ZT_AES_AESNI
|
|
|
if (likely(Utils::CPUID.aes)) {
|
|
|
- __m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
|
|
|
-
|
|
|
- // Handle any remaining bytes, padding the last block with zeroes.
|
|
|
- if (_rp) {
|
|
|
- while (_rp < 16)
|
|
|
- _r[_rp++] = 0;
|
|
|
- y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
|
|
|
- }
|
|
|
-
|
|
|
- // Interleave encryption of IV with the final GHASH of y XOR (length * 8).
|
|
|
- // Then XOR these together to get the final tag.
|
|
|
- const __m128i *const k = _aes._k.ni.k;
|
|
|
- const __m128i h = _aes._k.ni.h[0];
|
|
|
- y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
|
|
|
- y = _mm_shuffle_epi8(y, s_sseSwapBytes);
|
|
|
- __m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
|
|
|
- __m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
|
|
|
- __m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
|
|
|
- __m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
|
|
|
- __m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[1]);
|
|
|
- t2 = _mm_xor_si128(t2, t3);
|
|
|
- t3 = _mm_slli_si128(t2, 8);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[2]);
|
|
|
- t2 = _mm_srli_si128(t2, 8);
|
|
|
- t1 = _mm_xor_si128(t1, t3);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[3]);
|
|
|
- t4 = _mm_xor_si128(t4, t2);
|
|
|
- __m128i t5 = _mm_srli_epi32(t1, 31);
|
|
|
- t1 = _mm_slli_epi32(t1, 1);
|
|
|
- __m128i t6 = _mm_srli_epi32(t4, 31);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[4]);
|
|
|
- t4 = _mm_slli_epi32(t4, 1);
|
|
|
- t3 = _mm_srli_si128(t5, 12);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[5]);
|
|
|
- t6 = _mm_slli_si128(t6, 4);
|
|
|
- t5 = _mm_slli_si128(t5, 4);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[6]);
|
|
|
- t1 = _mm_or_si128(t1, t5);
|
|
|
- t4 = _mm_or_si128(t4, t6);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[7]);
|
|
|
- t4 = _mm_or_si128(t4, t3);
|
|
|
- t5 = _mm_slli_epi32(t1, 31);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[8]);
|
|
|
- t6 = _mm_slli_epi32(t1, 30);
|
|
|
- t3 = _mm_slli_epi32(t1, 25);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[9]);
|
|
|
- t5 = _mm_xor_si128(t5, t6);
|
|
|
- t5 = _mm_xor_si128(t5, t3);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[10]);
|
|
|
- t6 = _mm_srli_si128(t5, 4);
|
|
|
- t4 = _mm_xor_si128(t4, t6);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[11]);
|
|
|
- t5 = _mm_slli_si128(t5, 12);
|
|
|
- t1 = _mm_xor_si128(t1, t5);
|
|
|
- t4 = _mm_xor_si128(t4, t1);
|
|
|
- t5 = _mm_srli_epi32(t1, 1);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[12]);
|
|
|
- t2 = _mm_srli_epi32(t1, 2);
|
|
|
- t3 = _mm_srli_epi32(t1, 7);
|
|
|
- encIV = _mm_aesenc_si128(encIV, k[13]);
|
|
|
- t4 = _mm_xor_si128(t4, t2);
|
|
|
- t4 = _mm_xor_si128(t4, t3);
|
|
|
- encIV = _mm_aesenclast_si128(encIV, k[14]);
|
|
|
- t4 = _mm_xor_si128(t4, t5);
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
|
|
|
-
|
|
|
+ p_aesNIFinish(tag);
|
|
|
return;
|
|
|
}
|
|
|
#endif // ZT_AES_AESNI
|
|
|
|
|
|
#ifdef ZT_AES_NEON
|
|
|
if (Utils::ARMCAP.pmull) {
|
|
|
- uint64_t tmp[2];
|
|
|
- uint8x16_t y = vld1q_u8(reinterpret_cast<const uint8_t *>(_y));
|
|
|
- const uint8x16_t h = _aes._k.neon.h;
|
|
|
-
|
|
|
- if (_rp) {
|
|
|
- while (_rp < 16)
|
|
|
- _r[_rp++] = 0;
|
|
|
- y = s_clmul_armneon_crypto(h, y, _r);
|
|
|
- }
|
|
|
-
|
|
|
- tmp[0] = Utils::hton((uint64_t)_len << 3U);
|
|
|
- tmp[1] = 0;
|
|
|
- y = s_clmul_armneon_crypto(h, y, reinterpret_cast<const uint8_t *>(tmp));
|
|
|
-
|
|
|
- Utils::copy< 12 >(tmp, _iv);
|
|
|
-#if __BYTE_ORDER == __BIG_ENDIAN
|
|
|
- reinterpret_cast<uint32_t *>(tmp)[3] = 0x00000001;
|
|
|
-#else
|
|
|
- reinterpret_cast<uint32_t *>(tmp)[3] = 0x01000000;
|
|
|
-#endif
|
|
|
- _aes.encrypt(tmp, tmp);
|
|
|
-
|
|
|
- uint8x16_t yy = y;
|
|
|
- Utils::storeMachineEndian< uint64_t >(tag, tmp[0] ^ reinterpret_cast<const uint64_t *>(&yy)[0]);
|
|
|
- Utils::storeMachineEndian< uint64_t >(tag + 8, tmp[1] ^ reinterpret_cast<const uint64_t *>(&yy)[1]);
|
|
|
-
|
|
|
+ p_armFinish(tag);
|
|
|
return;
|
|
|
}
|
|
|
#endif // ZT_AES_NEON
|
|
|
|
|
|
- const uint64_t h0 = _aes._k.sw.h[0];
|
|
|
- const uint64_t h1 = _aes._k.sw.h[1];
|
|
|
+ const uint64_t h0 = _aes.p_k.sw.h[0];
|
|
|
+ const uint64_t h1 = _aes.p_k.sw.h[1];
|
|
|
uint64_t y0 = _y[0];
|
|
|
uint64_t y1 = _y[1];
|
|
|
|
|
@@ -463,140 +222,6 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
|
|
|
|
|
|
// AES-CTR ------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
-#ifdef ZT_AES_AESNI
|
|
|
-
|
|
|
-/* Disable VAES stuff on compilers too old to compile these intrinsics,
|
|
|
- * and MinGW64 also seems not to support them so disable on Windows.
|
|
|
- * The performance gain can be significant but regular SSE is already so
|
|
|
- * fast it's highly unlikely to be a rate limiting factor except on massive
|
|
|
- * servers and network infrastructure stuff. */
|
|
|
-#if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
|
|
|
-
|
|
|
-#define ZT_AES_VAES512 1
|
|
|
-
|
|
|
-static
|
|
|
-__attribute__((__target__("sse4,avx,avx2,vaes,avx512f,avx512bw")))
|
|
|
-void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
|
|
|
-{
|
|
|
- const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
|
|
|
- const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
|
|
|
- const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
|
|
|
- const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
|
|
|
- const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
|
|
|
- const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
|
|
|
- const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
|
|
|
- const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
|
|
|
- const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
|
|
|
- const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
|
|
|
- const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
|
|
|
- const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
|
|
|
- const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
|
|
|
- const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
|
|
|
- const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
|
|
|
- do {
|
|
|
- __m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
|
|
|
- __m512i d0 = _mm512_set_epi64(
|
|
|
- (long long)Utils::hton(c1 + 3ULL), (long long)c0,
|
|
|
- (long long)Utils::hton(c1 + 2ULL), (long long)c0,
|
|
|
- (long long)Utils::hton(c1 + 1ULL), (long long)c0,
|
|
|
- (long long)Utils::hton(c1), (long long)c0);
|
|
|
- c1 += 4;
|
|
|
- in += 64;
|
|
|
- len -= 64;
|
|
|
- d0 = _mm512_xor_si512(d0, kk0);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk1);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk2);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk3);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk4);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk5);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk6);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk7);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk8);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk9);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk10);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk11);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk12);
|
|
|
- d0 = _mm512_aesenc_epi128(d0, kk13);
|
|
|
- d0 = _mm512_aesenclast_epi128(d0, kk14);
|
|
|
- _mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
|
|
|
- out += 64;
|
|
|
- } while (likely(len >= 64));
|
|
|
-}
|
|
|
-
|
|
|
-#define ZT_AES_VAES256 1
|
|
|
-
|
|
|
-static
|
|
|
-__attribute__((__target__("sse4,avx,avx2,vaes")))
|
|
|
-void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
|
|
|
-{
|
|
|
- const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
|
|
|
- const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
|
|
|
- const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
|
|
|
- const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
|
|
|
- const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
|
|
|
- const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
|
|
|
- const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
|
|
|
- const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
|
|
|
- const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
|
|
|
- const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
|
|
|
- const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
|
|
|
- const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
|
|
|
- const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
|
|
|
- const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
|
|
|
- const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
|
|
|
- do {
|
|
|
- __m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
|
|
|
- __m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
|
|
|
- __m256i d0 = _mm256_set_epi64x(
|
|
|
- (long long)Utils::hton(c1 + 1ULL), (long long)c0,
|
|
|
- (long long)Utils::hton(c1), (long long)c0);
|
|
|
- __m256i d1 = _mm256_set_epi64x(
|
|
|
- (long long)Utils::hton(c1 + 3ULL), (long long)c0,
|
|
|
- (long long)Utils::hton(c1 + 2ULL), (long long)c0);
|
|
|
- c1 += 4;
|
|
|
- in += 64;
|
|
|
- len -= 64;
|
|
|
- d0 = _mm256_xor_si256(d0, kk0);
|
|
|
- d1 = _mm256_xor_si256(d1, kk0);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk1);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk1);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk2);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk2);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk3);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk3);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk4);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk4);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk5);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk5);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk6);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk6);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk7);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk7);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk8);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk8);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk9);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk9);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk10);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk10);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk11);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk11);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk12);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk12);
|
|
|
- d0 = _mm256_aesenc_epi128(d0, kk13);
|
|
|
- d1 = _mm256_aesenc_epi128(d1, kk13);
|
|
|
- d0 = _mm256_aesenclast_epi128(d0, kk14);
|
|
|
- d1 = _mm256_aesenclast_epi128(d1, kk14);
|
|
|
- _mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
|
|
|
- _mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
|
|
|
- out += 64;
|
|
|
- } while (likely(len >= 64));
|
|
|
-}
|
|
|
-
|
|
|
-#endif // does compiler support AVX2 and AVX512 AES intrinsics?
|
|
|
-
|
|
|
-#endif // ZT_AES_AESNI
|
|
|
-
|
|
|
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
|
|
|
void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
|
|
|
{
|
|
|
const uint8_t *in = reinterpret_cast<const uint8_t *>(input);
|
|
@@ -604,388 +229,14 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
|
|
|
|
|
|
#ifdef ZT_AES_AESNI
|
|
|
if (likely(Utils::CPUID.aes)) {
|
|
|
- const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
|
|
|
- uint64_t c1 = Utils::ntoh(_ctr[1]);
|
|
|
-
|
|
|
- const __m128i *const k = _aes._k.ni.k;
|
|
|
- const __m128i k0 = k[0];
|
|
|
- const __m128i k1 = k[1];
|
|
|
- const __m128i k2 = k[2];
|
|
|
- const __m128i k3 = k[3];
|
|
|
- const __m128i k4 = k[4];
|
|
|
- const __m128i k5 = k[5];
|
|
|
- const __m128i k6 = k[6];
|
|
|
- const __m128i k7 = k[7];
|
|
|
- const __m128i k8 = k[8];
|
|
|
- const __m128i k9 = k[9];
|
|
|
- const __m128i k10 = k[10];
|
|
|
- const __m128i k11 = k[11];
|
|
|
- const __m128i k12 = k[12];
|
|
|
- const __m128i k13 = k[13];
|
|
|
- const __m128i k14 = k[14];
|
|
|
-
|
|
|
- // Complete any unfinished blocks from previous calls to crypt().
|
|
|
- unsigned int totalLen = _len;
|
|
|
- if ((totalLen & 15U)) {
|
|
|
- for (;;) {
|
|
|
- if (unlikely(!len)) {
|
|
|
- _ctr[1] = Utils::hton(c1);
|
|
|
- _len = totalLen;
|
|
|
- return;
|
|
|
- }
|
|
|
- --len;
|
|
|
- out[totalLen++] = *(in++);
|
|
|
- if (!(totalLen & 15U)) {
|
|
|
- __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
|
|
|
- d0 = _mm_xor_si128(d0, k0);
|
|
|
- d0 = _mm_aesenc_si128(d0, k1);
|
|
|
- d0 = _mm_aesenc_si128(d0, k2);
|
|
|
- d0 = _mm_aesenc_si128(d0, k3);
|
|
|
- d0 = _mm_aesenc_si128(d0, k4);
|
|
|
- d0 = _mm_aesenc_si128(d0, k5);
|
|
|
- d0 = _mm_aesenc_si128(d0, k6);
|
|
|
- d0 = _mm_aesenc_si128(d0, k7);
|
|
|
- d0 = _mm_aesenc_si128(d0, k8);
|
|
|
- d0 = _mm_aesenc_si128(d0, k9);
|
|
|
- d0 = _mm_aesenc_si128(d0, k10);
|
|
|
- __m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
|
|
|
- d0 = _mm_aesenc_si128(d0, k11);
|
|
|
- const __m128i p0 = _mm_loadu_si128(outblk);
|
|
|
- d0 = _mm_aesenc_si128(d0, k12);
|
|
|
- d0 = _mm_aesenc_si128(d0, k13);
|
|
|
- d0 = _mm_aesenclast_si128(d0, k14);
|
|
|
- _mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- out += totalLen;
|
|
|
- _len = totalLen + len;
|
|
|
-
|
|
|
- if (likely(len >= 64)) {
|
|
|
-
|
|
|
-#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
|
|
|
- if (Utils::CPUID.vaes && (len >= 256)) {
|
|
|
- if (Utils::CPUID.avx512f) {
|
|
|
- p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
|
|
|
- } else {
|
|
|
- p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
|
|
|
- }
|
|
|
- goto skip_conventional_aesni_64;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
-#if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
|
|
|
- if (Utils::CPUID.vaes && (len >= 256)) {
|
|
|
- p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
|
|
|
- goto skip_conventional_aesni_64;
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
|
|
|
- len &= 63;
|
|
|
- __m128i d0, d1, d2, d3;
|
|
|
- do {
|
|
|
- const uint64_t c10 = Utils::hton(c1);
|
|
|
- const uint64_t c11 = Utils::hton(c1 + 1ULL);
|
|
|
- const uint64_t c12 = Utils::hton(c1 + 2ULL);
|
|
|
- const uint64_t c13 = Utils::hton(c1 + 3ULL);
|
|
|
- d0 = _mm_insert_epi64(dd, (long long)c10, 1);
|
|
|
- d1 = _mm_insert_epi64(dd, (long long)c11, 1);
|
|
|
- d2 = _mm_insert_epi64(dd, (long long)c12, 1);
|
|
|
- d3 = _mm_insert_epi64(dd, (long long)c13, 1);
|
|
|
- c1 += 4;
|
|
|
- d0 = _mm_xor_si128(d0, k0);
|
|
|
- d1 = _mm_xor_si128(d1, k0);
|
|
|
- d2 = _mm_xor_si128(d2, k0);
|
|
|
- d3 = _mm_xor_si128(d3, k0);
|
|
|
- d0 = _mm_aesenc_si128(d0, k1);
|
|
|
- d1 = _mm_aesenc_si128(d1, k1);
|
|
|
- d2 = _mm_aesenc_si128(d2, k1);
|
|
|
- d3 = _mm_aesenc_si128(d3, k1);
|
|
|
- d0 = _mm_aesenc_si128(d0, k2);
|
|
|
- d1 = _mm_aesenc_si128(d1, k2);
|
|
|
- d2 = _mm_aesenc_si128(d2, k2);
|
|
|
- d3 = _mm_aesenc_si128(d3, k2);
|
|
|
- d0 = _mm_aesenc_si128(d0, k3);
|
|
|
- d1 = _mm_aesenc_si128(d1, k3);
|
|
|
- d2 = _mm_aesenc_si128(d2, k3);
|
|
|
- d3 = _mm_aesenc_si128(d3, k3);
|
|
|
- d0 = _mm_aesenc_si128(d0, k4);
|
|
|
- d1 = _mm_aesenc_si128(d1, k4);
|
|
|
- d2 = _mm_aesenc_si128(d2, k4);
|
|
|
- d3 = _mm_aesenc_si128(d3, k4);
|
|
|
- d0 = _mm_aesenc_si128(d0, k5);
|
|
|
- d1 = _mm_aesenc_si128(d1, k5);
|
|
|
- d2 = _mm_aesenc_si128(d2, k5);
|
|
|
- d3 = _mm_aesenc_si128(d3, k5);
|
|
|
- d0 = _mm_aesenc_si128(d0, k6);
|
|
|
- d1 = _mm_aesenc_si128(d1, k6);
|
|
|
- d2 = _mm_aesenc_si128(d2, k6);
|
|
|
- d3 = _mm_aesenc_si128(d3, k6);
|
|
|
- d0 = _mm_aesenc_si128(d0, k7);
|
|
|
- d1 = _mm_aesenc_si128(d1, k7);
|
|
|
- d2 = _mm_aesenc_si128(d2, k7);
|
|
|
- d3 = _mm_aesenc_si128(d3, k7);
|
|
|
- d0 = _mm_aesenc_si128(d0, k8);
|
|
|
- d1 = _mm_aesenc_si128(d1, k8);
|
|
|
- d2 = _mm_aesenc_si128(d2, k8);
|
|
|
- d3 = _mm_aesenc_si128(d3, k8);
|
|
|
- d0 = _mm_aesenc_si128(d0, k9);
|
|
|
- d1 = _mm_aesenc_si128(d1, k9);
|
|
|
- d2 = _mm_aesenc_si128(d2, k9);
|
|
|
- d3 = _mm_aesenc_si128(d3, k9);
|
|
|
- d0 = _mm_aesenc_si128(d0, k10);
|
|
|
- d1 = _mm_aesenc_si128(d1, k10);
|
|
|
- d2 = _mm_aesenc_si128(d2, k10);
|
|
|
- d3 = _mm_aesenc_si128(d3, k10);
|
|
|
- d0 = _mm_aesenc_si128(d0, k11);
|
|
|
- d1 = _mm_aesenc_si128(d1, k11);
|
|
|
- d2 = _mm_aesenc_si128(d2, k11);
|
|
|
- d3 = _mm_aesenc_si128(d3, k11);
|
|
|
- d0 = _mm_aesenc_si128(d0, k12);
|
|
|
- d1 = _mm_aesenc_si128(d1, k12);
|
|
|
- d2 = _mm_aesenc_si128(d2, k12);
|
|
|
- d3 = _mm_aesenc_si128(d3, k12);
|
|
|
- d0 = _mm_aesenc_si128(d0, k13);
|
|
|
- d1 = _mm_aesenc_si128(d1, k13);
|
|
|
- d2 = _mm_aesenc_si128(d2, k13);
|
|
|
- d3 = _mm_aesenc_si128(d3, k13);
|
|
|
- d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
|
|
|
- d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
|
|
|
- d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
|
|
|
- d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
|
|
|
- in += 64;
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
|
|
|
- out += 64;
|
|
|
- } while (likely(in != eof64));
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- skip_conventional_aesni_64:
|
|
|
- while (len >= 16) {
|
|
|
- __m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
|
|
|
- d0 = _mm_xor_si128(d0, k0);
|
|
|
- d0 = _mm_aesenc_si128(d0, k1);
|
|
|
- d0 = _mm_aesenc_si128(d0, k2);
|
|
|
- d0 = _mm_aesenc_si128(d0, k3);
|
|
|
- d0 = _mm_aesenc_si128(d0, k4);
|
|
|
- d0 = _mm_aesenc_si128(d0, k5);
|
|
|
- d0 = _mm_aesenc_si128(d0, k6);
|
|
|
- d0 = _mm_aesenc_si128(d0, k7);
|
|
|
- d0 = _mm_aesenc_si128(d0, k8);
|
|
|
- d0 = _mm_aesenc_si128(d0, k9);
|
|
|
- d0 = _mm_aesenc_si128(d0, k10);
|
|
|
- d0 = _mm_aesenc_si128(d0, k11);
|
|
|
- d0 = _mm_aesenc_si128(d0, k12);
|
|
|
- d0 = _mm_aesenc_si128(d0, k13);
|
|
|
- _mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
|
|
|
- in += 16;
|
|
|
- len -= 16;
|
|
|
- out += 16;
|
|
|
- }
|
|
|
-
|
|
|
- // Any remaining input is placed in _out. This will be picked up and crypted
|
|
|
- // on subsequent calls to crypt() or finish() as it'll mean _len will not be
|
|
|
- // an even multiple of 16.
|
|
|
- for (unsigned int i = 0; i < len; ++i)
|
|
|
- out[i] = in[i];
|
|
|
-
|
|
|
- _ctr[1] = Utils::hton(c1);
|
|
|
+ p_aesNICrypt(in, out, len);
|
|
|
return;
|
|
|
}
|
|
|
#endif // ZT_AES_AESNI
|
|
|
|
|
|
#ifdef ZT_AES_NEON
|
|
|
if (Utils::ARMCAP.aes) {
|
|
|
- uint8x16_t dd = vrev32q_u8(vld1q_u8(reinterpret_cast<uint8_t *>(_ctr)));
|
|
|
- const uint32x4_t one = {0,0,0,1};
|
|
|
-
|
|
|
- uint8x16_t k0 = _aes._k.neon.ek[0];
|
|
|
- uint8x16_t k1 = _aes._k.neon.ek[1];
|
|
|
- uint8x16_t k2 = _aes._k.neon.ek[2];
|
|
|
- uint8x16_t k3 = _aes._k.neon.ek[3];
|
|
|
- uint8x16_t k4 = _aes._k.neon.ek[4];
|
|
|
- uint8x16_t k5 = _aes._k.neon.ek[5];
|
|
|
- uint8x16_t k6 = _aes._k.neon.ek[6];
|
|
|
- uint8x16_t k7 = _aes._k.neon.ek[7];
|
|
|
- uint8x16_t k8 = _aes._k.neon.ek[8];
|
|
|
- uint8x16_t k9 = _aes._k.neon.ek[9];
|
|
|
- uint8x16_t k10 = _aes._k.neon.ek[10];
|
|
|
- uint8x16_t k11 = _aes._k.neon.ek[11];
|
|
|
- uint8x16_t k12 = _aes._k.neon.ek[12];
|
|
|
- uint8x16_t k13 = _aes._k.neon.ek[13];
|
|
|
- uint8x16_t k14 = _aes._k.neon.ek[14];
|
|
|
-
|
|
|
- unsigned int totalLen = _len;
|
|
|
- if ((totalLen & 15U)) {
|
|
|
- for (;;) {
|
|
|
- if (unlikely(!len)) {
|
|
|
- vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
|
|
|
- _len = totalLen;
|
|
|
- return;
|
|
|
- }
|
|
|
- --len;
|
|
|
- out[totalLen++] = *(in++);
|
|
|
- if (!(totalLen & 15U)) {
|
|
|
- uint8_t *const otmp = out + (totalLen - 16);
|
|
|
- uint8x16_t d0 = vrev32q_u8(dd);
|
|
|
- uint8x16_t pt = vld1q_u8(otmp);
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
|
|
|
- d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
|
|
|
- vst1q_u8(otmp, veorq_u8(pt, d0));
|
|
|
- dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
|
|
|
- break;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- out += totalLen;
|
|
|
- _len = totalLen + len;
|
|
|
-
|
|
|
- if (likely(len >= 64)) {
|
|
|
- const uint32x4_t four = vshlq_n_u32(one, 2);
|
|
|
- uint8x16_t dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
|
|
|
- uint8x16_t dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, one);
|
|
|
- uint8x16_t dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, one);
|
|
|
- for (;;) {
|
|
|
- len -= 64;
|
|
|
- uint8x16_t d0 = vrev32q_u8(dd);
|
|
|
- uint8x16_t d1 = vrev32q_u8(dd1);
|
|
|
- uint8x16_t d2 = vrev32q_u8(dd2);
|
|
|
- uint8x16_t d3 = vrev32q_u8(dd3);
|
|
|
- uint8x16_t pt0 = vld1q_u8(in);
|
|
|
- in += 16;
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k0));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k0));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k0));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k1));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k1));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k1));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k2));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k2));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k2));
|
|
|
- uint8x16_t pt1 = vld1q_u8(in);
|
|
|
- in += 16;
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k3));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k3));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k3));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k4));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k4));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k4));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k5));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k5));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k5));
|
|
|
- uint8x16_t pt2 = vld1q_u8(in);
|
|
|
- in += 16;
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k6));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k6));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k6));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k7));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k7));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k7));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k8));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k8));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k8));
|
|
|
- uint8x16_t pt3 = vld1q_u8(in);
|
|
|
- in += 16;
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k9));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k9));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k9));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k10));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k10));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k10));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k11));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k11));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k11));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
|
|
|
- d1 = vaesmcq_u8(vaeseq_u8(d1, k12));
|
|
|
- d2 = vaesmcq_u8(vaeseq_u8(d2, k12));
|
|
|
- d3 = vaesmcq_u8(vaeseq_u8(d3, k12));
|
|
|
- d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
|
|
|
- d1 = veorq_u8(vaeseq_u8(d1, k13), k14);
|
|
|
- d2 = veorq_u8(vaeseq_u8(d2, k13), k14);
|
|
|
- d3 = veorq_u8(vaeseq_u8(d3, k13), k14);
|
|
|
-
|
|
|
- d0 = veorq_u8(pt0, d0);
|
|
|
- d1 = veorq_u8(pt1, d1);
|
|
|
- d2 = veorq_u8(pt2, d2);
|
|
|
- d3 = veorq_u8(pt3, d3);
|
|
|
-
|
|
|
- vst1q_u8(out, d0);
|
|
|
- vst1q_u8(out + 16, d1);
|
|
|
- vst1q_u8(out + 32, d2);
|
|
|
- vst1q_u8(out + 48, d3);
|
|
|
- out += 64;
|
|
|
-
|
|
|
- dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, four);
|
|
|
- if (unlikely(len < 64))
|
|
|
- break;
|
|
|
- dd1 = (uint8x16_t)vaddq_u32((uint32x4_t)dd1, four);
|
|
|
- dd2 = (uint8x16_t)vaddq_u32((uint32x4_t)dd2, four);
|
|
|
- dd3 = (uint8x16_t)vaddq_u32((uint32x4_t)dd3, four);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- while (len >= 16) {
|
|
|
- len -= 16;
|
|
|
- uint8x16_t d0 = vrev32q_u8(dd);
|
|
|
- uint8x16_t pt = vld1q_u8(in);
|
|
|
- in += 16;
|
|
|
- dd = (uint8x16_t)vaddq_u32((uint32x4_t)dd, one);
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k0));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k1));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k2));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k3));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k4));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k5));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k6));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k7));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k8));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k9));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k10));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k11));
|
|
|
- d0 = vaesmcq_u8(vaeseq_u8(d0, k12));
|
|
|
- d0 = veorq_u8(vaeseq_u8(d0, k13), k14);
|
|
|
- vst1q_u8(out, veorq_u8(pt, d0));
|
|
|
- out += 16;
|
|
|
- }
|
|
|
-
|
|
|
- // Any remaining input is placed in _out. This will be picked up and crypted
|
|
|
- // on subsequent calls to crypt() or finish() as it'll mean _len will not be
|
|
|
- // an even multiple of 16.
|
|
|
- for (unsigned int i = 0; i < len; ++i)
|
|
|
- out[i] = in[i];
|
|
|
-
|
|
|
- vst1q_u8(reinterpret_cast<uint8_t *>(_ctr), vrev32q_u8(dd));
|
|
|
+ p_armCrypt(in, out, len);
|
|
|
return;
|
|
|
}
|
|
|
#endif // ZT_AES_NEON
|
|
@@ -1003,7 +254,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
|
|
|
--len;
|
|
|
out[totalLen++] = *(in++);
|
|
|
if (!(totalLen & 15U)) {
|
|
|
- _aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
|
|
|
+ _aes.p_encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
|
|
|
reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(++ctr);
|
|
|
uint8_t *outblk = out + (totalLen - 16);
|
|
|
for (int i = 0; i < 16; ++i)
|
|
@@ -1017,7 +268,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
|
|
|
_len = (totalLen + len);
|
|
|
|
|
|
if (likely(len >= 16)) {
|
|
|
- const uint32_t *const restrict rk = _aes._k.sw.ek;
|
|
|
+ const uint32_t *const restrict rk = _aes.p_k.sw.ek;
|
|
|
const uint32_t ctr0rk0 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[0]) ^rk[0];
|
|
|
const uint32_t ctr1rk1 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[1]) ^rk[1];
|
|
|
const uint32_t ctr2rk2 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[2]) ^rk[2];
|
|
@@ -1238,9 +489,9 @@ const uint8_t AES::Td4[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0
|
|
|
0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
|
|
|
const uint32_t AES::rcon[15] = {0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6c000000, 0xd8000000, 0xab000000, 0x4d000000, 0x9a000000};
|
|
|
|
|
|
-void AES::_initSW(const uint8_t key[32]) noexcept
|
|
|
+void AES::p_initSW(const uint8_t *key) noexcept
|
|
|
{
|
|
|
- uint32_t *rk = _k.sw.ek;
|
|
|
+ uint32_t *rk = p_k.sw.ek;
|
|
|
|
|
|
rk[0] = Utils::loadBigEndian< uint32_t >(key);
|
|
|
rk[1] = Utils::loadBigEndian< uint32_t >(key + 4);
|
|
@@ -1266,13 +517,13 @@ void AES::_initSW(const uint8_t key[32]) noexcept
|
|
|
rk += 8;
|
|
|
}
|
|
|
|
|
|
- _encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)_k.sw.h);
|
|
|
- _k.sw.h[0] = Utils::ntoh(_k.sw.h[0]);
|
|
|
- _k.sw.h[1] = Utils::ntoh(_k.sw.h[1]);
|
|
|
+ p_encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)p_k.sw.h);
|
|
|
+ p_k.sw.h[0] = Utils::ntoh(p_k.sw.h[0]);
|
|
|
+ p_k.sw.h[1] = Utils::ntoh(p_k.sw.h[1]);
|
|
|
|
|
|
for (int i = 0; i < 60; ++i)
|
|
|
- _k.sw.dk[i] = _k.sw.ek[i];
|
|
|
- rk = _k.sw.dk;
|
|
|
+ p_k.sw.dk[i] = p_k.sw.ek[i];
|
|
|
+ rk = p_k.sw.dk;
|
|
|
|
|
|
for (int i = 0, j = 56; i < j; i += 4, j -= 4) {
|
|
|
uint32_t temp = rk[i];
|
|
@@ -1297,9 +548,9 @@ void AES::_initSW(const uint8_t key[32]) noexcept
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
|
|
|
+void AES::p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept
|
|
|
{
|
|
|
- const uint32_t *const restrict rk = _k.sw.ek;
|
|
|
+ const uint32_t *const restrict rk = p_k.sw.ek;
|
|
|
const uint32_t m8 = 0x000000ff;
|
|
|
const uint32_t m8_8 = 0x0000ff00;
|
|
|
const uint32_t m8_16 = 0x00ff0000;
|
|
@@ -1373,9 +624,9 @@ void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
|
|
|
Utils::storeBigEndian< uint32_t >(out + 12, s3);
|
|
|
}
|
|
|
|
|
|
-void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
|
|
|
+void AES::p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept
|
|
|
{
|
|
|
- const uint32_t *restrict rk = _k.sw.dk;
|
|
|
+ const uint32_t *restrict rk = p_k.sw.dk;
|
|
|
const uint32_t m8 = 0x000000ff;
|
|
|
uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
|
|
|
uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
|
|
@@ -1446,229 +697,4 @@ void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
|
|
|
Utils::storeBigEndian< uint32_t >(out + 12, s3);
|
|
|
}
|
|
|
|
|
|
-#ifdef ZT_AES_AESNI
|
|
|
-
|
|
|
-static __m128i _init256_1_aesni(__m128i a, __m128i b) noexcept
|
|
|
-{
|
|
|
- __m128i x, y;
|
|
|
- b = _mm_shuffle_epi32(b, 0xff);
|
|
|
- y = _mm_slli_si128(a, 0x04);
|
|
|
- x = _mm_xor_si128(a, y);
|
|
|
- y = _mm_slli_si128(y, 0x04);
|
|
|
- x = _mm_xor_si128(x, y);
|
|
|
- y = _mm_slli_si128(y, 0x04);
|
|
|
- x = _mm_xor_si128(x, y);
|
|
|
- x = _mm_xor_si128(x, b);
|
|
|
- return x;
|
|
|
-}
|
|
|
-
|
|
|
-static __m128i _init256_2_aesni(__m128i a, __m128i b) noexcept
|
|
|
-{
|
|
|
- __m128i x, y, z;
|
|
|
- y = _mm_aeskeygenassist_si128(a, 0x00);
|
|
|
- z = _mm_shuffle_epi32(y, 0xaa);
|
|
|
- y = _mm_slli_si128(b, 0x04);
|
|
|
- x = _mm_xor_si128(b, y);
|
|
|
- y = _mm_slli_si128(y, 0x04);
|
|
|
- x = _mm_xor_si128(x, y);
|
|
|
- y = _mm_slli_si128(y, 0x04);
|
|
|
- x = _mm_xor_si128(x, y);
|
|
|
- x = _mm_xor_si128(x, z);
|
|
|
- return x;
|
|
|
-}
|
|
|
-
|
|
|
-__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
|
|
|
-void AES::_init_aesni(const uint8_t key[32]) noexcept
|
|
|
-{
|
|
|
- __m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
|
|
|
- _k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
|
|
|
- _k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
|
|
|
- _k.ni.k[2] = k2 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
|
|
|
- _k.ni.k[3] = k3 = t2 = _init256_2_aesni(t1, t2);
|
|
|
- _k.ni.k[4] = k4 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
|
|
|
- _k.ni.k[5] = k5 = t2 = _init256_2_aesni(t1, t2);
|
|
|
- _k.ni.k[6] = k6 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
|
|
|
- _k.ni.k[7] = k7 = t2 = _init256_2_aesni(t1, t2);
|
|
|
- _k.ni.k[8] = k8 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
|
|
|
- _k.ni.k[9] = k9 = t2 = _init256_2_aesni(t1, t2);
|
|
|
- _k.ni.k[10] = k10 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
|
|
|
- _k.ni.k[11] = k11 = t2 = _init256_2_aesni(t1, t2);
|
|
|
- _k.ni.k[12] = k12 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
|
|
|
- _k.ni.k[13] = k13 = t2 = _init256_2_aesni(t1, t2);
|
|
|
- _k.ni.k[14] = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
|
|
|
- _k.ni.k[15] = _mm_aesimc_si128(k13);
|
|
|
- _k.ni.k[16] = _mm_aesimc_si128(k12);
|
|
|
- _k.ni.k[17] = _mm_aesimc_si128(k11);
|
|
|
- _k.ni.k[18] = _mm_aesimc_si128(k10);
|
|
|
- _k.ni.k[19] = _mm_aesimc_si128(k9);
|
|
|
- _k.ni.k[20] = _mm_aesimc_si128(k8);
|
|
|
- _k.ni.k[21] = _mm_aesimc_si128(k7);
|
|
|
- _k.ni.k[22] = _mm_aesimc_si128(k6);
|
|
|
- _k.ni.k[23] = _mm_aesimc_si128(k5);
|
|
|
- _k.ni.k[24] = _mm_aesimc_si128(k4);
|
|
|
- _k.ni.k[25] = _mm_aesimc_si128(k3);
|
|
|
- _k.ni.k[26] = _mm_aesimc_si128(k2);
|
|
|
- _k.ni.k[27] = _mm_aesimc_si128(k1);
|
|
|
-
|
|
|
- __m128i h = _k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
|
|
|
- h = _mm_aesenc_si128(h, k1);
|
|
|
- h = _mm_aesenc_si128(h, k2);
|
|
|
- h = _mm_aesenc_si128(h, k3);
|
|
|
- h = _mm_aesenc_si128(h, k4);
|
|
|
- h = _mm_aesenc_si128(h, k5);
|
|
|
- h = _mm_aesenc_si128(h, k6);
|
|
|
- h = _mm_aesenc_si128(h, k7);
|
|
|
- h = _mm_aesenc_si128(h, k8);
|
|
|
- h = _mm_aesenc_si128(h, k9);
|
|
|
- h = _mm_aesenc_si128(h, k10);
|
|
|
- h = _mm_aesenc_si128(h, k11);
|
|
|
- h = _mm_aesenc_si128(h, k12);
|
|
|
- h = _mm_aesenc_si128(h, k13);
|
|
|
- h = _mm_aesenclast_si128(h, _k.ni.k[14]);
|
|
|
- __m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
|
|
|
- __m128i hh = p_gmacPCLMUL128(hswap, h);
|
|
|
- __m128i hhh = p_gmacPCLMUL128(hswap, hh);
|
|
|
- __m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
|
|
|
- _k.ni.h[0] = hswap;
|
|
|
- _k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
|
|
|
- _k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
|
|
|
- _k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
|
|
|
- _k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
|
|
|
- _k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
|
|
|
- _k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
|
|
|
- _k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
|
|
|
-}
|
|
|
-
|
|
|
-void AES::_encrypt_aesni(const void *const in, void *const out) const noexcept
|
|
|
-{
|
|
|
- __m128i tmp = _mm_loadu_si128((const __m128i *)in);
|
|
|
- tmp = _mm_xor_si128(tmp, _k.ni.k[0]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[1]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[2]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[3]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[4]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[5]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[6]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[7]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[8]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[9]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[10]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[11]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[12]);
|
|
|
- tmp = _mm_aesenc_si128(tmp, _k.ni.k[13]);
|
|
|
- _mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, _k.ni.k[14]));
|
|
|
-}
|
|
|
-
|
|
|
-void AES::_decrypt_aesni(const void *in, void *out) const noexcept
|
|
|
-{
|
|
|
- __m128i tmp = _mm_loadu_si128((const __m128i *)in);
|
|
|
- tmp = _mm_xor_si128(tmp, _k.ni.k[14]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[15]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[16]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[17]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[18]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[19]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[20]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[21]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[22]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[23]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[24]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[25]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[26]);
|
|
|
- tmp = _mm_aesdec_si128(tmp, _k.ni.k[27]);
|
|
|
- _mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, _k.ni.k[0]));
|
|
|
-}
|
|
|
-
|
|
|
-#endif // ZT_AES_AESNI
|
|
|
-
|
|
|
-#ifdef ZT_AES_NEON
|
|
|
-
|
|
|
-#define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))
|
|
|
-#define ZT_INIT_ARMNEON_CRYPTO_ROTWORD(w) (((w) << 8U) | ((w) >> 24U))
|
|
|
-#define ZT_INIT_ARMNEON_CRYPTO_NK 8
|
|
|
-#define ZT_INIT_ARMNEON_CRYPTO_NB 4
|
|
|
-#define ZT_INIT_ARMNEON_CRYPTO_NR 14
|
|
|
-
|
|
|
-void AES::_init_armneon_crypto(const uint8_t key[32]) noexcept
|
|
|
-{
|
|
|
- static const uint8_t s_sbox[256] = {0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c,
|
|
|
- 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea,
|
|
|
- 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16};
|
|
|
-
|
|
|
- uint64_t h[2];
|
|
|
- uint32_t *const w = reinterpret_cast<uint32_t *>(_k.neon.ek);
|
|
|
-
|
|
|
- for (unsigned int i=0;i<ZT_INIT_ARMNEON_CRYPTO_NK;++i) {
|
|
|
- const unsigned int j = i * 4;
|
|
|
- w[i] = ((uint32_t)key[j] << 24U) | ((uint32_t)key[j + 1] << 16U) | ((uint32_t)key[j + 2] << 8U) | (uint32_t)key[j + 3];
|
|
|
- }
|
|
|
-
|
|
|
- for (unsigned int i=ZT_INIT_ARMNEON_CRYPTO_NK;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i) {
|
|
|
- uint32_t t = w[i - 1];
|
|
|
- const unsigned int imod = i & (ZT_INIT_ARMNEON_CRYPTO_NK - 1);
|
|
|
- if (imod == 0) {
|
|
|
- t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(ZT_INIT_ARMNEON_CRYPTO_ROTWORD(t)) ^ rcon[(i - 1) / ZT_INIT_ARMNEON_CRYPTO_NK];
|
|
|
- } else if (imod == 4) {
|
|
|
- t = ZT_INIT_ARMNEON_CRYPTO_SUBWORD(t);
|
|
|
- }
|
|
|
- w[i] = w[i - ZT_INIT_ARMNEON_CRYPTO_NK] ^ t;
|
|
|
- }
|
|
|
-
|
|
|
- for (unsigned int i=0;i<(ZT_INIT_ARMNEON_CRYPTO_NB * (ZT_INIT_ARMNEON_CRYPTO_NR + 1));++i)
|
|
|
- w[i] = Utils::hton(w[i]);
|
|
|
-
|
|
|
- _k.neon.dk[0] = _k.neon.ek[14];
|
|
|
- for (int i=1;i<14;++i)
|
|
|
- _k.neon.dk[i] = vaesimcq_u8(_k.neon.ek[14 - i]);
|
|
|
- _k.neon.dk[14] = _k.neon.ek[0];
|
|
|
-
|
|
|
- _encrypt_armneon_crypto(Utils::ZERO256, h);
|
|
|
- Utils::copy<16>(&(_k.neon.h), h);
|
|
|
- _k.neon.h = vrbitq_u8(_k.neon.h);
|
|
|
- _k.sw.h[0] = Utils::ntoh(h[0]);
|
|
|
- _k.sw.h[1] = Utils::ntoh(h[1]);
|
|
|
-}
|
|
|
-
|
|
|
-void AES::_encrypt_armneon_crypto(const void *const in, void *const out) const noexcept
|
|
|
-{
|
|
|
- uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[0]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[1]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[2]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[3]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[4]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[5]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[6]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[7]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[8]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[9]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[10]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[11]));
|
|
|
- tmp = vaesmcq_u8(vaeseq_u8(tmp, _k.neon.ek[12]));
|
|
|
- tmp = veorq_u8(vaeseq_u8(tmp, _k.neon.ek[13]), _k.neon.ek[14]);
|
|
|
- vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
|
|
|
-}
|
|
|
-
|
|
|
-void AES::_decrypt_armneon_crypto(const void *const in, void *const out) const noexcept
|
|
|
-{
|
|
|
- uint8x16_t tmp = vld1q_u8(reinterpret_cast<const uint8_t *>(in));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[0]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[1]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[2]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[3]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[4]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[5]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[6]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[7]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[8]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[9]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[10]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[11]));
|
|
|
- tmp = vaesimcq_u8(vaesdq_u8(tmp, _k.neon.dk[12]));
|
|
|
- tmp = veorq_u8(vaesdq_u8(tmp, _k.neon.dk[13]), _k.neon.dk[14]);
|
|
|
- vst1q_u8(reinterpret_cast<uint8_t *>(out), tmp);
|
|
|
-}
|
|
|
-
|
|
|
-#endif // ZT_AES_NEON
|
|
|
-
|
|
|
} // namespace ZeroTier
|